| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chordthmlem2 | Structured version Visualization version GIF version | ||
| Description: If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then QMP is a right angle. This is proven by reduction to the special case chordthmlem 26778, where P = B, and using angrtmuld 26754 to observe that QMP is right iff QMB is. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| chordthmlem2.angdef | ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
| chordthmlem2.A | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| chordthmlem2.B | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| chordthmlem2.Q | ⊢ (𝜑 → 𝑄 ∈ ℂ) |
| chordthmlem2.X | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
| chordthmlem2.M | ⊢ (𝜑 → 𝑀 = ((𝐴 + 𝐵) / 2)) |
| chordthmlem2.P | ⊢ (𝜑 → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵))) |
| chordthmlem2.ABequidistQ | ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) |
| chordthmlem2.PneM | ⊢ (𝜑 → 𝑃 ≠ 𝑀) |
| chordthmlem2.QneM | ⊢ (𝜑 → 𝑄 ≠ 𝑀) |
| Ref | Expression |
|---|---|
| chordthmlem2 | ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝑃 − 𝑀)) ∈ {(π / 2), -(π / 2)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chordthmlem2.angdef | . . 3 ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) | |
| 2 | chordthmlem2.A | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 3 | chordthmlem2.B | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | chordthmlem2.Q | . . 3 ⊢ (𝜑 → 𝑄 ∈ ℂ) | |
| 5 | chordthmlem2.M | . . 3 ⊢ (𝜑 → 𝑀 = ((𝐴 + 𝐵) / 2)) | |
| 6 | chordthmlem2.ABequidistQ | . . 3 ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) | |
| 7 | 2re 12306 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
| 8 | 7 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 2 ∈ ℝ) |
| 9 | 2ne0 12336 | . . . . . . . . . 10 ⊢ 2 ≠ 0 | |
| 10 | 9 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 2 ≠ 0) |
| 11 | 8, 10 | rereccld 12060 | . . . . . . . 8 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
| 12 | chordthmlem2.X | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
| 13 | 11, 12 | resubcld 11657 | . . . . . . 7 ⊢ (𝜑 → ((1 / 2) − 𝑋) ∈ ℝ) |
| 14 | 13 | recnd 11255 | . . . . . 6 ⊢ (𝜑 → ((1 / 2) − 𝑋) ∈ ℂ) |
| 15 | 3, 2 | subcld 11586 | . . . . . 6 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℂ) |
| 16 | 11 | recnd 11255 | . . . . . . . . 9 ⊢ (𝜑 → (1 / 2) ∈ ℂ) |
| 17 | 12 | recnd 11255 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 18 | 16, 17, 15 | subdird 11686 | . . . . . . . 8 ⊢ (𝜑 → (((1 / 2) − 𝑋) · (𝐵 − 𝐴)) = (((1 / 2) · (𝐵 − 𝐴)) − (𝑋 · (𝐵 − 𝐴)))) |
| 19 | 2cnd 12310 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 2 ∈ ℂ) | |
| 20 | 3, 19, 10 | divcan4d 12015 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((𝐵 · 2) / 2) = 𝐵) |
| 21 | 3 | times2d 12477 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (𝐵 · 2) = (𝐵 + 𝐵)) |
| 22 | 21 | oveq1d 7414 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((𝐵 · 2) / 2) = ((𝐵 + 𝐵) / 2)) |
| 23 | 20, 22 | eqtr3d 2771 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐵 = ((𝐵 + 𝐵) / 2)) |
| 24 | 23, 5 | oveq12d 7417 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐵 − 𝑀) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2))) |
| 25 | 3, 3 | addcld 11246 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐵 + 𝐵) ∈ ℂ) |
| 26 | 2, 3 | addcld 11246 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
| 27 | 25, 26, 19, 10 | divsubdird 12048 | . . . . . . . . . . 11 ⊢ (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2))) |
| 28 | 3, 2, 3 | pnpcan2d 11624 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((𝐵 + 𝐵) − (𝐴 + 𝐵)) = (𝐵 − 𝐴)) |
| 29 | 28 | oveq1d 7414 | . . . . . . . . . . 11 ⊢ (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = ((𝐵 − 𝐴) / 2)) |
| 30 | 24, 27, 29 | 3eqtr2d 2775 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐵 − 𝑀) = ((𝐵 − 𝐴) / 2)) |
| 31 | 15, 19, 10 | divrec2d 12013 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐵 − 𝐴) / 2) = ((1 / 2) · (𝐵 − 𝐴))) |
| 32 | 30, 31 | eqtrd 2769 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵 − 𝑀) = ((1 / 2) · (𝐵 − 𝐴))) |
| 33 | chordthmlem2.P | . . . . . . . . . 10 ⊢ (𝜑 → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵))) | |
| 34 | 17, 2 | mulcld 11247 | . . . . . . . . . . . . 13 ⊢ (𝜑 → (𝑋 · 𝐴) ∈ ℂ) |
| 35 | 1cnd 11222 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 36 | 35, 17 | subcld 11586 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (1 − 𝑋) ∈ ℂ) |
| 37 | 36, 3 | mulcld 11247 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ) |
| 38 | 34, 37 | addcld 11246 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ) |
| 39 | 33, 38 | eqeltrd 2833 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 40 | 2, 39, 3, 17 | affineequiv 26769 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ↔ (𝐵 − 𝑃) = (𝑋 · (𝐵 − 𝐴)))) |
| 41 | 33, 40 | mpbid 232 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵 − 𝑃) = (𝑋 · (𝐵 − 𝐴))) |
| 42 | 32, 41 | oveq12d 7417 | . . . . . . . 8 ⊢ (𝜑 → ((𝐵 − 𝑀) − (𝐵 − 𝑃)) = (((1 / 2) · (𝐵 − 𝐴)) − (𝑋 · (𝐵 − 𝐴)))) |
| 43 | 26 | halfcld 12478 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ) |
| 44 | 5, 43 | eqeltrd 2833 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 45 | 3, 44, 39 | nnncan1d 11620 | . . . . . . . 8 ⊢ (𝜑 → ((𝐵 − 𝑀) − (𝐵 − 𝑃)) = (𝑃 − 𝑀)) |
| 46 | 18, 42, 45 | 3eqtr2rd 2776 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − 𝑀) = (((1 / 2) − 𝑋) · (𝐵 − 𝐴))) |
| 47 | chordthmlem2.PneM | . . . . . . . 8 ⊢ (𝜑 → 𝑃 ≠ 𝑀) | |
| 48 | 39, 44, 47 | subne0d 11595 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − 𝑀) ≠ 0) |
| 49 | 46, 48 | eqnetrrd 2999 | . . . . . 6 ⊢ (𝜑 → (((1 / 2) − 𝑋) · (𝐵 − 𝐴)) ≠ 0) |
| 50 | 14, 15, 49 | mulne0bbd 11885 | . . . . 5 ⊢ (𝜑 → (𝐵 − 𝐴) ≠ 0) |
| 51 | 3, 2, 50 | subne0ad 11597 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
| 52 | 51 | necomd 2986 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 53 | chordthmlem2.QneM | . . 3 ⊢ (𝜑 → 𝑄 ≠ 𝑀) | |
| 54 | 1, 2, 3, 4, 5, 6, 52, 53 | chordthmlem 26778 | . 2 ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ {(π / 2), -(π / 2)}) |
| 55 | 4, 44 | subcld 11586 | . . 3 ⊢ (𝜑 → (𝑄 − 𝑀) ∈ ℂ) |
| 56 | 39, 44 | subcld 11586 | . . 3 ⊢ (𝜑 → (𝑃 − 𝑀) ∈ ℂ) |
| 57 | 3, 44 | subcld 11586 | . . 3 ⊢ (𝜑 → (𝐵 − 𝑀) ∈ ℂ) |
| 58 | 4, 44, 53 | subne0d 11595 | . . 3 ⊢ (𝜑 → (𝑄 − 𝑀) ≠ 0) |
| 59 | 19, 10 | recne0d 12003 | . . . . 5 ⊢ (𝜑 → (1 / 2) ≠ 0) |
| 60 | 16, 15, 59, 50 | mulne0d 11881 | . . . 4 ⊢ (𝜑 → ((1 / 2) · (𝐵 − 𝐴)) ≠ 0) |
| 61 | 32, 60 | eqnetrd 2998 | . . 3 ⊢ (𝜑 → (𝐵 − 𝑀) ≠ 0) |
| 62 | 32, 46 | oveq12d 7417 | . . . . 5 ⊢ (𝜑 → ((𝐵 − 𝑀) / (𝑃 − 𝑀)) = (((1 / 2) · (𝐵 − 𝐴)) / (((1 / 2) − 𝑋) · (𝐵 − 𝐴)))) |
| 63 | 14, 15, 49 | mulne0bad 11884 | . . . . . 6 ⊢ (𝜑 → ((1 / 2) − 𝑋) ≠ 0) |
| 64 | 16, 14, 15, 63, 50 | divcan5rd 12036 | . . . . 5 ⊢ (𝜑 → (((1 / 2) · (𝐵 − 𝐴)) / (((1 / 2) − 𝑋) · (𝐵 − 𝐴))) = ((1 / 2) / ((1 / 2) − 𝑋))) |
| 65 | 62, 64 | eqtrd 2769 | . . . 4 ⊢ (𝜑 → ((𝐵 − 𝑀) / (𝑃 − 𝑀)) = ((1 / 2) / ((1 / 2) − 𝑋))) |
| 66 | 11, 13, 63 | redivcld 12061 | . . . 4 ⊢ (𝜑 → ((1 / 2) / ((1 / 2) − 𝑋)) ∈ ℝ) |
| 67 | 65, 66 | eqeltrd 2833 | . . 3 ⊢ (𝜑 → ((𝐵 − 𝑀) / (𝑃 − 𝑀)) ∈ ℝ) |
| 68 | 1, 55, 56, 57, 58, 48, 61, 67 | angrtmuld 26754 | . 2 ⊢ (𝜑 → (((𝑄 − 𝑀)𝐹(𝑃 − 𝑀)) ∈ {(π / 2), -(π / 2)} ↔ ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ {(π / 2), -(π / 2)})) |
| 69 | 54, 68 | mpbird 257 | 1 ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝑃 − 𝑀)) ∈ {(π / 2), -(π / 2)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∖ cdif 3921 {csn 4599 {cpr 4601 ‘cfv 6527 (class class class)co 7399 ∈ cmpo 7401 ℂcc 11119 ℝcr 11120 0cc0 11121 1c1 11122 + caddc 11124 · cmul 11126 − cmin 11458 -cneg 11459 / cdiv 11886 2c2 12287 ℑcim 15104 abscabs 15240 πcpi 16069 logclog 26499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-inf2 9647 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-pre-sup 11199 ax-addf 11200 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-iin 4967 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-se 5604 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-isom 6536 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-of 7665 df-om 7856 df-1st 7982 df-2nd 7983 df-supp 8154 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-2o 8475 df-er 8713 df-map 8836 df-pm 8837 df-ixp 8906 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9368 df-fi 9417 df-sup 9448 df-inf 9449 df-oi 9516 df-card 9945 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-div 11887 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-9 12302 df-n0 12494 df-z 12581 df-dec 12701 df-uz 12845 df-q 12957 df-rp 13001 df-xneg 13120 df-xadd 13121 df-xmul 13122 df-ioo 13357 df-ioc 13358 df-ico 13359 df-icc 13360 df-fz 13514 df-fzo 13661 df-fl 13798 df-mod 13876 df-seq 14009 df-exp 14069 df-fac 14280 df-bc 14309 df-hash 14337 df-shft 15073 df-cj 15105 df-re 15106 df-im 15107 df-sqrt 15241 df-abs 15242 df-limsup 15474 df-clim 15491 df-rlim 15492 df-sum 15690 df-ef 16070 df-sin 16072 df-cos 16073 df-pi 16075 df-struct 17151 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-ress 17237 df-plusg 17269 df-mulr 17270 df-starv 17271 df-sca 17272 df-vsca 17273 df-ip 17274 df-tset 17275 df-ple 17276 df-ds 17278 df-unif 17279 df-hom 17280 df-cco 17281 df-rest 17421 df-topn 17422 df-0g 17440 df-gsum 17441 df-topgen 17442 df-pt 17443 df-prds 17446 df-xrs 17501 df-qtop 17506 df-imas 17507 df-xps 17509 df-mre 17583 df-mrc 17584 df-acs 17586 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-submnd 18747 df-mulg 19036 df-cntz 19285 df-cmn 19748 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-fbas 21297 df-fg 21298 df-cnfld 21301 df-top 22817 df-topon 22834 df-topsp 22856 df-bases 22869 df-cld 22942 df-ntr 22943 df-cls 22944 df-nei 23021 df-lp 23059 df-perf 23060 df-cn 23150 df-cnp 23151 df-haus 23238 df-tx 23485 df-hmeo 23678 df-fil 23769 df-fm 23861 df-flim 23862 df-flf 23863 df-xms 24244 df-ms 24245 df-tms 24246 df-cncf 24807 df-limc 25804 df-dv 25805 df-log 26501 |
| This theorem is referenced by: chordthmlem3 26780 |
| Copyright terms: Public domain | W3C validator |