| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chordthmlem2 | Structured version Visualization version GIF version | ||
| Description: If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then QMP is a right angle. This is proven by reduction to the special case chordthmlem 26740, where P = B, and using angrtmuld 26716 to observe that QMP is right iff QMB is. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| chordthmlem2.angdef | ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
| chordthmlem2.A | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| chordthmlem2.B | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| chordthmlem2.Q | ⊢ (𝜑 → 𝑄 ∈ ℂ) |
| chordthmlem2.X | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
| chordthmlem2.M | ⊢ (𝜑 → 𝑀 = ((𝐴 + 𝐵) / 2)) |
| chordthmlem2.P | ⊢ (𝜑 → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵))) |
| chordthmlem2.ABequidistQ | ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) |
| chordthmlem2.PneM | ⊢ (𝜑 → 𝑃 ≠ 𝑀) |
| chordthmlem2.QneM | ⊢ (𝜑 → 𝑄 ≠ 𝑀) |
| Ref | Expression |
|---|---|
| chordthmlem2 | ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝑃 − 𝑀)) ∈ {(π / 2), -(π / 2)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chordthmlem2.angdef | . . 3 ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) | |
| 2 | chordthmlem2.A | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 3 | chordthmlem2.B | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | chordthmlem2.Q | . . 3 ⊢ (𝜑 → 𝑄 ∈ ℂ) | |
| 5 | chordthmlem2.M | . . 3 ⊢ (𝜑 → 𝑀 = ((𝐴 + 𝐵) / 2)) | |
| 6 | chordthmlem2.ABequidistQ | . . 3 ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) | |
| 7 | 2re 12202 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
| 8 | 7 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 2 ∈ ℝ) |
| 9 | 2ne0 12232 | . . . . . . . . . 10 ⊢ 2 ≠ 0 | |
| 10 | 9 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 2 ≠ 0) |
| 11 | 8, 10 | rereccld 11951 | . . . . . . . 8 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
| 12 | chordthmlem2.X | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
| 13 | 11, 12 | resubcld 11548 | . . . . . . 7 ⊢ (𝜑 → ((1 / 2) − 𝑋) ∈ ℝ) |
| 14 | 13 | recnd 11143 | . . . . . 6 ⊢ (𝜑 → ((1 / 2) − 𝑋) ∈ ℂ) |
| 15 | 3, 2 | subcld 11475 | . . . . . 6 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℂ) |
| 16 | 11 | recnd 11143 | . . . . . . . . 9 ⊢ (𝜑 → (1 / 2) ∈ ℂ) |
| 17 | 12 | recnd 11143 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 18 | 16, 17, 15 | subdird 11577 | . . . . . . . 8 ⊢ (𝜑 → (((1 / 2) − 𝑋) · (𝐵 − 𝐴)) = (((1 / 2) · (𝐵 − 𝐴)) − (𝑋 · (𝐵 − 𝐴)))) |
| 19 | 2cnd 12206 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 2 ∈ ℂ) | |
| 20 | 3, 19, 10 | divcan4d 11906 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((𝐵 · 2) / 2) = 𝐵) |
| 21 | 3 | times2d 12368 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (𝐵 · 2) = (𝐵 + 𝐵)) |
| 22 | 21 | oveq1d 7364 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((𝐵 · 2) / 2) = ((𝐵 + 𝐵) / 2)) |
| 23 | 20, 22 | eqtr3d 2766 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐵 = ((𝐵 + 𝐵) / 2)) |
| 24 | 23, 5 | oveq12d 7367 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐵 − 𝑀) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2))) |
| 25 | 3, 3 | addcld 11134 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐵 + 𝐵) ∈ ℂ) |
| 26 | 2, 3 | addcld 11134 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
| 27 | 25, 26, 19, 10 | divsubdird 11939 | . . . . . . . . . . 11 ⊢ (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2))) |
| 28 | 3, 2, 3 | pnpcan2d 11513 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((𝐵 + 𝐵) − (𝐴 + 𝐵)) = (𝐵 − 𝐴)) |
| 29 | 28 | oveq1d 7364 | . . . . . . . . . . 11 ⊢ (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = ((𝐵 − 𝐴) / 2)) |
| 30 | 24, 27, 29 | 3eqtr2d 2770 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐵 − 𝑀) = ((𝐵 − 𝐴) / 2)) |
| 31 | 15, 19, 10 | divrec2d 11904 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐵 − 𝐴) / 2) = ((1 / 2) · (𝐵 − 𝐴))) |
| 32 | 30, 31 | eqtrd 2764 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵 − 𝑀) = ((1 / 2) · (𝐵 − 𝐴))) |
| 33 | chordthmlem2.P | . . . . . . . . . 10 ⊢ (𝜑 → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵))) | |
| 34 | 17, 2 | mulcld 11135 | . . . . . . . . . . . . 13 ⊢ (𝜑 → (𝑋 · 𝐴) ∈ ℂ) |
| 35 | 1cnd 11110 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 36 | 35, 17 | subcld 11475 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (1 − 𝑋) ∈ ℂ) |
| 37 | 36, 3 | mulcld 11135 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ) |
| 38 | 34, 37 | addcld 11134 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ) |
| 39 | 33, 38 | eqeltrd 2828 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 40 | 2, 39, 3, 17 | affineequiv 26731 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ↔ (𝐵 − 𝑃) = (𝑋 · (𝐵 − 𝐴)))) |
| 41 | 33, 40 | mpbid 232 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵 − 𝑃) = (𝑋 · (𝐵 − 𝐴))) |
| 42 | 32, 41 | oveq12d 7367 | . . . . . . . 8 ⊢ (𝜑 → ((𝐵 − 𝑀) − (𝐵 − 𝑃)) = (((1 / 2) · (𝐵 − 𝐴)) − (𝑋 · (𝐵 − 𝐴)))) |
| 43 | 26 | halfcld 12369 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ) |
| 44 | 5, 43 | eqeltrd 2828 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 45 | 3, 44, 39 | nnncan1d 11509 | . . . . . . . 8 ⊢ (𝜑 → ((𝐵 − 𝑀) − (𝐵 − 𝑃)) = (𝑃 − 𝑀)) |
| 46 | 18, 42, 45 | 3eqtr2rd 2771 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − 𝑀) = (((1 / 2) − 𝑋) · (𝐵 − 𝐴))) |
| 47 | chordthmlem2.PneM | . . . . . . . 8 ⊢ (𝜑 → 𝑃 ≠ 𝑀) | |
| 48 | 39, 44, 47 | subne0d 11484 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − 𝑀) ≠ 0) |
| 49 | 46, 48 | eqnetrrd 2993 | . . . . . 6 ⊢ (𝜑 → (((1 / 2) − 𝑋) · (𝐵 − 𝐴)) ≠ 0) |
| 50 | 14, 15, 49 | mulne0bbd 11776 | . . . . 5 ⊢ (𝜑 → (𝐵 − 𝐴) ≠ 0) |
| 51 | 3, 2, 50 | subne0ad 11486 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
| 52 | 51 | necomd 2980 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 53 | chordthmlem2.QneM | . . 3 ⊢ (𝜑 → 𝑄 ≠ 𝑀) | |
| 54 | 1, 2, 3, 4, 5, 6, 52, 53 | chordthmlem 26740 | . 2 ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ {(π / 2), -(π / 2)}) |
| 55 | 4, 44 | subcld 11475 | . . 3 ⊢ (𝜑 → (𝑄 − 𝑀) ∈ ℂ) |
| 56 | 39, 44 | subcld 11475 | . . 3 ⊢ (𝜑 → (𝑃 − 𝑀) ∈ ℂ) |
| 57 | 3, 44 | subcld 11475 | . . 3 ⊢ (𝜑 → (𝐵 − 𝑀) ∈ ℂ) |
| 58 | 4, 44, 53 | subne0d 11484 | . . 3 ⊢ (𝜑 → (𝑄 − 𝑀) ≠ 0) |
| 59 | 19, 10 | recne0d 11894 | . . . . 5 ⊢ (𝜑 → (1 / 2) ≠ 0) |
| 60 | 16, 15, 59, 50 | mulne0d 11772 | . . . 4 ⊢ (𝜑 → ((1 / 2) · (𝐵 − 𝐴)) ≠ 0) |
| 61 | 32, 60 | eqnetrd 2992 | . . 3 ⊢ (𝜑 → (𝐵 − 𝑀) ≠ 0) |
| 62 | 32, 46 | oveq12d 7367 | . . . . 5 ⊢ (𝜑 → ((𝐵 − 𝑀) / (𝑃 − 𝑀)) = (((1 / 2) · (𝐵 − 𝐴)) / (((1 / 2) − 𝑋) · (𝐵 − 𝐴)))) |
| 63 | 14, 15, 49 | mulne0bad 11775 | . . . . . 6 ⊢ (𝜑 → ((1 / 2) − 𝑋) ≠ 0) |
| 64 | 16, 14, 15, 63, 50 | divcan5rd 11927 | . . . . 5 ⊢ (𝜑 → (((1 / 2) · (𝐵 − 𝐴)) / (((1 / 2) − 𝑋) · (𝐵 − 𝐴))) = ((1 / 2) / ((1 / 2) − 𝑋))) |
| 65 | 62, 64 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → ((𝐵 − 𝑀) / (𝑃 − 𝑀)) = ((1 / 2) / ((1 / 2) − 𝑋))) |
| 66 | 11, 13, 63 | redivcld 11952 | . . . 4 ⊢ (𝜑 → ((1 / 2) / ((1 / 2) − 𝑋)) ∈ ℝ) |
| 67 | 65, 66 | eqeltrd 2828 | . . 3 ⊢ (𝜑 → ((𝐵 − 𝑀) / (𝑃 − 𝑀)) ∈ ℝ) |
| 68 | 1, 55, 56, 57, 58, 48, 61, 67 | angrtmuld 26716 | . 2 ⊢ (𝜑 → (((𝑄 − 𝑀)𝐹(𝑃 − 𝑀)) ∈ {(π / 2), -(π / 2)} ↔ ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ {(π / 2), -(π / 2)})) |
| 69 | 54, 68 | mpbird 257 | 1 ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝑃 − 𝑀)) ∈ {(π / 2), -(π / 2)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3900 {csn 4577 {cpr 4579 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 ℂcc 11007 ℝcr 11008 0cc0 11009 1c1 11010 + caddc 11012 · cmul 11014 − cmin 11347 -cneg 11348 / cdiv 11777 2c2 12183 ℑcim 15005 abscabs 15141 πcpi 15973 logclog 26461 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ioc 13253 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-perf 23022 df-cn 23112 df-cnp 23113 df-haus 23200 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-xms 24206 df-ms 24207 df-tms 24208 df-cncf 24769 df-limc 25765 df-dv 25766 df-log 26463 |
| This theorem is referenced by: chordthmlem3 26742 |
| Copyright terms: Public domain | W3C validator |