![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chordthmlem2 | Structured version Visualization version GIF version |
Description: If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then QMP is a right angle. This is proven by reduction to the special case chordthmlem 25096, where P = B, and using angrtmuld 25072 to observe that QMP is right iff QMB is. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
chordthmlem2.angdef | ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
chordthmlem2.A | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
chordthmlem2.B | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
chordthmlem2.Q | ⊢ (𝜑 → 𝑄 ∈ ℂ) |
chordthmlem2.X | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
chordthmlem2.M | ⊢ (𝜑 → 𝑀 = ((𝐴 + 𝐵) / 2)) |
chordthmlem2.P | ⊢ (𝜑 → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵))) |
chordthmlem2.ABequidistQ | ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) |
chordthmlem2.PneM | ⊢ (𝜑 → 𝑃 ≠ 𝑀) |
chordthmlem2.QneM | ⊢ (𝜑 → 𝑄 ≠ 𝑀) |
Ref | Expression |
---|---|
chordthmlem2 | ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝑃 − 𝑀)) ∈ {(π / 2), -(π / 2)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chordthmlem2.angdef | . . 3 ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) | |
2 | chordthmlem2.A | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | chordthmlem2.B | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | chordthmlem2.Q | . . 3 ⊢ (𝜑 → 𝑄 ∈ ℂ) | |
5 | chordthmlem2.M | . . 3 ⊢ (𝜑 → 𝑀 = ((𝐴 + 𝐵) / 2)) | |
6 | chordthmlem2.ABequidistQ | . . 3 ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) | |
7 | 2re 11564 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
8 | 7 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 2 ∈ ℝ) |
9 | 2ne0 11594 | . . . . . . . . . 10 ⊢ 2 ≠ 0 | |
10 | 9 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 2 ≠ 0) |
11 | 8, 10 | rereccld 11320 | . . . . . . . 8 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
12 | chordthmlem2.X | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
13 | 11, 12 | resubcld 10921 | . . . . . . 7 ⊢ (𝜑 → ((1 / 2) − 𝑋) ∈ ℝ) |
14 | 13 | recnd 10520 | . . . . . 6 ⊢ (𝜑 → ((1 / 2) − 𝑋) ∈ ℂ) |
15 | 3, 2 | subcld 10850 | . . . . . 6 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℂ) |
16 | 11 | recnd 10520 | . . . . . . . . 9 ⊢ (𝜑 → (1 / 2) ∈ ℂ) |
17 | 12 | recnd 10520 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
18 | 16, 17, 15 | subdird 10950 | . . . . . . . 8 ⊢ (𝜑 → (((1 / 2) − 𝑋) · (𝐵 − 𝐴)) = (((1 / 2) · (𝐵 − 𝐴)) − (𝑋 · (𝐵 − 𝐴)))) |
19 | 2cnd 11568 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 2 ∈ ℂ) | |
20 | 3, 19, 10 | divcan4d 11275 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((𝐵 · 2) / 2) = 𝐵) |
21 | 3 | times2d 11734 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (𝐵 · 2) = (𝐵 + 𝐵)) |
22 | 21 | oveq1d 7036 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((𝐵 · 2) / 2) = ((𝐵 + 𝐵) / 2)) |
23 | 20, 22 | eqtr3d 2833 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐵 = ((𝐵 + 𝐵) / 2)) |
24 | 23, 5 | oveq12d 7039 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐵 − 𝑀) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2))) |
25 | 3, 3 | addcld 10511 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐵 + 𝐵) ∈ ℂ) |
26 | 2, 3 | addcld 10511 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
27 | 25, 26, 19, 10 | divsubdird 11308 | . . . . . . . . . . 11 ⊢ (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2))) |
28 | 3, 2, 3 | pnpcan2d 10888 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((𝐵 + 𝐵) − (𝐴 + 𝐵)) = (𝐵 − 𝐴)) |
29 | 28 | oveq1d 7036 | . . . . . . . . . . 11 ⊢ (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = ((𝐵 − 𝐴) / 2)) |
30 | 24, 27, 29 | 3eqtr2d 2837 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐵 − 𝑀) = ((𝐵 − 𝐴) / 2)) |
31 | 15, 19, 10 | divrec2d 11273 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐵 − 𝐴) / 2) = ((1 / 2) · (𝐵 − 𝐴))) |
32 | 30, 31 | eqtrd 2831 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵 − 𝑀) = ((1 / 2) · (𝐵 − 𝐴))) |
33 | chordthmlem2.P | . . . . . . . . . 10 ⊢ (𝜑 → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵))) | |
34 | 17, 2 | mulcld 10512 | . . . . . . . . . . . . 13 ⊢ (𝜑 → (𝑋 · 𝐴) ∈ ℂ) |
35 | 1cnd 10487 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 1 ∈ ℂ) | |
36 | 35, 17 | subcld 10850 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (1 − 𝑋) ∈ ℂ) |
37 | 36, 3 | mulcld 10512 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ) |
38 | 34, 37 | addcld 10511 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ) |
39 | 33, 38 | eqeltrd 2883 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
40 | 2, 39, 3, 17 | affineequiv 25087 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ↔ (𝐵 − 𝑃) = (𝑋 · (𝐵 − 𝐴)))) |
41 | 33, 40 | mpbid 233 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵 − 𝑃) = (𝑋 · (𝐵 − 𝐴))) |
42 | 32, 41 | oveq12d 7039 | . . . . . . . 8 ⊢ (𝜑 → ((𝐵 − 𝑀) − (𝐵 − 𝑃)) = (((1 / 2) · (𝐵 − 𝐴)) − (𝑋 · (𝐵 − 𝐴)))) |
43 | 26 | halfcld 11735 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ) |
44 | 5, 43 | eqeltrd 2883 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
45 | 3, 44, 39 | nnncan1d 10884 | . . . . . . . 8 ⊢ (𝜑 → ((𝐵 − 𝑀) − (𝐵 − 𝑃)) = (𝑃 − 𝑀)) |
46 | 18, 42, 45 | 3eqtr2rd 2838 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − 𝑀) = (((1 / 2) − 𝑋) · (𝐵 − 𝐴))) |
47 | chordthmlem2.PneM | . . . . . . . 8 ⊢ (𝜑 → 𝑃 ≠ 𝑀) | |
48 | 39, 44, 47 | subne0d 10859 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − 𝑀) ≠ 0) |
49 | 46, 48 | eqnetrrd 3052 | . . . . . 6 ⊢ (𝜑 → (((1 / 2) − 𝑋) · (𝐵 − 𝐴)) ≠ 0) |
50 | 14, 15, 49 | mulne0bbd 11149 | . . . . 5 ⊢ (𝜑 → (𝐵 − 𝐴) ≠ 0) |
51 | 3, 2, 50 | subne0ad 10861 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
52 | 51 | necomd 3039 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
53 | chordthmlem2.QneM | . . 3 ⊢ (𝜑 → 𝑄 ≠ 𝑀) | |
54 | 1, 2, 3, 4, 5, 6, 52, 53 | chordthmlem 25096 | . 2 ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ {(π / 2), -(π / 2)}) |
55 | 4, 44 | subcld 10850 | . . 3 ⊢ (𝜑 → (𝑄 − 𝑀) ∈ ℂ) |
56 | 39, 44 | subcld 10850 | . . 3 ⊢ (𝜑 → (𝑃 − 𝑀) ∈ ℂ) |
57 | 3, 44 | subcld 10850 | . . 3 ⊢ (𝜑 → (𝐵 − 𝑀) ∈ ℂ) |
58 | 4, 44, 53 | subne0d 10859 | . . 3 ⊢ (𝜑 → (𝑄 − 𝑀) ≠ 0) |
59 | 19, 10 | recne0d 11263 | . . . . 5 ⊢ (𝜑 → (1 / 2) ≠ 0) |
60 | 16, 15, 59, 50 | mulne0d 11145 | . . . 4 ⊢ (𝜑 → ((1 / 2) · (𝐵 − 𝐴)) ≠ 0) |
61 | 32, 60 | eqnetrd 3051 | . . 3 ⊢ (𝜑 → (𝐵 − 𝑀) ≠ 0) |
62 | 32, 46 | oveq12d 7039 | . . . . 5 ⊢ (𝜑 → ((𝐵 − 𝑀) / (𝑃 − 𝑀)) = (((1 / 2) · (𝐵 − 𝐴)) / (((1 / 2) − 𝑋) · (𝐵 − 𝐴)))) |
63 | 14, 15, 49 | mulne0bad 11148 | . . . . . 6 ⊢ (𝜑 → ((1 / 2) − 𝑋) ≠ 0) |
64 | 16, 14, 15, 63, 50 | divcan5rd 11296 | . . . . 5 ⊢ (𝜑 → (((1 / 2) · (𝐵 − 𝐴)) / (((1 / 2) − 𝑋) · (𝐵 − 𝐴))) = ((1 / 2) / ((1 / 2) − 𝑋))) |
65 | 62, 64 | eqtrd 2831 | . . . 4 ⊢ (𝜑 → ((𝐵 − 𝑀) / (𝑃 − 𝑀)) = ((1 / 2) / ((1 / 2) − 𝑋))) |
66 | 11, 13, 63 | redivcld 11321 | . . . 4 ⊢ (𝜑 → ((1 / 2) / ((1 / 2) − 𝑋)) ∈ ℝ) |
67 | 65, 66 | eqeltrd 2883 | . . 3 ⊢ (𝜑 → ((𝐵 − 𝑀) / (𝑃 − 𝑀)) ∈ ℝ) |
68 | 1, 55, 56, 57, 58, 48, 61, 67 | angrtmuld 25072 | . 2 ⊢ (𝜑 → (((𝑄 − 𝑀)𝐹(𝑃 − 𝑀)) ∈ {(π / 2), -(π / 2)} ↔ ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ {(π / 2), -(π / 2)})) |
69 | 54, 68 | mpbird 258 | 1 ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝑃 − 𝑀)) ∈ {(π / 2), -(π / 2)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1522 ∈ wcel 2081 ≠ wne 2984 ∖ cdif 3860 {csn 4476 {cpr 4478 ‘cfv 6230 (class class class)co 7021 ∈ cmpo 7023 ℂcc 10386 ℝcr 10387 0cc0 10388 1c1 10389 + caddc 10391 · cmul 10393 − cmin 10722 -cneg 10723 / cdiv 11150 2c2 11545 ℑcim 14296 abscabs 14432 πcpi 15258 logclog 24824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5086 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 ax-inf2 8955 ax-cnex 10444 ax-resscn 10445 ax-1cn 10446 ax-icn 10447 ax-addcl 10448 ax-addrcl 10449 ax-mulcl 10450 ax-mulrcl 10451 ax-mulcom 10452 ax-addass 10453 ax-mulass 10454 ax-distr 10455 ax-i2m1 10456 ax-1ne0 10457 ax-1rid 10458 ax-rnegex 10459 ax-rrecex 10460 ax-cnre 10461 ax-pre-lttri 10462 ax-pre-lttrn 10463 ax-pre-ltadd 10464 ax-pre-mulgt0 10465 ax-pre-sup 10466 ax-addf 10467 ax-mulf 10468 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-fal 1535 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-pss 3880 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-tp 4481 df-op 4483 df-uni 4750 df-int 4787 df-iun 4831 df-iin 4832 df-br 4967 df-opab 5029 df-mpt 5046 df-tr 5069 df-id 5353 df-eprel 5358 df-po 5367 df-so 5368 df-fr 5407 df-se 5408 df-we 5409 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-pred 6028 df-ord 6074 df-on 6075 df-lim 6076 df-suc 6077 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-isom 6239 df-riota 6982 df-ov 7024 df-oprab 7025 df-mpo 7026 df-of 7272 df-om 7442 df-1st 7550 df-2nd 7551 df-supp 7687 df-wrecs 7803 df-recs 7865 df-rdg 7903 df-1o 7958 df-2o 7959 df-oadd 7962 df-er 8144 df-map 8263 df-pm 8264 df-ixp 8316 df-en 8363 df-dom 8364 df-sdom 8365 df-fin 8366 df-fsupp 8685 df-fi 8726 df-sup 8757 df-inf 8758 df-oi 8825 df-card 9219 df-pnf 10528 df-mnf 10529 df-xr 10530 df-ltxr 10531 df-le 10532 df-sub 10724 df-neg 10725 df-div 11151 df-nn 11492 df-2 11553 df-3 11554 df-4 11555 df-5 11556 df-6 11557 df-7 11558 df-8 11559 df-9 11560 df-n0 11751 df-z 11835 df-dec 11953 df-uz 12099 df-q 12203 df-rp 12245 df-xneg 12362 df-xadd 12363 df-xmul 12364 df-ioo 12597 df-ioc 12598 df-ico 12599 df-icc 12600 df-fz 12748 df-fzo 12889 df-fl 13017 df-mod 13093 df-seq 13225 df-exp 13285 df-fac 13489 df-bc 13518 df-hash 13546 df-shft 14265 df-cj 14297 df-re 14298 df-im 14299 df-sqrt 14433 df-abs 14434 df-limsup 14667 df-clim 14684 df-rlim 14685 df-sum 14882 df-ef 15259 df-sin 15261 df-cos 15262 df-pi 15264 df-struct 16319 df-ndx 16320 df-slot 16321 df-base 16323 df-sets 16324 df-ress 16325 df-plusg 16412 df-mulr 16413 df-starv 16414 df-sca 16415 df-vsca 16416 df-ip 16417 df-tset 16418 df-ple 16419 df-ds 16421 df-unif 16422 df-hom 16423 df-cco 16424 df-rest 16530 df-topn 16531 df-0g 16549 df-gsum 16550 df-topgen 16551 df-pt 16552 df-prds 16555 df-xrs 16609 df-qtop 16614 df-imas 16615 df-xps 16617 df-mre 16691 df-mrc 16692 df-acs 16694 df-mgm 17686 df-sgrp 17728 df-mnd 17739 df-submnd 17780 df-mulg 17987 df-cntz 18193 df-cmn 18640 df-psmet 20224 df-xmet 20225 df-met 20226 df-bl 20227 df-mopn 20228 df-fbas 20229 df-fg 20230 df-cnfld 20233 df-top 21191 df-topon 21208 df-topsp 21230 df-bases 21243 df-cld 21316 df-ntr 21317 df-cls 21318 df-nei 21395 df-lp 21433 df-perf 21434 df-cn 21524 df-cnp 21525 df-haus 21612 df-tx 21859 df-hmeo 22052 df-fil 22143 df-fm 22235 df-flim 22236 df-flf 22237 df-xms 22618 df-ms 22619 df-tms 22620 df-cncf 23174 df-limc 24152 df-dv 24153 df-log 24826 |
This theorem is referenced by: chordthmlem3 25098 |
Copyright terms: Public domain | W3C validator |