MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chordthmlem2 Structured version   Visualization version   GIF version

Theorem chordthmlem2 26795
Description: If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then QMP is a right angle. This is proven by reduction to the special case chordthmlem 26794, where P = B, and using angrtmuld 26770 to observe that QMP is right iff QMB is. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
chordthmlem2.angdef 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
chordthmlem2.A (𝜑𝐴 ∈ ℂ)
chordthmlem2.B (𝜑𝐵 ∈ ℂ)
chordthmlem2.Q (𝜑𝑄 ∈ ℂ)
chordthmlem2.X (𝜑𝑋 ∈ ℝ)
chordthmlem2.M (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
chordthmlem2.P (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
chordthmlem2.ABequidistQ (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
chordthmlem2.PneM (𝜑𝑃𝑀)
chordthmlem2.QneM (𝜑𝑄𝑀)
Assertion
Ref Expression
chordthmlem2 (𝜑 → ((𝑄𝑀)𝐹(𝑃𝑀)) ∈ {(π / 2), -(π / 2)})
Distinct variable groups:   𝑥,𝑦,𝑄   𝑥,𝑃,𝑦   𝑥,𝑀,𝑦   𝑥,𝐵,𝑦   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem chordthmlem2
StepHypRef Expression
1 chordthmlem2.angdef . . 3 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
2 chordthmlem2.A . . 3 (𝜑𝐴 ∈ ℂ)
3 chordthmlem2.B . . 3 (𝜑𝐵 ∈ ℂ)
4 chordthmlem2.Q . . 3 (𝜑𝑄 ∈ ℂ)
5 chordthmlem2.M . . 3 (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
6 chordthmlem2.ABequidistQ . . 3 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
7 2re 12314 . . . . . . . . . 10 2 ∈ ℝ
87a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
9 2ne0 12344 . . . . . . . . . 10 2 ≠ 0
109a1i 11 . . . . . . . . 9 (𝜑 → 2 ≠ 0)
118, 10rereccld 12068 . . . . . . . 8 (𝜑 → (1 / 2) ∈ ℝ)
12 chordthmlem2.X . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
1311, 12resubcld 11665 . . . . . . 7 (𝜑 → ((1 / 2) − 𝑋) ∈ ℝ)
1413recnd 11263 . . . . . 6 (𝜑 → ((1 / 2) − 𝑋) ∈ ℂ)
153, 2subcld 11594 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℂ)
1611recnd 11263 . . . . . . . . 9 (𝜑 → (1 / 2) ∈ ℂ)
1712recnd 11263 . . . . . . . . 9 (𝜑𝑋 ∈ ℂ)
1816, 17, 15subdird 11694 . . . . . . . 8 (𝜑 → (((1 / 2) − 𝑋) · (𝐵𝐴)) = (((1 / 2) · (𝐵𝐴)) − (𝑋 · (𝐵𝐴))))
19 2cnd 12318 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℂ)
203, 19, 10divcan4d 12023 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 · 2) / 2) = 𝐵)
213times2d 12485 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 · 2) = (𝐵 + 𝐵))
2221oveq1d 7420 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 · 2) / 2) = ((𝐵 + 𝐵) / 2))
2320, 22eqtr3d 2772 . . . . . . . . . . . 12 (𝜑𝐵 = ((𝐵 + 𝐵) / 2))
2423, 5oveq12d 7423 . . . . . . . . . . 11 (𝜑 → (𝐵𝑀) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2)))
253, 3addcld 11254 . . . . . . . . . . . 12 (𝜑 → (𝐵 + 𝐵) ∈ ℂ)
262, 3addcld 11254 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
2725, 26, 19, 10divsubdird 12056 . . . . . . . . . . 11 (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2)))
283, 2, 3pnpcan2d 11632 . . . . . . . . . . . 12 (𝜑 → ((𝐵 + 𝐵) − (𝐴 + 𝐵)) = (𝐵𝐴))
2928oveq1d 7420 . . . . . . . . . . 11 (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = ((𝐵𝐴) / 2))
3024, 27, 293eqtr2d 2776 . . . . . . . . . 10 (𝜑 → (𝐵𝑀) = ((𝐵𝐴) / 2))
3115, 19, 10divrec2d 12021 . . . . . . . . . 10 (𝜑 → ((𝐵𝐴) / 2) = ((1 / 2) · (𝐵𝐴)))
3230, 31eqtrd 2770 . . . . . . . . 9 (𝜑 → (𝐵𝑀) = ((1 / 2) · (𝐵𝐴)))
33 chordthmlem2.P . . . . . . . . . 10 (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
3417, 2mulcld 11255 . . . . . . . . . . . . 13 (𝜑 → (𝑋 · 𝐴) ∈ ℂ)
35 1cnd 11230 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
3635, 17subcld 11594 . . . . . . . . . . . . . 14 (𝜑 → (1 − 𝑋) ∈ ℂ)
3736, 3mulcld 11255 . . . . . . . . . . . . 13 (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ)
3834, 37addcld 11254 . . . . . . . . . . . 12 (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ)
3933, 38eqeltrd 2834 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℂ)
402, 39, 3, 17affineequiv 26785 . . . . . . . . . 10 (𝜑 → (𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ↔ (𝐵𝑃) = (𝑋 · (𝐵𝐴))))
4133, 40mpbid 232 . . . . . . . . 9 (𝜑 → (𝐵𝑃) = (𝑋 · (𝐵𝐴)))
4232, 41oveq12d 7423 . . . . . . . 8 (𝜑 → ((𝐵𝑀) − (𝐵𝑃)) = (((1 / 2) · (𝐵𝐴)) − (𝑋 · (𝐵𝐴))))
4326halfcld 12486 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ)
445, 43eqeltrd 2834 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
453, 44, 39nnncan1d 11628 . . . . . . . 8 (𝜑 → ((𝐵𝑀) − (𝐵𝑃)) = (𝑃𝑀))
4618, 42, 453eqtr2rd 2777 . . . . . . 7 (𝜑 → (𝑃𝑀) = (((1 / 2) − 𝑋) · (𝐵𝐴)))
47 chordthmlem2.PneM . . . . . . . 8 (𝜑𝑃𝑀)
4839, 44, 47subne0d 11603 . . . . . . 7 (𝜑 → (𝑃𝑀) ≠ 0)
4946, 48eqnetrrd 3000 . . . . . 6 (𝜑 → (((1 / 2) − 𝑋) · (𝐵𝐴)) ≠ 0)
5014, 15, 49mulne0bbd 11893 . . . . 5 (𝜑 → (𝐵𝐴) ≠ 0)
513, 2, 50subne0ad 11605 . . . 4 (𝜑𝐵𝐴)
5251necomd 2987 . . 3 (𝜑𝐴𝐵)
53 chordthmlem2.QneM . . 3 (𝜑𝑄𝑀)
541, 2, 3, 4, 5, 6, 52, 53chordthmlem 26794 . 2 (𝜑 → ((𝑄𝑀)𝐹(𝐵𝑀)) ∈ {(π / 2), -(π / 2)})
554, 44subcld 11594 . . 3 (𝜑 → (𝑄𝑀) ∈ ℂ)
5639, 44subcld 11594 . . 3 (𝜑 → (𝑃𝑀) ∈ ℂ)
573, 44subcld 11594 . . 3 (𝜑 → (𝐵𝑀) ∈ ℂ)
584, 44, 53subne0d 11603 . . 3 (𝜑 → (𝑄𝑀) ≠ 0)
5919, 10recne0d 12011 . . . . 5 (𝜑 → (1 / 2) ≠ 0)
6016, 15, 59, 50mulne0d 11889 . . . 4 (𝜑 → ((1 / 2) · (𝐵𝐴)) ≠ 0)
6132, 60eqnetrd 2999 . . 3 (𝜑 → (𝐵𝑀) ≠ 0)
6232, 46oveq12d 7423 . . . . 5 (𝜑 → ((𝐵𝑀) / (𝑃𝑀)) = (((1 / 2) · (𝐵𝐴)) / (((1 / 2) − 𝑋) · (𝐵𝐴))))
6314, 15, 49mulne0bad 11892 . . . . . 6 (𝜑 → ((1 / 2) − 𝑋) ≠ 0)
6416, 14, 15, 63, 50divcan5rd 12044 . . . . 5 (𝜑 → (((1 / 2) · (𝐵𝐴)) / (((1 / 2) − 𝑋) · (𝐵𝐴))) = ((1 / 2) / ((1 / 2) − 𝑋)))
6562, 64eqtrd 2770 . . . 4 (𝜑 → ((𝐵𝑀) / (𝑃𝑀)) = ((1 / 2) / ((1 / 2) − 𝑋)))
6611, 13, 63redivcld 12069 . . . 4 (𝜑 → ((1 / 2) / ((1 / 2) − 𝑋)) ∈ ℝ)
6765, 66eqeltrd 2834 . . 3 (𝜑 → ((𝐵𝑀) / (𝑃𝑀)) ∈ ℝ)
681, 55, 56, 57, 58, 48, 61, 67angrtmuld 26770 . 2 (𝜑 → (((𝑄𝑀)𝐹(𝑃𝑀)) ∈ {(π / 2), -(π / 2)} ↔ ((𝑄𝑀)𝐹(𝐵𝑀)) ∈ {(π / 2), -(π / 2)}))
6954, 68mpbird 257 1 (𝜑 → ((𝑄𝑀)𝐹(𝑃𝑀)) ∈ {(π / 2), -(π / 2)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wne 2932  cdif 3923  {csn 4601  {cpr 4603  cfv 6531  (class class class)co 7405  cmpo 7407  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  cmin 11466  -cneg 11467   / cdiv 11894  2c2 12295  cim 15117  abscabs 15253  πcpi 16082  logclog 26515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517
This theorem is referenced by:  chordthmlem3  26796
  Copyright terms: Public domain W3C validator