MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chordthmlem2 Structured version   Visualization version   GIF version

Theorem chordthmlem2 25888
Description: If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then QMP is a right angle. This is proven by reduction to the special case chordthmlem 25887, where P = B, and using angrtmuld 25863 to observe that QMP is right iff QMB is. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
chordthmlem2.angdef 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
chordthmlem2.A (𝜑𝐴 ∈ ℂ)
chordthmlem2.B (𝜑𝐵 ∈ ℂ)
chordthmlem2.Q (𝜑𝑄 ∈ ℂ)
chordthmlem2.X (𝜑𝑋 ∈ ℝ)
chordthmlem2.M (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
chordthmlem2.P (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
chordthmlem2.ABequidistQ (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
chordthmlem2.PneM (𝜑𝑃𝑀)
chordthmlem2.QneM (𝜑𝑄𝑀)
Assertion
Ref Expression
chordthmlem2 (𝜑 → ((𝑄𝑀)𝐹(𝑃𝑀)) ∈ {(π / 2), -(π / 2)})
Distinct variable groups:   𝑥,𝑦,𝑄   𝑥,𝑃,𝑦   𝑥,𝑀,𝑦   𝑥,𝐵,𝑦   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem chordthmlem2
StepHypRef Expression
1 chordthmlem2.angdef . . 3 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
2 chordthmlem2.A . . 3 (𝜑𝐴 ∈ ℂ)
3 chordthmlem2.B . . 3 (𝜑𝐵 ∈ ℂ)
4 chordthmlem2.Q . . 3 (𝜑𝑄 ∈ ℂ)
5 chordthmlem2.M . . 3 (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
6 chordthmlem2.ABequidistQ . . 3 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
7 2re 11977 . . . . . . . . . 10 2 ∈ ℝ
87a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
9 2ne0 12007 . . . . . . . . . 10 2 ≠ 0
109a1i 11 . . . . . . . . 9 (𝜑 → 2 ≠ 0)
118, 10rereccld 11732 . . . . . . . 8 (𝜑 → (1 / 2) ∈ ℝ)
12 chordthmlem2.X . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
1311, 12resubcld 11333 . . . . . . 7 (𝜑 → ((1 / 2) − 𝑋) ∈ ℝ)
1413recnd 10934 . . . . . 6 (𝜑 → ((1 / 2) − 𝑋) ∈ ℂ)
153, 2subcld 11262 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℂ)
1611recnd 10934 . . . . . . . . 9 (𝜑 → (1 / 2) ∈ ℂ)
1712recnd 10934 . . . . . . . . 9 (𝜑𝑋 ∈ ℂ)
1816, 17, 15subdird 11362 . . . . . . . 8 (𝜑 → (((1 / 2) − 𝑋) · (𝐵𝐴)) = (((1 / 2) · (𝐵𝐴)) − (𝑋 · (𝐵𝐴))))
19 2cnd 11981 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℂ)
203, 19, 10divcan4d 11687 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 · 2) / 2) = 𝐵)
213times2d 12147 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 · 2) = (𝐵 + 𝐵))
2221oveq1d 7270 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 · 2) / 2) = ((𝐵 + 𝐵) / 2))
2320, 22eqtr3d 2780 . . . . . . . . . . . 12 (𝜑𝐵 = ((𝐵 + 𝐵) / 2))
2423, 5oveq12d 7273 . . . . . . . . . . 11 (𝜑 → (𝐵𝑀) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2)))
253, 3addcld 10925 . . . . . . . . . . . 12 (𝜑 → (𝐵 + 𝐵) ∈ ℂ)
262, 3addcld 10925 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
2725, 26, 19, 10divsubdird 11720 . . . . . . . . . . 11 (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2)))
283, 2, 3pnpcan2d 11300 . . . . . . . . . . . 12 (𝜑 → ((𝐵 + 𝐵) − (𝐴 + 𝐵)) = (𝐵𝐴))
2928oveq1d 7270 . . . . . . . . . . 11 (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = ((𝐵𝐴) / 2))
3024, 27, 293eqtr2d 2784 . . . . . . . . . 10 (𝜑 → (𝐵𝑀) = ((𝐵𝐴) / 2))
3115, 19, 10divrec2d 11685 . . . . . . . . . 10 (𝜑 → ((𝐵𝐴) / 2) = ((1 / 2) · (𝐵𝐴)))
3230, 31eqtrd 2778 . . . . . . . . 9 (𝜑 → (𝐵𝑀) = ((1 / 2) · (𝐵𝐴)))
33 chordthmlem2.P . . . . . . . . . 10 (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
3417, 2mulcld 10926 . . . . . . . . . . . . 13 (𝜑 → (𝑋 · 𝐴) ∈ ℂ)
35 1cnd 10901 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
3635, 17subcld 11262 . . . . . . . . . . . . . 14 (𝜑 → (1 − 𝑋) ∈ ℂ)
3736, 3mulcld 10926 . . . . . . . . . . . . 13 (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ)
3834, 37addcld 10925 . . . . . . . . . . . 12 (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ)
3933, 38eqeltrd 2839 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℂ)
402, 39, 3, 17affineequiv 25878 . . . . . . . . . 10 (𝜑 → (𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ↔ (𝐵𝑃) = (𝑋 · (𝐵𝐴))))
4133, 40mpbid 231 . . . . . . . . 9 (𝜑 → (𝐵𝑃) = (𝑋 · (𝐵𝐴)))
4232, 41oveq12d 7273 . . . . . . . 8 (𝜑 → ((𝐵𝑀) − (𝐵𝑃)) = (((1 / 2) · (𝐵𝐴)) − (𝑋 · (𝐵𝐴))))
4326halfcld 12148 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ)
445, 43eqeltrd 2839 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
453, 44, 39nnncan1d 11296 . . . . . . . 8 (𝜑 → ((𝐵𝑀) − (𝐵𝑃)) = (𝑃𝑀))
4618, 42, 453eqtr2rd 2785 . . . . . . 7 (𝜑 → (𝑃𝑀) = (((1 / 2) − 𝑋) · (𝐵𝐴)))
47 chordthmlem2.PneM . . . . . . . 8 (𝜑𝑃𝑀)
4839, 44, 47subne0d 11271 . . . . . . 7 (𝜑 → (𝑃𝑀) ≠ 0)
4946, 48eqnetrrd 3011 . . . . . 6 (𝜑 → (((1 / 2) − 𝑋) · (𝐵𝐴)) ≠ 0)
5014, 15, 49mulne0bbd 11561 . . . . 5 (𝜑 → (𝐵𝐴) ≠ 0)
513, 2, 50subne0ad 11273 . . . 4 (𝜑𝐵𝐴)
5251necomd 2998 . . 3 (𝜑𝐴𝐵)
53 chordthmlem2.QneM . . 3 (𝜑𝑄𝑀)
541, 2, 3, 4, 5, 6, 52, 53chordthmlem 25887 . 2 (𝜑 → ((𝑄𝑀)𝐹(𝐵𝑀)) ∈ {(π / 2), -(π / 2)})
554, 44subcld 11262 . . 3 (𝜑 → (𝑄𝑀) ∈ ℂ)
5639, 44subcld 11262 . . 3 (𝜑 → (𝑃𝑀) ∈ ℂ)
573, 44subcld 11262 . . 3 (𝜑 → (𝐵𝑀) ∈ ℂ)
584, 44, 53subne0d 11271 . . 3 (𝜑 → (𝑄𝑀) ≠ 0)
5919, 10recne0d 11675 . . . . 5 (𝜑 → (1 / 2) ≠ 0)
6016, 15, 59, 50mulne0d 11557 . . . 4 (𝜑 → ((1 / 2) · (𝐵𝐴)) ≠ 0)
6132, 60eqnetrd 3010 . . 3 (𝜑 → (𝐵𝑀) ≠ 0)
6232, 46oveq12d 7273 . . . . 5 (𝜑 → ((𝐵𝑀) / (𝑃𝑀)) = (((1 / 2) · (𝐵𝐴)) / (((1 / 2) − 𝑋) · (𝐵𝐴))))
6314, 15, 49mulne0bad 11560 . . . . . 6 (𝜑 → ((1 / 2) − 𝑋) ≠ 0)
6416, 14, 15, 63, 50divcan5rd 11708 . . . . 5 (𝜑 → (((1 / 2) · (𝐵𝐴)) / (((1 / 2) − 𝑋) · (𝐵𝐴))) = ((1 / 2) / ((1 / 2) − 𝑋)))
6562, 64eqtrd 2778 . . . 4 (𝜑 → ((𝐵𝑀) / (𝑃𝑀)) = ((1 / 2) / ((1 / 2) − 𝑋)))
6611, 13, 63redivcld 11733 . . . 4 (𝜑 → ((1 / 2) / ((1 / 2) − 𝑋)) ∈ ℝ)
6765, 66eqeltrd 2839 . . 3 (𝜑 → ((𝐵𝑀) / (𝑃𝑀)) ∈ ℝ)
681, 55, 56, 57, 58, 48, 61, 67angrtmuld 25863 . 2 (𝜑 → (((𝑄𝑀)𝐹(𝑃𝑀)) ∈ {(π / 2), -(π / 2)} ↔ ((𝑄𝑀)𝐹(𝐵𝑀)) ∈ {(π / 2), -(π / 2)}))
6954, 68mpbird 256 1 (𝜑 → ((𝑄𝑀)𝐹(𝑃𝑀)) ∈ {(π / 2), -(π / 2)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wne 2942  cdif 3880  {csn 4558  {cpr 4560  cfv 6418  (class class class)co 7255  cmpo 7257  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  -cneg 11136   / cdiv 11562  2c2 11958  cim 14737  abscabs 14873  πcpi 15704  logclog 25615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617
This theorem is referenced by:  chordthmlem3  25889
  Copyright terms: Public domain W3C validator