| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chordthmlem2 | Structured version Visualization version GIF version | ||
| Description: If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then QMP is a right angle. This is proven by reduction to the special case chordthmlem 26794, where P = B, and using angrtmuld 26770 to observe that QMP is right iff QMB is. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| chordthmlem2.angdef | ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
| chordthmlem2.A | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| chordthmlem2.B | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| chordthmlem2.Q | ⊢ (𝜑 → 𝑄 ∈ ℂ) |
| chordthmlem2.X | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
| chordthmlem2.M | ⊢ (𝜑 → 𝑀 = ((𝐴 + 𝐵) / 2)) |
| chordthmlem2.P | ⊢ (𝜑 → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵))) |
| chordthmlem2.ABequidistQ | ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) |
| chordthmlem2.PneM | ⊢ (𝜑 → 𝑃 ≠ 𝑀) |
| chordthmlem2.QneM | ⊢ (𝜑 → 𝑄 ≠ 𝑀) |
| Ref | Expression |
|---|---|
| chordthmlem2 | ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝑃 − 𝑀)) ∈ {(π / 2), -(π / 2)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chordthmlem2.angdef | . . 3 ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) | |
| 2 | chordthmlem2.A | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 3 | chordthmlem2.B | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | chordthmlem2.Q | . . 3 ⊢ (𝜑 → 𝑄 ∈ ℂ) | |
| 5 | chordthmlem2.M | . . 3 ⊢ (𝜑 → 𝑀 = ((𝐴 + 𝐵) / 2)) | |
| 6 | chordthmlem2.ABequidistQ | . . 3 ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) | |
| 7 | 2re 12314 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
| 8 | 7 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 2 ∈ ℝ) |
| 9 | 2ne0 12344 | . . . . . . . . . 10 ⊢ 2 ≠ 0 | |
| 10 | 9 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 2 ≠ 0) |
| 11 | 8, 10 | rereccld 12068 | . . . . . . . 8 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
| 12 | chordthmlem2.X | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
| 13 | 11, 12 | resubcld 11665 | . . . . . . 7 ⊢ (𝜑 → ((1 / 2) − 𝑋) ∈ ℝ) |
| 14 | 13 | recnd 11263 | . . . . . 6 ⊢ (𝜑 → ((1 / 2) − 𝑋) ∈ ℂ) |
| 15 | 3, 2 | subcld 11594 | . . . . . 6 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℂ) |
| 16 | 11 | recnd 11263 | . . . . . . . . 9 ⊢ (𝜑 → (1 / 2) ∈ ℂ) |
| 17 | 12 | recnd 11263 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 18 | 16, 17, 15 | subdird 11694 | . . . . . . . 8 ⊢ (𝜑 → (((1 / 2) − 𝑋) · (𝐵 − 𝐴)) = (((1 / 2) · (𝐵 − 𝐴)) − (𝑋 · (𝐵 − 𝐴)))) |
| 19 | 2cnd 12318 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 2 ∈ ℂ) | |
| 20 | 3, 19, 10 | divcan4d 12023 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((𝐵 · 2) / 2) = 𝐵) |
| 21 | 3 | times2d 12485 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (𝐵 · 2) = (𝐵 + 𝐵)) |
| 22 | 21 | oveq1d 7420 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((𝐵 · 2) / 2) = ((𝐵 + 𝐵) / 2)) |
| 23 | 20, 22 | eqtr3d 2772 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐵 = ((𝐵 + 𝐵) / 2)) |
| 24 | 23, 5 | oveq12d 7423 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐵 − 𝑀) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2))) |
| 25 | 3, 3 | addcld 11254 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐵 + 𝐵) ∈ ℂ) |
| 26 | 2, 3 | addcld 11254 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
| 27 | 25, 26, 19, 10 | divsubdird 12056 | . . . . . . . . . . 11 ⊢ (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2))) |
| 28 | 3, 2, 3 | pnpcan2d 11632 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((𝐵 + 𝐵) − (𝐴 + 𝐵)) = (𝐵 − 𝐴)) |
| 29 | 28 | oveq1d 7420 | . . . . . . . . . . 11 ⊢ (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = ((𝐵 − 𝐴) / 2)) |
| 30 | 24, 27, 29 | 3eqtr2d 2776 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐵 − 𝑀) = ((𝐵 − 𝐴) / 2)) |
| 31 | 15, 19, 10 | divrec2d 12021 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐵 − 𝐴) / 2) = ((1 / 2) · (𝐵 − 𝐴))) |
| 32 | 30, 31 | eqtrd 2770 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵 − 𝑀) = ((1 / 2) · (𝐵 − 𝐴))) |
| 33 | chordthmlem2.P | . . . . . . . . . 10 ⊢ (𝜑 → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵))) | |
| 34 | 17, 2 | mulcld 11255 | . . . . . . . . . . . . 13 ⊢ (𝜑 → (𝑋 · 𝐴) ∈ ℂ) |
| 35 | 1cnd 11230 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 36 | 35, 17 | subcld 11594 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (1 − 𝑋) ∈ ℂ) |
| 37 | 36, 3 | mulcld 11255 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ) |
| 38 | 34, 37 | addcld 11254 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ) |
| 39 | 33, 38 | eqeltrd 2834 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 40 | 2, 39, 3, 17 | affineequiv 26785 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ↔ (𝐵 − 𝑃) = (𝑋 · (𝐵 − 𝐴)))) |
| 41 | 33, 40 | mpbid 232 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵 − 𝑃) = (𝑋 · (𝐵 − 𝐴))) |
| 42 | 32, 41 | oveq12d 7423 | . . . . . . . 8 ⊢ (𝜑 → ((𝐵 − 𝑀) − (𝐵 − 𝑃)) = (((1 / 2) · (𝐵 − 𝐴)) − (𝑋 · (𝐵 − 𝐴)))) |
| 43 | 26 | halfcld 12486 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ) |
| 44 | 5, 43 | eqeltrd 2834 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 45 | 3, 44, 39 | nnncan1d 11628 | . . . . . . . 8 ⊢ (𝜑 → ((𝐵 − 𝑀) − (𝐵 − 𝑃)) = (𝑃 − 𝑀)) |
| 46 | 18, 42, 45 | 3eqtr2rd 2777 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − 𝑀) = (((1 / 2) − 𝑋) · (𝐵 − 𝐴))) |
| 47 | chordthmlem2.PneM | . . . . . . . 8 ⊢ (𝜑 → 𝑃 ≠ 𝑀) | |
| 48 | 39, 44, 47 | subne0d 11603 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − 𝑀) ≠ 0) |
| 49 | 46, 48 | eqnetrrd 3000 | . . . . . 6 ⊢ (𝜑 → (((1 / 2) − 𝑋) · (𝐵 − 𝐴)) ≠ 0) |
| 50 | 14, 15, 49 | mulne0bbd 11893 | . . . . 5 ⊢ (𝜑 → (𝐵 − 𝐴) ≠ 0) |
| 51 | 3, 2, 50 | subne0ad 11605 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
| 52 | 51 | necomd 2987 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 53 | chordthmlem2.QneM | . . 3 ⊢ (𝜑 → 𝑄 ≠ 𝑀) | |
| 54 | 1, 2, 3, 4, 5, 6, 52, 53 | chordthmlem 26794 | . 2 ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ {(π / 2), -(π / 2)}) |
| 55 | 4, 44 | subcld 11594 | . . 3 ⊢ (𝜑 → (𝑄 − 𝑀) ∈ ℂ) |
| 56 | 39, 44 | subcld 11594 | . . 3 ⊢ (𝜑 → (𝑃 − 𝑀) ∈ ℂ) |
| 57 | 3, 44 | subcld 11594 | . . 3 ⊢ (𝜑 → (𝐵 − 𝑀) ∈ ℂ) |
| 58 | 4, 44, 53 | subne0d 11603 | . . 3 ⊢ (𝜑 → (𝑄 − 𝑀) ≠ 0) |
| 59 | 19, 10 | recne0d 12011 | . . . . 5 ⊢ (𝜑 → (1 / 2) ≠ 0) |
| 60 | 16, 15, 59, 50 | mulne0d 11889 | . . . 4 ⊢ (𝜑 → ((1 / 2) · (𝐵 − 𝐴)) ≠ 0) |
| 61 | 32, 60 | eqnetrd 2999 | . . 3 ⊢ (𝜑 → (𝐵 − 𝑀) ≠ 0) |
| 62 | 32, 46 | oveq12d 7423 | . . . . 5 ⊢ (𝜑 → ((𝐵 − 𝑀) / (𝑃 − 𝑀)) = (((1 / 2) · (𝐵 − 𝐴)) / (((1 / 2) − 𝑋) · (𝐵 − 𝐴)))) |
| 63 | 14, 15, 49 | mulne0bad 11892 | . . . . . 6 ⊢ (𝜑 → ((1 / 2) − 𝑋) ≠ 0) |
| 64 | 16, 14, 15, 63, 50 | divcan5rd 12044 | . . . . 5 ⊢ (𝜑 → (((1 / 2) · (𝐵 − 𝐴)) / (((1 / 2) − 𝑋) · (𝐵 − 𝐴))) = ((1 / 2) / ((1 / 2) − 𝑋))) |
| 65 | 62, 64 | eqtrd 2770 | . . . 4 ⊢ (𝜑 → ((𝐵 − 𝑀) / (𝑃 − 𝑀)) = ((1 / 2) / ((1 / 2) − 𝑋))) |
| 66 | 11, 13, 63 | redivcld 12069 | . . . 4 ⊢ (𝜑 → ((1 / 2) / ((1 / 2) − 𝑋)) ∈ ℝ) |
| 67 | 65, 66 | eqeltrd 2834 | . . 3 ⊢ (𝜑 → ((𝐵 − 𝑀) / (𝑃 − 𝑀)) ∈ ℝ) |
| 68 | 1, 55, 56, 57, 58, 48, 61, 67 | angrtmuld 26770 | . 2 ⊢ (𝜑 → (((𝑄 − 𝑀)𝐹(𝑃 − 𝑀)) ∈ {(π / 2), -(π / 2)} ↔ ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ {(π / 2), -(π / 2)})) |
| 69 | 54, 68 | mpbird 257 | 1 ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝑃 − 𝑀)) ∈ {(π / 2), -(π / 2)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∖ cdif 3923 {csn 4601 {cpr 4603 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 ℂcc 11127 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 − cmin 11466 -cneg 11467 / cdiv 11894 2c2 12295 ℑcim 15117 abscabs 15253 πcpi 16082 logclog 26515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-ioc 13367 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 df-fac 14292 df-bc 14321 df-hash 14349 df-shft 15086 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-limsup 15487 df-clim 15504 df-rlim 15505 df-sum 15703 df-ef 16083 df-sin 16085 df-cos 16086 df-pi 16088 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-fbas 21312 df-fg 21313 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cld 22957 df-ntr 22958 df-cls 22959 df-nei 23036 df-lp 23074 df-perf 23075 df-cn 23165 df-cnp 23166 df-haus 23253 df-tx 23500 df-hmeo 23693 df-fil 23784 df-fm 23876 df-flim 23877 df-flf 23878 df-xms 24259 df-ms 24260 df-tms 24261 df-cncf 24822 df-limc 25819 df-dv 25820 df-log 26517 |
| This theorem is referenced by: chordthmlem3 26796 |
| Copyright terms: Public domain | W3C validator |