MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chordthmlem2 Structured version   Visualization version   GIF version

Theorem chordthmlem2 26183
Description: If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then QMP is a right angle. This is proven by reduction to the special case chordthmlem 26182, where P = B, and using angrtmuld 26158 to observe that QMP is right iff QMB is. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
chordthmlem2.angdef 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
chordthmlem2.A (𝜑𝐴 ∈ ℂ)
chordthmlem2.B (𝜑𝐵 ∈ ℂ)
chordthmlem2.Q (𝜑𝑄 ∈ ℂ)
chordthmlem2.X (𝜑𝑋 ∈ ℝ)
chordthmlem2.M (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
chordthmlem2.P (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
chordthmlem2.ABequidistQ (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
chordthmlem2.PneM (𝜑𝑃𝑀)
chordthmlem2.QneM (𝜑𝑄𝑀)
Assertion
Ref Expression
chordthmlem2 (𝜑 → ((𝑄𝑀)𝐹(𝑃𝑀)) ∈ {(π / 2), -(π / 2)})
Distinct variable groups:   𝑥,𝑦,𝑄   𝑥,𝑃,𝑦   𝑥,𝑀,𝑦   𝑥,𝐵,𝑦   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem chordthmlem2
StepHypRef Expression
1 chordthmlem2.angdef . . 3 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
2 chordthmlem2.A . . 3 (𝜑𝐴 ∈ ℂ)
3 chordthmlem2.B . . 3 (𝜑𝐵 ∈ ℂ)
4 chordthmlem2.Q . . 3 (𝜑𝑄 ∈ ℂ)
5 chordthmlem2.M . . 3 (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
6 chordthmlem2.ABequidistQ . . 3 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
7 2re 12227 . . . . . . . . . 10 2 ∈ ℝ
87a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
9 2ne0 12257 . . . . . . . . . 10 2 ≠ 0
109a1i 11 . . . . . . . . 9 (𝜑 → 2 ≠ 0)
118, 10rereccld 11982 . . . . . . . 8 (𝜑 → (1 / 2) ∈ ℝ)
12 chordthmlem2.X . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
1311, 12resubcld 11583 . . . . . . 7 (𝜑 → ((1 / 2) − 𝑋) ∈ ℝ)
1413recnd 11183 . . . . . 6 (𝜑 → ((1 / 2) − 𝑋) ∈ ℂ)
153, 2subcld 11512 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℂ)
1611recnd 11183 . . . . . . . . 9 (𝜑 → (1 / 2) ∈ ℂ)
1712recnd 11183 . . . . . . . . 9 (𝜑𝑋 ∈ ℂ)
1816, 17, 15subdird 11612 . . . . . . . 8 (𝜑 → (((1 / 2) − 𝑋) · (𝐵𝐴)) = (((1 / 2) · (𝐵𝐴)) − (𝑋 · (𝐵𝐴))))
19 2cnd 12231 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℂ)
203, 19, 10divcan4d 11937 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 · 2) / 2) = 𝐵)
213times2d 12397 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 · 2) = (𝐵 + 𝐵))
2221oveq1d 7372 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 · 2) / 2) = ((𝐵 + 𝐵) / 2))
2320, 22eqtr3d 2778 . . . . . . . . . . . 12 (𝜑𝐵 = ((𝐵 + 𝐵) / 2))
2423, 5oveq12d 7375 . . . . . . . . . . 11 (𝜑 → (𝐵𝑀) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2)))
253, 3addcld 11174 . . . . . . . . . . . 12 (𝜑 → (𝐵 + 𝐵) ∈ ℂ)
262, 3addcld 11174 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
2725, 26, 19, 10divsubdird 11970 . . . . . . . . . . 11 (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2)))
283, 2, 3pnpcan2d 11550 . . . . . . . . . . . 12 (𝜑 → ((𝐵 + 𝐵) − (𝐴 + 𝐵)) = (𝐵𝐴))
2928oveq1d 7372 . . . . . . . . . . 11 (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = ((𝐵𝐴) / 2))
3024, 27, 293eqtr2d 2782 . . . . . . . . . 10 (𝜑 → (𝐵𝑀) = ((𝐵𝐴) / 2))
3115, 19, 10divrec2d 11935 . . . . . . . . . 10 (𝜑 → ((𝐵𝐴) / 2) = ((1 / 2) · (𝐵𝐴)))
3230, 31eqtrd 2776 . . . . . . . . 9 (𝜑 → (𝐵𝑀) = ((1 / 2) · (𝐵𝐴)))
33 chordthmlem2.P . . . . . . . . . 10 (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
3417, 2mulcld 11175 . . . . . . . . . . . . 13 (𝜑 → (𝑋 · 𝐴) ∈ ℂ)
35 1cnd 11150 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
3635, 17subcld 11512 . . . . . . . . . . . . . 14 (𝜑 → (1 − 𝑋) ∈ ℂ)
3736, 3mulcld 11175 . . . . . . . . . . . . 13 (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ)
3834, 37addcld 11174 . . . . . . . . . . . 12 (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ)
3933, 38eqeltrd 2838 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℂ)
402, 39, 3, 17affineequiv 26173 . . . . . . . . . 10 (𝜑 → (𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ↔ (𝐵𝑃) = (𝑋 · (𝐵𝐴))))
4133, 40mpbid 231 . . . . . . . . 9 (𝜑 → (𝐵𝑃) = (𝑋 · (𝐵𝐴)))
4232, 41oveq12d 7375 . . . . . . . 8 (𝜑 → ((𝐵𝑀) − (𝐵𝑃)) = (((1 / 2) · (𝐵𝐴)) − (𝑋 · (𝐵𝐴))))
4326halfcld 12398 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ)
445, 43eqeltrd 2838 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
453, 44, 39nnncan1d 11546 . . . . . . . 8 (𝜑 → ((𝐵𝑀) − (𝐵𝑃)) = (𝑃𝑀))
4618, 42, 453eqtr2rd 2783 . . . . . . 7 (𝜑 → (𝑃𝑀) = (((1 / 2) − 𝑋) · (𝐵𝐴)))
47 chordthmlem2.PneM . . . . . . . 8 (𝜑𝑃𝑀)
4839, 44, 47subne0d 11521 . . . . . . 7 (𝜑 → (𝑃𝑀) ≠ 0)
4946, 48eqnetrrd 3012 . . . . . 6 (𝜑 → (((1 / 2) − 𝑋) · (𝐵𝐴)) ≠ 0)
5014, 15, 49mulne0bbd 11811 . . . . 5 (𝜑 → (𝐵𝐴) ≠ 0)
513, 2, 50subne0ad 11523 . . . 4 (𝜑𝐵𝐴)
5251necomd 2999 . . 3 (𝜑𝐴𝐵)
53 chordthmlem2.QneM . . 3 (𝜑𝑄𝑀)
541, 2, 3, 4, 5, 6, 52, 53chordthmlem 26182 . 2 (𝜑 → ((𝑄𝑀)𝐹(𝐵𝑀)) ∈ {(π / 2), -(π / 2)})
554, 44subcld 11512 . . 3 (𝜑 → (𝑄𝑀) ∈ ℂ)
5639, 44subcld 11512 . . 3 (𝜑 → (𝑃𝑀) ∈ ℂ)
573, 44subcld 11512 . . 3 (𝜑 → (𝐵𝑀) ∈ ℂ)
584, 44, 53subne0d 11521 . . 3 (𝜑 → (𝑄𝑀) ≠ 0)
5919, 10recne0d 11925 . . . . 5 (𝜑 → (1 / 2) ≠ 0)
6016, 15, 59, 50mulne0d 11807 . . . 4 (𝜑 → ((1 / 2) · (𝐵𝐴)) ≠ 0)
6132, 60eqnetrd 3011 . . 3 (𝜑 → (𝐵𝑀) ≠ 0)
6232, 46oveq12d 7375 . . . . 5 (𝜑 → ((𝐵𝑀) / (𝑃𝑀)) = (((1 / 2) · (𝐵𝐴)) / (((1 / 2) − 𝑋) · (𝐵𝐴))))
6314, 15, 49mulne0bad 11810 . . . . . 6 (𝜑 → ((1 / 2) − 𝑋) ≠ 0)
6416, 14, 15, 63, 50divcan5rd 11958 . . . . 5 (𝜑 → (((1 / 2) · (𝐵𝐴)) / (((1 / 2) − 𝑋) · (𝐵𝐴))) = ((1 / 2) / ((1 / 2) − 𝑋)))
6562, 64eqtrd 2776 . . . 4 (𝜑 → ((𝐵𝑀) / (𝑃𝑀)) = ((1 / 2) / ((1 / 2) − 𝑋)))
6611, 13, 63redivcld 11983 . . . 4 (𝜑 → ((1 / 2) / ((1 / 2) − 𝑋)) ∈ ℝ)
6765, 66eqeltrd 2838 . . 3 (𝜑 → ((𝐵𝑀) / (𝑃𝑀)) ∈ ℝ)
681, 55, 56, 57, 58, 48, 61, 67angrtmuld 26158 . 2 (𝜑 → (((𝑄𝑀)𝐹(𝑃𝑀)) ∈ {(π / 2), -(π / 2)} ↔ ((𝑄𝑀)𝐹(𝐵𝑀)) ∈ {(π / 2), -(π / 2)}))
6954, 68mpbird 256 1 (𝜑 → ((𝑄𝑀)𝐹(𝑃𝑀)) ∈ {(π / 2), -(π / 2)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wne 2943  cdif 3907  {csn 4586  {cpr 4588  cfv 6496  (class class class)co 7357  cmpo 7359  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385  -cneg 11386   / cdiv 11812  2c2 12208  cim 14983  abscabs 15119  πcpi 15949  logclog 25910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912
This theorem is referenced by:  chordthmlem3  26184
  Copyright terms: Public domain W3C validator