MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chordthmlem2 Structured version   Visualization version   GIF version

Theorem chordthmlem2 26011
Description: If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then QMP is a right angle. This is proven by reduction to the special case chordthmlem 26010, where P = B, and using angrtmuld 25986 to observe that QMP is right iff QMB is. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
chordthmlem2.angdef 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
chordthmlem2.A (𝜑𝐴 ∈ ℂ)
chordthmlem2.B (𝜑𝐵 ∈ ℂ)
chordthmlem2.Q (𝜑𝑄 ∈ ℂ)
chordthmlem2.X (𝜑𝑋 ∈ ℝ)
chordthmlem2.M (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
chordthmlem2.P (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
chordthmlem2.ABequidistQ (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
chordthmlem2.PneM (𝜑𝑃𝑀)
chordthmlem2.QneM (𝜑𝑄𝑀)
Assertion
Ref Expression
chordthmlem2 (𝜑 → ((𝑄𝑀)𝐹(𝑃𝑀)) ∈ {(π / 2), -(π / 2)})
Distinct variable groups:   𝑥,𝑦,𝑄   𝑥,𝑃,𝑦   𝑥,𝑀,𝑦   𝑥,𝐵,𝑦   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem chordthmlem2
StepHypRef Expression
1 chordthmlem2.angdef . . 3 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
2 chordthmlem2.A . . 3 (𝜑𝐴 ∈ ℂ)
3 chordthmlem2.B . . 3 (𝜑𝐵 ∈ ℂ)
4 chordthmlem2.Q . . 3 (𝜑𝑄 ∈ ℂ)
5 chordthmlem2.M . . 3 (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
6 chordthmlem2.ABequidistQ . . 3 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
7 2re 12075 . . . . . . . . . 10 2 ∈ ℝ
87a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
9 2ne0 12105 . . . . . . . . . 10 2 ≠ 0
109a1i 11 . . . . . . . . 9 (𝜑 → 2 ≠ 0)
118, 10rereccld 11830 . . . . . . . 8 (𝜑 → (1 / 2) ∈ ℝ)
12 chordthmlem2.X . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
1311, 12resubcld 11431 . . . . . . 7 (𝜑 → ((1 / 2) − 𝑋) ∈ ℝ)
1413recnd 11031 . . . . . 6 (𝜑 → ((1 / 2) − 𝑋) ∈ ℂ)
153, 2subcld 11360 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℂ)
1611recnd 11031 . . . . . . . . 9 (𝜑 → (1 / 2) ∈ ℂ)
1712recnd 11031 . . . . . . . . 9 (𝜑𝑋 ∈ ℂ)
1816, 17, 15subdird 11460 . . . . . . . 8 (𝜑 → (((1 / 2) − 𝑋) · (𝐵𝐴)) = (((1 / 2) · (𝐵𝐴)) − (𝑋 · (𝐵𝐴))))
19 2cnd 12079 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℂ)
203, 19, 10divcan4d 11785 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 · 2) / 2) = 𝐵)
213times2d 12245 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 · 2) = (𝐵 + 𝐵))
2221oveq1d 7310 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 · 2) / 2) = ((𝐵 + 𝐵) / 2))
2320, 22eqtr3d 2775 . . . . . . . . . . . 12 (𝜑𝐵 = ((𝐵 + 𝐵) / 2))
2423, 5oveq12d 7313 . . . . . . . . . . 11 (𝜑 → (𝐵𝑀) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2)))
253, 3addcld 11022 . . . . . . . . . . . 12 (𝜑 → (𝐵 + 𝐵) ∈ ℂ)
262, 3addcld 11022 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
2725, 26, 19, 10divsubdird 11818 . . . . . . . . . . 11 (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2)))
283, 2, 3pnpcan2d 11398 . . . . . . . . . . . 12 (𝜑 → ((𝐵 + 𝐵) − (𝐴 + 𝐵)) = (𝐵𝐴))
2928oveq1d 7310 . . . . . . . . . . 11 (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = ((𝐵𝐴) / 2))
3024, 27, 293eqtr2d 2779 . . . . . . . . . 10 (𝜑 → (𝐵𝑀) = ((𝐵𝐴) / 2))
3115, 19, 10divrec2d 11783 . . . . . . . . . 10 (𝜑 → ((𝐵𝐴) / 2) = ((1 / 2) · (𝐵𝐴)))
3230, 31eqtrd 2773 . . . . . . . . 9 (𝜑 → (𝐵𝑀) = ((1 / 2) · (𝐵𝐴)))
33 chordthmlem2.P . . . . . . . . . 10 (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
3417, 2mulcld 11023 . . . . . . . . . . . . 13 (𝜑 → (𝑋 · 𝐴) ∈ ℂ)
35 1cnd 10998 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
3635, 17subcld 11360 . . . . . . . . . . . . . 14 (𝜑 → (1 − 𝑋) ∈ ℂ)
3736, 3mulcld 11023 . . . . . . . . . . . . 13 (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ)
3834, 37addcld 11022 . . . . . . . . . . . 12 (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ)
3933, 38eqeltrd 2834 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℂ)
402, 39, 3, 17affineequiv 26001 . . . . . . . . . 10 (𝜑 → (𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ↔ (𝐵𝑃) = (𝑋 · (𝐵𝐴))))
4133, 40mpbid 231 . . . . . . . . 9 (𝜑 → (𝐵𝑃) = (𝑋 · (𝐵𝐴)))
4232, 41oveq12d 7313 . . . . . . . 8 (𝜑 → ((𝐵𝑀) − (𝐵𝑃)) = (((1 / 2) · (𝐵𝐴)) − (𝑋 · (𝐵𝐴))))
4326halfcld 12246 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ)
445, 43eqeltrd 2834 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
453, 44, 39nnncan1d 11394 . . . . . . . 8 (𝜑 → ((𝐵𝑀) − (𝐵𝑃)) = (𝑃𝑀))
4618, 42, 453eqtr2rd 2780 . . . . . . 7 (𝜑 → (𝑃𝑀) = (((1 / 2) − 𝑋) · (𝐵𝐴)))
47 chordthmlem2.PneM . . . . . . . 8 (𝜑𝑃𝑀)
4839, 44, 47subne0d 11369 . . . . . . 7 (𝜑 → (𝑃𝑀) ≠ 0)
4946, 48eqnetrrd 3007 . . . . . 6 (𝜑 → (((1 / 2) − 𝑋) · (𝐵𝐴)) ≠ 0)
5014, 15, 49mulne0bbd 11659 . . . . 5 (𝜑 → (𝐵𝐴) ≠ 0)
513, 2, 50subne0ad 11371 . . . 4 (𝜑𝐵𝐴)
5251necomd 2994 . . 3 (𝜑𝐴𝐵)
53 chordthmlem2.QneM . . 3 (𝜑𝑄𝑀)
541, 2, 3, 4, 5, 6, 52, 53chordthmlem 26010 . 2 (𝜑 → ((𝑄𝑀)𝐹(𝐵𝑀)) ∈ {(π / 2), -(π / 2)})
554, 44subcld 11360 . . 3 (𝜑 → (𝑄𝑀) ∈ ℂ)
5639, 44subcld 11360 . . 3 (𝜑 → (𝑃𝑀) ∈ ℂ)
573, 44subcld 11360 . . 3 (𝜑 → (𝐵𝑀) ∈ ℂ)
584, 44, 53subne0d 11369 . . 3 (𝜑 → (𝑄𝑀) ≠ 0)
5919, 10recne0d 11773 . . . . 5 (𝜑 → (1 / 2) ≠ 0)
6016, 15, 59, 50mulne0d 11655 . . . 4 (𝜑 → ((1 / 2) · (𝐵𝐴)) ≠ 0)
6132, 60eqnetrd 3006 . . 3 (𝜑 → (𝐵𝑀) ≠ 0)
6232, 46oveq12d 7313 . . . . 5 (𝜑 → ((𝐵𝑀) / (𝑃𝑀)) = (((1 / 2) · (𝐵𝐴)) / (((1 / 2) − 𝑋) · (𝐵𝐴))))
6314, 15, 49mulne0bad 11658 . . . . . 6 (𝜑 → ((1 / 2) − 𝑋) ≠ 0)
6416, 14, 15, 63, 50divcan5rd 11806 . . . . 5 (𝜑 → (((1 / 2) · (𝐵𝐴)) / (((1 / 2) − 𝑋) · (𝐵𝐴))) = ((1 / 2) / ((1 / 2) − 𝑋)))
6562, 64eqtrd 2773 . . . 4 (𝜑 → ((𝐵𝑀) / (𝑃𝑀)) = ((1 / 2) / ((1 / 2) − 𝑋)))
6611, 13, 63redivcld 11831 . . . 4 (𝜑 → ((1 / 2) / ((1 / 2) − 𝑋)) ∈ ℝ)
6765, 66eqeltrd 2834 . . 3 (𝜑 → ((𝐵𝑀) / (𝑃𝑀)) ∈ ℝ)
681, 55, 56, 57, 58, 48, 61, 67angrtmuld 25986 . 2 (𝜑 → (((𝑄𝑀)𝐹(𝑃𝑀)) ∈ {(π / 2), -(π / 2)} ↔ ((𝑄𝑀)𝐹(𝐵𝑀)) ∈ {(π / 2), -(π / 2)}))
6954, 68mpbird 256 1 (𝜑 → ((𝑄𝑀)𝐹(𝑃𝑀)) ∈ {(π / 2), -(π / 2)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2101  wne 2938  cdif 3886  {csn 4564  {cpr 4566  cfv 6447  (class class class)co 7295  cmpo 7297  cc 10897  cr 10898  0cc0 10899  1c1 10900   + caddc 10902   · cmul 10904  cmin 11233  -cneg 11234   / cdiv 11660  2c2 12056  cim 14837  abscabs 14973  πcpi 15804  logclog 25738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-inf2 9427  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976  ax-pre-sup 10977  ax-addf 10978  ax-mulf 10979
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-iin 4930  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-isom 6456  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-of 7553  df-om 7733  df-1st 7851  df-2nd 7852  df-supp 7998  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-1o 8317  df-2o 8318  df-er 8518  df-map 8637  df-pm 8638  df-ixp 8706  df-en 8754  df-dom 8755  df-sdom 8756  df-fin 8757  df-fsupp 9157  df-fi 9198  df-sup 9229  df-inf 9230  df-oi 9297  df-card 9725  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-div 11661  df-nn 12002  df-2 12064  df-3 12065  df-4 12066  df-5 12067  df-6 12068  df-7 12069  df-8 12070  df-9 12071  df-n0 12262  df-z 12348  df-dec 12466  df-uz 12611  df-q 12717  df-rp 12759  df-xneg 12876  df-xadd 12877  df-xmul 12878  df-ioo 13111  df-ioc 13112  df-ico 13113  df-icc 13114  df-fz 13268  df-fzo 13411  df-fl 13540  df-mod 13618  df-seq 13750  df-exp 13811  df-fac 14016  df-bc 14045  df-hash 14073  df-shft 14806  df-cj 14838  df-re 14839  df-im 14840  df-sqrt 14974  df-abs 14975  df-limsup 15208  df-clim 15225  df-rlim 15226  df-sum 15426  df-ef 15805  df-sin 15807  df-cos 15808  df-pi 15810  df-struct 16876  df-sets 16893  df-slot 16911  df-ndx 16923  df-base 16941  df-ress 16970  df-plusg 17003  df-mulr 17004  df-starv 17005  df-sca 17006  df-vsca 17007  df-ip 17008  df-tset 17009  df-ple 17010  df-ds 17012  df-unif 17013  df-hom 17014  df-cco 17015  df-rest 17161  df-topn 17162  df-0g 17180  df-gsum 17181  df-topgen 17182  df-pt 17183  df-prds 17186  df-xrs 17241  df-qtop 17246  df-imas 17247  df-xps 17249  df-mre 17323  df-mrc 17324  df-acs 17326  df-mgm 18354  df-sgrp 18403  df-mnd 18414  df-submnd 18459  df-mulg 18729  df-cntz 18951  df-cmn 19416  df-psmet 20617  df-xmet 20618  df-met 20619  df-bl 20620  df-mopn 20621  df-fbas 20622  df-fg 20623  df-cnfld 20626  df-top 22071  df-topon 22088  df-topsp 22110  df-bases 22124  df-cld 22198  df-ntr 22199  df-cls 22200  df-nei 22277  df-lp 22315  df-perf 22316  df-cn 22406  df-cnp 22407  df-haus 22494  df-tx 22741  df-hmeo 22934  df-fil 23025  df-fm 23117  df-flim 23118  df-flf 23119  df-xms 23501  df-ms 23502  df-tms 23503  df-cncf 24069  df-limc 25058  df-dv 25059  df-log 25740
This theorem is referenced by:  chordthmlem3  26012
  Copyright terms: Public domain W3C validator