Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > chordthmlem2 | Structured version Visualization version GIF version |
Description: If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then QMP is a right angle. This is proven by reduction to the special case chordthmlem 26080, where P = B, and using angrtmuld 26056 to observe that QMP is right iff QMB is. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
chordthmlem2.angdef | ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
chordthmlem2.A | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
chordthmlem2.B | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
chordthmlem2.Q | ⊢ (𝜑 → 𝑄 ∈ ℂ) |
chordthmlem2.X | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
chordthmlem2.M | ⊢ (𝜑 → 𝑀 = ((𝐴 + 𝐵) / 2)) |
chordthmlem2.P | ⊢ (𝜑 → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵))) |
chordthmlem2.ABequidistQ | ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) |
chordthmlem2.PneM | ⊢ (𝜑 → 𝑃 ≠ 𝑀) |
chordthmlem2.QneM | ⊢ (𝜑 → 𝑄 ≠ 𝑀) |
Ref | Expression |
---|---|
chordthmlem2 | ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝑃 − 𝑀)) ∈ {(π / 2), -(π / 2)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chordthmlem2.angdef | . . 3 ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) | |
2 | chordthmlem2.A | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | chordthmlem2.B | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | chordthmlem2.Q | . . 3 ⊢ (𝜑 → 𝑄 ∈ ℂ) | |
5 | chordthmlem2.M | . . 3 ⊢ (𝜑 → 𝑀 = ((𝐴 + 𝐵) / 2)) | |
6 | chordthmlem2.ABequidistQ | . . 3 ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) | |
7 | 2re 12140 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
8 | 7 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 2 ∈ ℝ) |
9 | 2ne0 12170 | . . . . . . . . . 10 ⊢ 2 ≠ 0 | |
10 | 9 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 2 ≠ 0) |
11 | 8, 10 | rereccld 11895 | . . . . . . . 8 ⊢ (𝜑 → (1 / 2) ∈ ℝ) |
12 | chordthmlem2.X | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
13 | 11, 12 | resubcld 11496 | . . . . . . 7 ⊢ (𝜑 → ((1 / 2) − 𝑋) ∈ ℝ) |
14 | 13 | recnd 11096 | . . . . . 6 ⊢ (𝜑 → ((1 / 2) − 𝑋) ∈ ℂ) |
15 | 3, 2 | subcld 11425 | . . . . . 6 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℂ) |
16 | 11 | recnd 11096 | . . . . . . . . 9 ⊢ (𝜑 → (1 / 2) ∈ ℂ) |
17 | 12 | recnd 11096 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
18 | 16, 17, 15 | subdird 11525 | . . . . . . . 8 ⊢ (𝜑 → (((1 / 2) − 𝑋) · (𝐵 − 𝐴)) = (((1 / 2) · (𝐵 − 𝐴)) − (𝑋 · (𝐵 − 𝐴)))) |
19 | 2cnd 12144 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 2 ∈ ℂ) | |
20 | 3, 19, 10 | divcan4d 11850 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((𝐵 · 2) / 2) = 𝐵) |
21 | 3 | times2d 12310 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (𝐵 · 2) = (𝐵 + 𝐵)) |
22 | 21 | oveq1d 7344 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((𝐵 · 2) / 2) = ((𝐵 + 𝐵) / 2)) |
23 | 20, 22 | eqtr3d 2778 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐵 = ((𝐵 + 𝐵) / 2)) |
24 | 23, 5 | oveq12d 7347 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐵 − 𝑀) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2))) |
25 | 3, 3 | addcld 11087 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐵 + 𝐵) ∈ ℂ) |
26 | 2, 3 | addcld 11087 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
27 | 25, 26, 19, 10 | divsubdird 11883 | . . . . . . . . . . 11 ⊢ (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2))) |
28 | 3, 2, 3 | pnpcan2d 11463 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((𝐵 + 𝐵) − (𝐴 + 𝐵)) = (𝐵 − 𝐴)) |
29 | 28 | oveq1d 7344 | . . . . . . . . . . 11 ⊢ (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = ((𝐵 − 𝐴) / 2)) |
30 | 24, 27, 29 | 3eqtr2d 2782 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐵 − 𝑀) = ((𝐵 − 𝐴) / 2)) |
31 | 15, 19, 10 | divrec2d 11848 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐵 − 𝐴) / 2) = ((1 / 2) · (𝐵 − 𝐴))) |
32 | 30, 31 | eqtrd 2776 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵 − 𝑀) = ((1 / 2) · (𝐵 − 𝐴))) |
33 | chordthmlem2.P | . . . . . . . . . 10 ⊢ (𝜑 → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵))) | |
34 | 17, 2 | mulcld 11088 | . . . . . . . . . . . . 13 ⊢ (𝜑 → (𝑋 · 𝐴) ∈ ℂ) |
35 | 1cnd 11063 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 1 ∈ ℂ) | |
36 | 35, 17 | subcld 11425 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (1 − 𝑋) ∈ ℂ) |
37 | 36, 3 | mulcld 11088 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ) |
38 | 34, 37 | addcld 11087 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ) |
39 | 33, 38 | eqeltrd 2837 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
40 | 2, 39, 3, 17 | affineequiv 26071 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ↔ (𝐵 − 𝑃) = (𝑋 · (𝐵 − 𝐴)))) |
41 | 33, 40 | mpbid 231 | . . . . . . . . 9 ⊢ (𝜑 → (𝐵 − 𝑃) = (𝑋 · (𝐵 − 𝐴))) |
42 | 32, 41 | oveq12d 7347 | . . . . . . . 8 ⊢ (𝜑 → ((𝐵 − 𝑀) − (𝐵 − 𝑃)) = (((1 / 2) · (𝐵 − 𝐴)) − (𝑋 · (𝐵 − 𝐴)))) |
43 | 26 | halfcld 12311 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ) |
44 | 5, 43 | eqeltrd 2837 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
45 | 3, 44, 39 | nnncan1d 11459 | . . . . . . . 8 ⊢ (𝜑 → ((𝐵 − 𝑀) − (𝐵 − 𝑃)) = (𝑃 − 𝑀)) |
46 | 18, 42, 45 | 3eqtr2rd 2783 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − 𝑀) = (((1 / 2) − 𝑋) · (𝐵 − 𝐴))) |
47 | chordthmlem2.PneM | . . . . . . . 8 ⊢ (𝜑 → 𝑃 ≠ 𝑀) | |
48 | 39, 44, 47 | subne0d 11434 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − 𝑀) ≠ 0) |
49 | 46, 48 | eqnetrrd 3009 | . . . . . 6 ⊢ (𝜑 → (((1 / 2) − 𝑋) · (𝐵 − 𝐴)) ≠ 0) |
50 | 14, 15, 49 | mulne0bbd 11724 | . . . . 5 ⊢ (𝜑 → (𝐵 − 𝐴) ≠ 0) |
51 | 3, 2, 50 | subne0ad 11436 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
52 | 51 | necomd 2996 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
53 | chordthmlem2.QneM | . . 3 ⊢ (𝜑 → 𝑄 ≠ 𝑀) | |
54 | 1, 2, 3, 4, 5, 6, 52, 53 | chordthmlem 26080 | . 2 ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ {(π / 2), -(π / 2)}) |
55 | 4, 44 | subcld 11425 | . . 3 ⊢ (𝜑 → (𝑄 − 𝑀) ∈ ℂ) |
56 | 39, 44 | subcld 11425 | . . 3 ⊢ (𝜑 → (𝑃 − 𝑀) ∈ ℂ) |
57 | 3, 44 | subcld 11425 | . . 3 ⊢ (𝜑 → (𝐵 − 𝑀) ∈ ℂ) |
58 | 4, 44, 53 | subne0d 11434 | . . 3 ⊢ (𝜑 → (𝑄 − 𝑀) ≠ 0) |
59 | 19, 10 | recne0d 11838 | . . . . 5 ⊢ (𝜑 → (1 / 2) ≠ 0) |
60 | 16, 15, 59, 50 | mulne0d 11720 | . . . 4 ⊢ (𝜑 → ((1 / 2) · (𝐵 − 𝐴)) ≠ 0) |
61 | 32, 60 | eqnetrd 3008 | . . 3 ⊢ (𝜑 → (𝐵 − 𝑀) ≠ 0) |
62 | 32, 46 | oveq12d 7347 | . . . . 5 ⊢ (𝜑 → ((𝐵 − 𝑀) / (𝑃 − 𝑀)) = (((1 / 2) · (𝐵 − 𝐴)) / (((1 / 2) − 𝑋) · (𝐵 − 𝐴)))) |
63 | 14, 15, 49 | mulne0bad 11723 | . . . . . 6 ⊢ (𝜑 → ((1 / 2) − 𝑋) ≠ 0) |
64 | 16, 14, 15, 63, 50 | divcan5rd 11871 | . . . . 5 ⊢ (𝜑 → (((1 / 2) · (𝐵 − 𝐴)) / (((1 / 2) − 𝑋) · (𝐵 − 𝐴))) = ((1 / 2) / ((1 / 2) − 𝑋))) |
65 | 62, 64 | eqtrd 2776 | . . . 4 ⊢ (𝜑 → ((𝐵 − 𝑀) / (𝑃 − 𝑀)) = ((1 / 2) / ((1 / 2) − 𝑋))) |
66 | 11, 13, 63 | redivcld 11896 | . . . 4 ⊢ (𝜑 → ((1 / 2) / ((1 / 2) − 𝑋)) ∈ ℝ) |
67 | 65, 66 | eqeltrd 2837 | . . 3 ⊢ (𝜑 → ((𝐵 − 𝑀) / (𝑃 − 𝑀)) ∈ ℝ) |
68 | 1, 55, 56, 57, 58, 48, 61, 67 | angrtmuld 26056 | . 2 ⊢ (𝜑 → (((𝑄 − 𝑀)𝐹(𝑃 − 𝑀)) ∈ {(π / 2), -(π / 2)} ↔ ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ {(π / 2), -(π / 2)})) |
69 | 54, 68 | mpbird 256 | 1 ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝑃 − 𝑀)) ∈ {(π / 2), -(π / 2)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∖ cdif 3894 {csn 4572 {cpr 4574 ‘cfv 6473 (class class class)co 7329 ∈ cmpo 7331 ℂcc 10962 ℝcr 10963 0cc0 10964 1c1 10965 + caddc 10967 · cmul 10969 − cmin 11298 -cneg 11299 / cdiv 11725 2c2 12121 ℑcim 14900 abscabs 15036 πcpi 15867 logclog 25808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-inf2 9490 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 ax-addf 11043 ax-mulf 11044 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-tp 4577 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-iin 4941 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-se 5570 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-isom 6482 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-of 7587 df-om 7773 df-1st 7891 df-2nd 7892 df-supp 8040 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-2o 8360 df-er 8561 df-map 8680 df-pm 8681 df-ixp 8749 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-fsupp 9219 df-fi 9260 df-sup 9291 df-inf 9292 df-oi 9359 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-7 12134 df-8 12135 df-9 12136 df-n0 12327 df-z 12413 df-dec 12531 df-uz 12676 df-q 12782 df-rp 12824 df-xneg 12941 df-xadd 12942 df-xmul 12943 df-ioo 13176 df-ioc 13177 df-ico 13178 df-icc 13179 df-fz 13333 df-fzo 13476 df-fl 13605 df-mod 13683 df-seq 13815 df-exp 13876 df-fac 14081 df-bc 14110 df-hash 14138 df-shft 14869 df-cj 14901 df-re 14902 df-im 14903 df-sqrt 15037 df-abs 15038 df-limsup 15271 df-clim 15288 df-rlim 15289 df-sum 15489 df-ef 15868 df-sin 15870 df-cos 15871 df-pi 15873 df-struct 16937 df-sets 16954 df-slot 16972 df-ndx 16984 df-base 17002 df-ress 17031 df-plusg 17064 df-mulr 17065 df-starv 17066 df-sca 17067 df-vsca 17068 df-ip 17069 df-tset 17070 df-ple 17071 df-ds 17073 df-unif 17074 df-hom 17075 df-cco 17076 df-rest 17222 df-topn 17223 df-0g 17241 df-gsum 17242 df-topgen 17243 df-pt 17244 df-prds 17247 df-xrs 17302 df-qtop 17307 df-imas 17308 df-xps 17310 df-mre 17384 df-mrc 17385 df-acs 17387 df-mgm 18415 df-sgrp 18464 df-mnd 18475 df-submnd 18520 df-mulg 18789 df-cntz 19011 df-cmn 19475 df-psmet 20687 df-xmet 20688 df-met 20689 df-bl 20690 df-mopn 20691 df-fbas 20692 df-fg 20693 df-cnfld 20696 df-top 22141 df-topon 22158 df-topsp 22180 df-bases 22194 df-cld 22268 df-ntr 22269 df-cls 22270 df-nei 22347 df-lp 22385 df-perf 22386 df-cn 22476 df-cnp 22477 df-haus 22564 df-tx 22811 df-hmeo 23004 df-fil 23095 df-fm 23187 df-flim 23188 df-flf 23189 df-xms 23571 df-ms 23572 df-tms 23573 df-cncf 24139 df-limc 25128 df-dv 25129 df-log 25810 |
This theorem is referenced by: chordthmlem3 26082 |
Copyright terms: Public domain | W3C validator |