MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfaclbnd Structured version   Visualization version   GIF version

Theorem logfaclbnd 26275
Description: A lower bound on the logarithm of a factorial. (Contributed by Mario Carneiro, 16-Apr-2016.)
Assertion
Ref Expression
logfaclbnd (𝐴 ∈ ℝ+ → (𝐴 · ((log‘𝐴) − 2)) ≤ (log‘(!‘(⌊‘𝐴))))

Proof of Theorem logfaclbnd
Dummy variables 𝑑 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpcn 12669 . . . . 5 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
21times2d 12147 . . . 4 (𝐴 ∈ ℝ+ → (𝐴 · 2) = (𝐴 + 𝐴))
32oveq2d 7271 . . 3 (𝐴 ∈ ℝ+ → ((𝐴 · (log‘𝐴)) − (𝐴 · 2)) = ((𝐴 · (log‘𝐴)) − (𝐴 + 𝐴)))
4 relogcl 25636 . . . . 5 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
54recnd 10934 . . . 4 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℂ)
6 2cnd 11981 . . . 4 (𝐴 ∈ ℝ+ → 2 ∈ ℂ)
71, 5, 6subdid 11361 . . 3 (𝐴 ∈ ℝ+ → (𝐴 · ((log‘𝐴) − 2)) = ((𝐴 · (log‘𝐴)) − (𝐴 · 2)))
8 rpre 12667 . . . . . 6 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
98, 4remulcld 10936 . . . . 5 (𝐴 ∈ ℝ+ → (𝐴 · (log‘𝐴)) ∈ ℝ)
109recnd 10934 . . . 4 (𝐴 ∈ ℝ+ → (𝐴 · (log‘𝐴)) ∈ ℂ)
1110, 1, 1subsub4d 11293 . . 3 (𝐴 ∈ ℝ+ → (((𝐴 · (log‘𝐴)) − 𝐴) − 𝐴) = ((𝐴 · (log‘𝐴)) − (𝐴 + 𝐴)))
123, 7, 113eqtr4d 2788 . 2 (𝐴 ∈ ℝ+ → (𝐴 · ((log‘𝐴) − 2)) = (((𝐴 · (log‘𝐴)) − 𝐴) − 𝐴))
139, 8resubcld 11333 . . . 4 (𝐴 ∈ ℝ+ → ((𝐴 · (log‘𝐴)) − 𝐴) ∈ ℝ)
14 fzfid 13621 . . . . 5 (𝐴 ∈ ℝ+ → (1...(⌊‘𝐴)) ∈ Fin)
15 fzfid 13621 . . . . . 6 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → (1...𝑛) ∈ Fin)
16 elfznn 13214 . . . . . . . 8 (𝑑 ∈ (1...𝑛) → 𝑑 ∈ ℕ)
1716adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ (1...𝑛)) → 𝑑 ∈ ℕ)
1817nnrecred 11954 . . . . . 6 (((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ (1...𝑛)) → (1 / 𝑑) ∈ ℝ)
1915, 18fsumrecl 15374 . . . . 5 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑑 ∈ (1...𝑛)(1 / 𝑑) ∈ ℝ)
2014, 19fsumrecl 15374 . . . 4 (𝐴 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ (1...𝑛)(1 / 𝑑) ∈ ℝ)
21 rprege0 12674 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
22 flge0nn0 13468 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
2321, 22syl 17 . . . . . . . 8 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℕ0)
2423faccld 13926 . . . . . . 7 (𝐴 ∈ ℝ+ → (!‘(⌊‘𝐴)) ∈ ℕ)
2524nnrpd 12699 . . . . . 6 (𝐴 ∈ ℝ+ → (!‘(⌊‘𝐴)) ∈ ℝ+)
2625relogcld 25683 . . . . 5 (𝐴 ∈ ℝ+ → (log‘(!‘(⌊‘𝐴))) ∈ ℝ)
2726, 8readdcld 10935 . . . 4 (𝐴 ∈ ℝ+ → ((log‘(!‘(⌊‘𝐴))) + 𝐴) ∈ ℝ)
28 elfznn 13214 . . . . . . . . . 10 (𝑑 ∈ (1...(⌊‘𝐴)) → 𝑑 ∈ ℕ)
2928adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℕ)
3029nnrecred 11954 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (1 / 𝑑) ∈ ℝ)
3114, 30fsumrecl 15374 . . . . . . 7 (𝐴 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑) ∈ ℝ)
328, 31remulcld 10936 . . . . . 6 (𝐴 ∈ ℝ+ → (𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑)) ∈ ℝ)
33 reflcl 13444 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
348, 33syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℝ)
3532, 34resubcld 11333 . . . . 5 (𝐴 ∈ ℝ+ → ((𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑)) − (⌊‘𝐴)) ∈ ℝ)
36 harmoniclbnd 26063 . . . . . . 7 (𝐴 ∈ ℝ+ → (log‘𝐴) ≤ Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑))
37 rpregt0 12673 . . . . . . . 8 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
38 lemul2 11758 . . . . . . . 8 (((log‘𝐴) ∈ ℝ ∧ Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((log‘𝐴) ≤ Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑) ↔ (𝐴 · (log‘𝐴)) ≤ (𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑))))
394, 31, 37, 38syl3anc 1369 . . . . . . 7 (𝐴 ∈ ℝ+ → ((log‘𝐴) ≤ Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑) ↔ (𝐴 · (log‘𝐴)) ≤ (𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑))))
4036, 39mpbid 231 . . . . . 6 (𝐴 ∈ ℝ+ → (𝐴 · (log‘𝐴)) ≤ (𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑)))
41 flle 13447 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
428, 41syl 17 . . . . . 6 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ≤ 𝐴)
439, 34, 32, 8, 40, 42le2subd 11525 . . . . 5 (𝐴 ∈ ℝ+ → ((𝐴 · (log‘𝐴)) − 𝐴) ≤ ((𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑)) − (⌊‘𝐴)))
4428nnrecred 11954 . . . . . . . . 9 (𝑑 ∈ (1...(⌊‘𝐴)) → (1 / 𝑑) ∈ ℝ)
45 remulcl 10887 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (1 / 𝑑) ∈ ℝ) → (𝐴 · (1 / 𝑑)) ∈ ℝ)
468, 44, 45syl2an 595 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (𝐴 · (1 / 𝑑)) ∈ ℝ)
47 peano2rem 11218 . . . . . . . 8 ((𝐴 · (1 / 𝑑)) ∈ ℝ → ((𝐴 · (1 / 𝑑)) − 1) ∈ ℝ)
4846, 47syl 17 . . . . . . 7 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((𝐴 · (1 / 𝑑)) − 1) ∈ ℝ)
49 fzfid 13621 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (𝑑...(⌊‘𝐴)) ∈ Fin)
5030adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) ∧ 𝑛 ∈ (𝑑...(⌊‘𝐴))) → (1 / 𝑑) ∈ ℝ)
5149, 50fsumrecl 15374 . . . . . . 7 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑛 ∈ (𝑑...(⌊‘𝐴))(1 / 𝑑) ∈ ℝ)
528adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℝ)
5352, 33syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (⌊‘𝐴) ∈ ℝ)
54 peano2re 11078 . . . . . . . . . . 11 ((⌊‘𝐴) ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
5553, 54syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((⌊‘𝐴) + 1) ∈ ℝ)
5629nnred 11918 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℝ)
57 fllep1 13449 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ≤ ((⌊‘𝐴) + 1))
588, 57syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℝ+𝐴 ≤ ((⌊‘𝐴) + 1))
5958adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 𝐴 ≤ ((⌊‘𝐴) + 1))
6052, 55, 56, 59lesub1dd 11521 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (𝐴𝑑) ≤ (((⌊‘𝐴) + 1) − 𝑑))
6152, 56resubcld 11333 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (𝐴𝑑) ∈ ℝ)
6255, 56resubcld 11333 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (((⌊‘𝐴) + 1) − 𝑑) ∈ ℝ)
6329nnrpd 12699 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℝ+)
6463rpreccld 12711 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (1 / 𝑑) ∈ ℝ+)
6561, 62, 64lemul1d 12744 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((𝐴𝑑) ≤ (((⌊‘𝐴) + 1) − 𝑑) ↔ ((𝐴𝑑) · (1 / 𝑑)) ≤ ((((⌊‘𝐴) + 1) − 𝑑) · (1 / 𝑑))))
6660, 65mpbid 231 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((𝐴𝑑) · (1 / 𝑑)) ≤ ((((⌊‘𝐴) + 1) − 𝑑) · (1 / 𝑑)))
671adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 𝐴 ∈ ℂ)
6829nncnd 11919 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ∈ ℂ)
6930recnd 10934 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (1 / 𝑑) ∈ ℂ)
7067, 68, 69subdird 11362 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((𝐴𝑑) · (1 / 𝑑)) = ((𝐴 · (1 / 𝑑)) − (𝑑 · (1 / 𝑑))))
7129nnne0d 11953 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 𝑑 ≠ 0)
7268, 71recidd 11676 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (𝑑 · (1 / 𝑑)) = 1)
7372oveq2d 7271 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((𝐴 · (1 / 𝑑)) − (𝑑 · (1 / 𝑑))) = ((𝐴 · (1 / 𝑑)) − 1))
7470, 73eqtr2d 2779 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((𝐴 · (1 / 𝑑)) − 1) = ((𝐴𝑑) · (1 / 𝑑)))
75 fsumconst 15430 . . . . . . . . . 10 (((𝑑...(⌊‘𝐴)) ∈ Fin ∧ (1 / 𝑑) ∈ ℂ) → Σ𝑛 ∈ (𝑑...(⌊‘𝐴))(1 / 𝑑) = ((♯‘(𝑑...(⌊‘𝐴))) · (1 / 𝑑)))
7649, 69, 75syl2anc 583 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑛 ∈ (𝑑...(⌊‘𝐴))(1 / 𝑑) = ((♯‘(𝑑...(⌊‘𝐴))) · (1 / 𝑑)))
77 elfzuz3 13182 . . . . . . . . . . . . 13 (𝑑 ∈ (1...(⌊‘𝐴)) → (⌊‘𝐴) ∈ (ℤ𝑑))
7877adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (⌊‘𝐴) ∈ (ℤ𝑑))
79 hashfz 14070 . . . . . . . . . . . 12 ((⌊‘𝐴) ∈ (ℤ𝑑) → (♯‘(𝑑...(⌊‘𝐴))) = (((⌊‘𝐴) − 𝑑) + 1))
8078, 79syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (♯‘(𝑑...(⌊‘𝐴))) = (((⌊‘𝐴) − 𝑑) + 1))
8134recnd 10934 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℂ)
8281adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (⌊‘𝐴) ∈ ℂ)
83 1cnd 10901 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → 1 ∈ ℂ)
8482, 83, 68addsubd 11283 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (((⌊‘𝐴) + 1) − 𝑑) = (((⌊‘𝐴) − 𝑑) + 1))
8580, 84eqtr4d 2781 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (♯‘(𝑑...(⌊‘𝐴))) = (((⌊‘𝐴) + 1) − 𝑑))
8685oveq1d 7270 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((♯‘(𝑑...(⌊‘𝐴))) · (1 / 𝑑)) = ((((⌊‘𝐴) + 1) − 𝑑) · (1 / 𝑑)))
8776, 86eqtrd 2778 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → Σ𝑛 ∈ (𝑑...(⌊‘𝐴))(1 / 𝑑) = ((((⌊‘𝐴) + 1) − 𝑑) · (1 / 𝑑)))
8866, 74, 873brtr4d 5102 . . . . . . 7 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → ((𝐴 · (1 / 𝑑)) − 1) ≤ Σ𝑛 ∈ (𝑑...(⌊‘𝐴))(1 / 𝑑))
8914, 48, 51, 88fsumle 15439 . . . . . 6 (𝐴 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝐴))((𝐴 · (1 / 𝑑)) − 1) ≤ Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑛 ∈ (𝑑...(⌊‘𝐴))(1 / 𝑑))
9014, 1, 69fsummulc2 15424 . . . . . . . 8 (𝐴 ∈ ℝ+ → (𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑)) = Σ𝑑 ∈ (1...(⌊‘𝐴))(𝐴 · (1 / 𝑑)))
91 ax-1cn 10860 . . . . . . . . . 10 1 ∈ ℂ
92 fsumconst 15430 . . . . . . . . . 10 (((1...(⌊‘𝐴)) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑑 ∈ (1...(⌊‘𝐴))1 = ((♯‘(1...(⌊‘𝐴))) · 1))
9314, 91, 92sylancl 585 . . . . . . . . 9 (𝐴 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝐴))1 = ((♯‘(1...(⌊‘𝐴))) · 1))
94 hashfz1 13988 . . . . . . . . . . 11 ((⌊‘𝐴) ∈ ℕ0 → (♯‘(1...(⌊‘𝐴))) = (⌊‘𝐴))
9523, 94syl 17 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (♯‘(1...(⌊‘𝐴))) = (⌊‘𝐴))
9695oveq1d 7270 . . . . . . . . 9 (𝐴 ∈ ℝ+ → ((♯‘(1...(⌊‘𝐴))) · 1) = ((⌊‘𝐴) · 1))
9781mulid1d 10923 . . . . . . . . 9 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) · 1) = (⌊‘𝐴))
9893, 96, 973eqtrrd 2783 . . . . . . . 8 (𝐴 ∈ ℝ+ → (⌊‘𝐴) = Σ𝑑 ∈ (1...(⌊‘𝐴))1)
9990, 98oveq12d 7273 . . . . . . 7 (𝐴 ∈ ℝ+ → ((𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑)) − (⌊‘𝐴)) = (Σ𝑑 ∈ (1...(⌊‘𝐴))(𝐴 · (1 / 𝑑)) − Σ𝑑 ∈ (1...(⌊‘𝐴))1))
10046recnd 10934 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝐴))) → (𝐴 · (1 / 𝑑)) ∈ ℂ)
10114, 100, 83fsumsub 15428 . . . . . . 7 (𝐴 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝐴))((𝐴 · (1 / 𝑑)) − 1) = (Σ𝑑 ∈ (1...(⌊‘𝐴))(𝐴 · (1 / 𝑑)) − Σ𝑑 ∈ (1...(⌊‘𝐴))1))
10299, 101eqtr4d 2781 . . . . . 6 (𝐴 ∈ ℝ+ → ((𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑)) − (⌊‘𝐴)) = Σ𝑑 ∈ (1...(⌊‘𝐴))((𝐴 · (1 / 𝑑)) − 1))
103 eqid 2738 . . . . . . . . . . . . . 14 (ℤ‘1) = (ℤ‘1)
104103uztrn2 12530 . . . . . . . . . . . . 13 ((𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑)) → 𝑛 ∈ (ℤ‘1))
105104adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+ ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))) → 𝑛 ∈ (ℤ‘1))
106105biantrurd 532 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))) → ((⌊‘𝐴) ∈ (ℤ𝑛) ↔ (𝑛 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑛))))
107 uzss 12534 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑑) → (ℤ𝑛) ⊆ (ℤ𝑑))
108107ad2antll 725 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ+ ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))) → (ℤ𝑛) ⊆ (ℤ𝑑))
109108sseld 3916 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+ ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))) → ((⌊‘𝐴) ∈ (ℤ𝑛) → (⌊‘𝐴) ∈ (ℤ𝑑)))
110109pm4.71rd 562 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))) → ((⌊‘𝐴) ∈ (ℤ𝑛) ↔ ((⌊‘𝐴) ∈ (ℤ𝑑) ∧ (⌊‘𝐴) ∈ (ℤ𝑛))))
111106, 110bitr3d 280 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))) → ((𝑛 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑛)) ↔ ((⌊‘𝐴) ∈ (ℤ𝑑) ∧ (⌊‘𝐴) ∈ (ℤ𝑛))))
112111pm5.32da 578 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (((𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑)) ∧ (𝑛 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑛))) ↔ ((𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑)) ∧ ((⌊‘𝐴) ∈ (ℤ𝑑) ∧ (⌊‘𝐴) ∈ (ℤ𝑛)))))
113 ancom 460 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑛)) ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))) ↔ ((𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑)) ∧ (𝑛 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑛))))
114 an4 652 . . . . . . . . 9 (((𝑑 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑑)) ∧ (𝑛 ∈ (ℤ𝑑) ∧ (⌊‘𝐴) ∈ (ℤ𝑛))) ↔ ((𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑)) ∧ ((⌊‘𝐴) ∈ (ℤ𝑑) ∧ (⌊‘𝐴) ∈ (ℤ𝑛))))
115112, 113, 1143bitr4g 313 . . . . . . . 8 (𝐴 ∈ ℝ+ → (((𝑛 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑛)) ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))) ↔ ((𝑑 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑑)) ∧ (𝑛 ∈ (ℤ𝑑) ∧ (⌊‘𝐴) ∈ (ℤ𝑛)))))
116 elfzuzb 13179 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝐴)) ↔ (𝑛 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑛)))
117 elfzuzb 13179 . . . . . . . . 9 (𝑑 ∈ (1...𝑛) ↔ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑)))
118116, 117anbi12i 626 . . . . . . . 8 ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ (1...𝑛)) ↔ ((𝑛 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑛)) ∧ (𝑑 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑑))))
119 elfzuzb 13179 . . . . . . . . 9 (𝑑 ∈ (1...(⌊‘𝐴)) ↔ (𝑑 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑑)))
120 elfzuzb 13179 . . . . . . . . 9 (𝑛 ∈ (𝑑...(⌊‘𝐴)) ↔ (𝑛 ∈ (ℤ𝑑) ∧ (⌊‘𝐴) ∈ (ℤ𝑛)))
121119, 120anbi12i 626 . . . . . . . 8 ((𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ (𝑑...(⌊‘𝐴))) ↔ ((𝑑 ∈ (ℤ‘1) ∧ (⌊‘𝐴) ∈ (ℤ𝑑)) ∧ (𝑛 ∈ (ℤ𝑑) ∧ (⌊‘𝐴) ∈ (ℤ𝑛))))
122115, 118, 1213bitr4g 313 . . . . . . 7 (𝐴 ∈ ℝ+ → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ (1...𝑛)) ↔ (𝑑 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ (𝑑...(⌊‘𝐴)))))
12318recnd 10934 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) ∧ 𝑑 ∈ (1...𝑛)) → (1 / 𝑑) ∈ ℂ)
124123anasss 466 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑑 ∈ (1...𝑛))) → (1 / 𝑑) ∈ ℂ)
12514, 14, 15, 122, 124fsumcom2 15414 . . . . . 6 (𝐴 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ (1...𝑛)(1 / 𝑑) = Σ𝑑 ∈ (1...(⌊‘𝐴))Σ𝑛 ∈ (𝑑...(⌊‘𝐴))(1 / 𝑑))
12689, 102, 1253brtr4d 5102 . . . . 5 (𝐴 ∈ ℝ+ → ((𝐴 · Σ𝑑 ∈ (1...(⌊‘𝐴))(1 / 𝑑)) − (⌊‘𝐴)) ≤ Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ (1...𝑛)(1 / 𝑑))
12713, 35, 20, 43, 126letrd 11062 . . . 4 (𝐴 ∈ ℝ+ → ((𝐴 · (log‘𝐴)) − 𝐴) ≤ Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ (1...𝑛)(1 / 𝑑))
12826, 34readdcld 10935 . . . . 5 (𝐴 ∈ ℝ+ → ((log‘(!‘(⌊‘𝐴))) + (⌊‘𝐴)) ∈ ℝ)
129 elfznn 13214 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
130129adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
131130nnrpd 12699 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℝ+)
132131relogcld 25683 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → (log‘𝑛) ∈ ℝ)
133 peano2re 11078 . . . . . . . 8 ((log‘𝑛) ∈ ℝ → ((log‘𝑛) + 1) ∈ ℝ)
134132, 133syl 17 . . . . . . 7 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → ((log‘𝑛) + 1) ∈ ℝ)
135 nnz 12272 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
136 flid 13456 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (⌊‘𝑛) = 𝑛)
137135, 136syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (⌊‘𝑛) = 𝑛)
138137oveq2d 7271 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1...(⌊‘𝑛)) = (1...𝑛))
139138sumeq1d 15341 . . . . . . . . 9 (𝑛 ∈ ℕ → Σ𝑑 ∈ (1...(⌊‘𝑛))(1 / 𝑑) = Σ𝑑 ∈ (1...𝑛)(1 / 𝑑))
140 nnre 11910 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
141 nnge1 11931 . . . . . . . . . 10 (𝑛 ∈ ℕ → 1 ≤ 𝑛)
142 harmonicubnd 26064 . . . . . . . . . 10 ((𝑛 ∈ ℝ ∧ 1 ≤ 𝑛) → Σ𝑑 ∈ (1...(⌊‘𝑛))(1 / 𝑑) ≤ ((log‘𝑛) + 1))
143140, 141, 142syl2anc 583 . . . . . . . . 9 (𝑛 ∈ ℕ → Σ𝑑 ∈ (1...(⌊‘𝑛))(1 / 𝑑) ≤ ((log‘𝑛) + 1))
144139, 143eqbrtrrd 5094 . . . . . . . 8 (𝑛 ∈ ℕ → Σ𝑑 ∈ (1...𝑛)(1 / 𝑑) ≤ ((log‘𝑛) + 1))
145130, 144syl 17 . . . . . . 7 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → Σ𝑑 ∈ (1...𝑛)(1 / 𝑑) ≤ ((log‘𝑛) + 1))
14614, 19, 134, 145fsumle 15439 . . . . . 6 (𝐴 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ (1...𝑛)(1 / 𝑑) ≤ Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛) + 1))
147132recnd 10934 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → (log‘𝑛) ∈ ℂ)
148 1cnd 10901 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑛 ∈ (1...(⌊‘𝐴))) → 1 ∈ ℂ)
14914, 147, 148fsumadd 15380 . . . . . . 7 (𝐴 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛) + 1) = (Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛) + Σ𝑛 ∈ (1...(⌊‘𝐴))1))
150 logfac 25661 . . . . . . . . 9 ((⌊‘𝐴) ∈ ℕ0 → (log‘(!‘(⌊‘𝐴))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
15123, 150syl 17 . . . . . . . 8 (𝐴 ∈ ℝ+ → (log‘(!‘(⌊‘𝐴))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
152 fsumconst 15430 . . . . . . . . . 10 (((1...(⌊‘𝐴)) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑛 ∈ (1...(⌊‘𝐴))1 = ((♯‘(1...(⌊‘𝐴))) · 1))
15314, 91, 152sylancl 585 . . . . . . . . 9 (𝐴 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝐴))1 = ((♯‘(1...(⌊‘𝐴))) · 1))
154153, 96, 973eqtrrd 2783 . . . . . . . 8 (𝐴 ∈ ℝ+ → (⌊‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))1)
155151, 154oveq12d 7273 . . . . . . 7 (𝐴 ∈ ℝ+ → ((log‘(!‘(⌊‘𝐴))) + (⌊‘𝐴)) = (Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛) + Σ𝑛 ∈ (1...(⌊‘𝐴))1))
156149, 155eqtr4d 2781 . . . . . 6 (𝐴 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛) + 1) = ((log‘(!‘(⌊‘𝐴))) + (⌊‘𝐴)))
157146, 156breqtrd 5096 . . . . 5 (𝐴 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ (1...𝑛)(1 / 𝑑) ≤ ((log‘(!‘(⌊‘𝐴))) + (⌊‘𝐴)))
15834, 8, 26, 42leadd2dd 11520 . . . . 5 (𝐴 ∈ ℝ+ → ((log‘(!‘(⌊‘𝐴))) + (⌊‘𝐴)) ≤ ((log‘(!‘(⌊‘𝐴))) + 𝐴))
15920, 128, 27, 157, 158letrd 11062 . . . 4 (𝐴 ∈ ℝ+ → Σ𝑛 ∈ (1...(⌊‘𝐴))Σ𝑑 ∈ (1...𝑛)(1 / 𝑑) ≤ ((log‘(!‘(⌊‘𝐴))) + 𝐴))
16013, 20, 27, 127, 159letrd 11062 . . 3 (𝐴 ∈ ℝ+ → ((𝐴 · (log‘𝐴)) − 𝐴) ≤ ((log‘(!‘(⌊‘𝐴))) + 𝐴))
16113, 8, 26lesubaddd 11502 . . 3 (𝐴 ∈ ℝ+ → ((((𝐴 · (log‘𝐴)) − 𝐴) − 𝐴) ≤ (log‘(!‘(⌊‘𝐴))) ↔ ((𝐴 · (log‘𝐴)) − 𝐴) ≤ ((log‘(!‘(⌊‘𝐴))) + 𝐴)))
162160, 161mpbird 256 . 2 (𝐴 ∈ ℝ+ → (((𝐴 · (log‘𝐴)) − 𝐴) − 𝐴) ≤ (log‘(!‘(⌊‘𝐴))))
16312, 162eqbrtrd 5092 1 (𝐴 ∈ ℝ+ → (𝐴 · ((log‘𝐴) − 2)) ≤ (log‘(!‘(⌊‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wss 3883   class class class wbr 5070  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  +crp 12659  ...cfz 13168  cfl 13438  !cfa 13915  chash 13972  Σcsu 15325  logclog 25615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-e 15706  df-sin 15707  df-cos 15708  df-tan 15709  df-pi 15710  df-dvds 15892  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-ulm 25441  df-log 25617  df-atan 25922  df-em 26047
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator