| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chordthmlem | Structured version Visualization version GIF version | ||
| Description: If 𝑀 is the midpoint of AB and AQ = BQ, then QMB is a right angle. The proof uses ssscongptld 26730 to observe that, since AMQ and BMQ have equal sides, the angles QMB and QMA must be equal. Since they are supplementary, both must be right angles. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| chordthmlem.angdef | ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
| chordthmlem.A | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| chordthmlem.B | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| chordthmlem.Q | ⊢ (𝜑 → 𝑄 ∈ ℂ) |
| chordthmlem.M | ⊢ (𝜑 → 𝑀 = ((𝐴 + 𝐵) / 2)) |
| chordthmlem.ABequidistQ | ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) |
| chordthmlem.AneB | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| chordthmlem.QneM | ⊢ (𝜑 → 𝑄 ≠ 𝑀) |
| Ref | Expression |
|---|---|
| chordthmlem | ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ {(π / 2), -(π / 2)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negpitopissre 26447 | . . . . . 6 ⊢ (-π(,]π) ⊆ ℝ | |
| 2 | chordthmlem.angdef | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) | |
| 3 | chordthmlem.Q | . . . . . . . 8 ⊢ (𝜑 → 𝑄 ∈ ℂ) | |
| 4 | chordthmlem.M | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 = ((𝐴 + 𝐵) / 2)) | |
| 5 | chordthmlem.A | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 6 | chordthmlem.B | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 7 | 5, 6 | addcld 11134 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
| 8 | 7 | halfcld 12369 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ) |
| 9 | 4, 8 | eqeltrd 2828 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 10 | 3, 9 | subcld 11475 | . . . . . . 7 ⊢ (𝜑 → (𝑄 − 𝑀) ∈ ℂ) |
| 11 | chordthmlem.QneM | . . . . . . . 8 ⊢ (𝜑 → 𝑄 ≠ 𝑀) | |
| 12 | 3, 9, 11 | subne0d 11484 | . . . . . . 7 ⊢ (𝜑 → (𝑄 − 𝑀) ≠ 0) |
| 13 | 6, 9 | subcld 11475 | . . . . . . 7 ⊢ (𝜑 → (𝐵 − 𝑀) ∈ ℂ) |
| 14 | 4 | oveq1d 7364 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (𝑀 · 2) = (((𝐴 + 𝐵) / 2) · 2)) |
| 15 | 9 | times2d 12368 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (𝑀 · 2) = (𝑀 + 𝑀)) |
| 16 | 2cnd 12206 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 2 ∈ ℂ) | |
| 17 | 2ne0 12232 | . . . . . . . . . . . . . . . 16 ⊢ 2 ≠ 0 | |
| 18 | 17 | a1i 11 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 2 ≠ 0) |
| 19 | 7, 16, 18 | divcan1d 11901 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (((𝐴 + 𝐵) / 2) · 2) = (𝐴 + 𝐵)) |
| 20 | 14, 15, 19 | 3eqtr3d 2772 | . . . . . . . . . . . . 13 ⊢ (𝜑 → (𝑀 + 𝑀) = (𝐴 + 𝐵)) |
| 21 | chordthmlem.AneB | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 22 | 5, 6, 6, 21 | addneintr2d 11324 | . . . . . . . . . . . . 13 ⊢ (𝜑 → (𝐴 + 𝐵) ≠ (𝐵 + 𝐵)) |
| 23 | 20, 22 | eqnetrd 2992 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝑀 + 𝑀) ≠ (𝐵 + 𝐵)) |
| 24 | 23 | neneqd 2930 | . . . . . . . . . . 11 ⊢ (𝜑 → ¬ (𝑀 + 𝑀) = (𝐵 + 𝐵)) |
| 25 | oveq12 7358 | . . . . . . . . . . . 12 ⊢ ((𝑀 = 𝐵 ∧ 𝑀 = 𝐵) → (𝑀 + 𝑀) = (𝐵 + 𝐵)) | |
| 26 | 25 | anidms 566 | . . . . . . . . . . 11 ⊢ (𝑀 = 𝐵 → (𝑀 + 𝑀) = (𝐵 + 𝐵)) |
| 27 | 24, 26 | nsyl 140 | . . . . . . . . . 10 ⊢ (𝜑 → ¬ 𝑀 = 𝐵) |
| 28 | 27 | neqned 2932 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ≠ 𝐵) |
| 29 | 28 | necomd 2980 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ≠ 𝑀) |
| 30 | 6, 9, 29 | subne0d 11484 | . . . . . . 7 ⊢ (𝜑 → (𝐵 − 𝑀) ≠ 0) |
| 31 | 2, 10, 12, 13, 30 | angcld 26713 | . . . . . 6 ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ (-π(,]π)) |
| 32 | 1, 31 | sselid 3933 | . . . . 5 ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ ℝ) |
| 33 | 32 | recnd 11143 | . . . 4 ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ ℂ) |
| 34 | 33 | coscld 16040 | . . 3 ⊢ (𝜑 → (cos‘((𝑄 − 𝑀)𝐹(𝐵 − 𝑀))) ∈ ℂ) |
| 35 | 6, 9 | negsubdi2d 11491 | . . . . . . 7 ⊢ (𝜑 → -(𝐵 − 𝑀) = (𝑀 − 𝐵)) |
| 36 | 9, 9, 5, 6 | addsubeq4d 11526 | . . . . . . . 8 ⊢ (𝜑 → ((𝑀 + 𝑀) = (𝐴 + 𝐵) ↔ (𝐴 − 𝑀) = (𝑀 − 𝐵))) |
| 37 | 20, 36 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → (𝐴 − 𝑀) = (𝑀 − 𝐵)) |
| 38 | 35, 37 | eqtr4d 2767 | . . . . . 6 ⊢ (𝜑 → -(𝐵 − 𝑀) = (𝐴 − 𝑀)) |
| 39 | 38 | oveq2d 7365 | . . . . 5 ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹-(𝐵 − 𝑀)) = ((𝑄 − 𝑀)𝐹(𝐴 − 𝑀))) |
| 40 | 39 | fveq2d 6826 | . . . 4 ⊢ (𝜑 → (cos‘((𝑄 − 𝑀)𝐹-(𝐵 − 𝑀))) = (cos‘((𝑄 − 𝑀)𝐹(𝐴 − 𝑀)))) |
| 41 | 2, 10, 12, 13, 30 | cosangneg2d 26715 | . . . 4 ⊢ (𝜑 → (cos‘((𝑄 − 𝑀)𝐹-(𝐵 − 𝑀))) = -(cos‘((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)))) |
| 42 | 5, 5, 6, 21 | addneintrd 11323 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 + 𝐴) ≠ (𝐴 + 𝐵)) |
| 43 | 42, 20 | neeqtrrd 2999 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 + 𝐴) ≠ (𝑀 + 𝑀)) |
| 44 | 43 | necomd 2980 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 + 𝑀) ≠ (𝐴 + 𝐴)) |
| 45 | 44 | neneqd 2930 | . . . . . . 7 ⊢ (𝜑 → ¬ (𝑀 + 𝑀) = (𝐴 + 𝐴)) |
| 46 | oveq12 7358 | . . . . . . . 8 ⊢ ((𝑀 = 𝐴 ∧ 𝑀 = 𝐴) → (𝑀 + 𝑀) = (𝐴 + 𝐴)) | |
| 47 | 46 | anidms 566 | . . . . . . 7 ⊢ (𝑀 = 𝐴 → (𝑀 + 𝑀) = (𝐴 + 𝐴)) |
| 48 | 45, 47 | nsyl 140 | . . . . . 6 ⊢ (𝜑 → ¬ 𝑀 = 𝐴) |
| 49 | 48 | neqned 2932 | . . . . 5 ⊢ (𝜑 → 𝑀 ≠ 𝐴) |
| 50 | eqidd 2730 | . . . . 5 ⊢ (𝜑 → (abs‘(𝑄 − 𝑀)) = (abs‘(𝑄 − 𝑀))) | |
| 51 | 5, 9 | subcld 11475 | . . . . . . 7 ⊢ (𝜑 → (𝐴 − 𝑀) ∈ ℂ) |
| 52 | 51 | absnegd 15359 | . . . . . 6 ⊢ (𝜑 → (abs‘-(𝐴 − 𝑀)) = (abs‘(𝐴 − 𝑀))) |
| 53 | 5, 9 | negsubdi2d 11491 | . . . . . . 7 ⊢ (𝜑 → -(𝐴 − 𝑀) = (𝑀 − 𝐴)) |
| 54 | 53 | fveq2d 6826 | . . . . . 6 ⊢ (𝜑 → (abs‘-(𝐴 − 𝑀)) = (abs‘(𝑀 − 𝐴))) |
| 55 | 37 | fveq2d 6826 | . . . . . 6 ⊢ (𝜑 → (abs‘(𝐴 − 𝑀)) = (abs‘(𝑀 − 𝐵))) |
| 56 | 52, 54, 55 | 3eqtr3d 2772 | . . . . 5 ⊢ (𝜑 → (abs‘(𝑀 − 𝐴)) = (abs‘(𝑀 − 𝐵))) |
| 57 | chordthmlem.ABequidistQ | . . . . 5 ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) | |
| 58 | 2, 3, 9, 5, 3, 9, 6, 11, 49, 11, 28, 50, 56, 57 | ssscongptld 26730 | . . . 4 ⊢ (𝜑 → (cos‘((𝑄 − 𝑀)𝐹(𝐴 − 𝑀))) = (cos‘((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)))) |
| 59 | 40, 41, 58 | 3eqtr3rd 2773 | . . 3 ⊢ (𝜑 → (cos‘((𝑄 − 𝑀)𝐹(𝐵 − 𝑀))) = -(cos‘((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)))) |
| 60 | 34, 59 | eqnegad 11846 | . 2 ⊢ (𝜑 → (cos‘((𝑄 − 𝑀)𝐹(𝐵 − 𝑀))) = 0) |
| 61 | coseq0negpitopi 26410 | . . 3 ⊢ (((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ (-π(,]π) → ((cos‘((𝑄 − 𝑀)𝐹(𝐵 − 𝑀))) = 0 ↔ ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ {(π / 2), -(π / 2)})) | |
| 62 | 31, 61 | syl 17 | . 2 ⊢ (𝜑 → ((cos‘((𝑄 − 𝑀)𝐹(𝐵 − 𝑀))) = 0 ↔ ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ {(π / 2), -(π / 2)})) |
| 63 | 60, 62 | mpbid 232 | 1 ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ {(π / 2), -(π / 2)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3900 {csn 4577 {cpr 4579 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 ℂcc 11007 ℝcr 11008 0cc0 11009 + caddc 11012 · cmul 11014 − cmin 11347 -cneg 11348 / cdiv 11777 2c2 12183 (,]cioc 13249 ℑcim 15005 abscabs 15141 cosccos 15971 πcpi 15973 logclog 26461 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ioc 13253 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-perf 23022 df-cn 23112 df-cnp 23113 df-haus 23200 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-xms 24206 df-ms 24207 df-tms 24208 df-cncf 24769 df-limc 25765 df-dv 25766 df-log 26463 |
| This theorem is referenced by: chordthmlem2 26741 |
| Copyright terms: Public domain | W3C validator |