![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chordthmlem | Structured version Visualization version GIF version |
Description: If 𝑀 is the midpoint of AB and AQ = BQ, then QMB is a right angle. The proof uses ssscongptld 26748 to observe that, since AMQ and BMQ have equal sides, the angles QMB and QMA must be equal. Since they are supplementary, both must be right angles. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
chordthmlem.angdef | ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
chordthmlem.A | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
chordthmlem.B | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
chordthmlem.Q | ⊢ (𝜑 → 𝑄 ∈ ℂ) |
chordthmlem.M | ⊢ (𝜑 → 𝑀 = ((𝐴 + 𝐵) / 2)) |
chordthmlem.ABequidistQ | ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) |
chordthmlem.AneB | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
chordthmlem.QneM | ⊢ (𝜑 → 𝑄 ≠ 𝑀) |
Ref | Expression |
---|---|
chordthmlem | ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ {(π / 2), -(π / 2)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negpitopissre 26468 | . . . . . 6 ⊢ (-π(,]π) ⊆ ℝ | |
2 | chordthmlem.angdef | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) | |
3 | chordthmlem.Q | . . . . . . . 8 ⊢ (𝜑 → 𝑄 ∈ ℂ) | |
4 | chordthmlem.M | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 = ((𝐴 + 𝐵) / 2)) | |
5 | chordthmlem.A | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
6 | chordthmlem.B | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
7 | 5, 6 | addcld 11258 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
8 | 7 | halfcld 12482 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ) |
9 | 4, 8 | eqeltrd 2829 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
10 | 3, 9 | subcld 11596 | . . . . . . 7 ⊢ (𝜑 → (𝑄 − 𝑀) ∈ ℂ) |
11 | chordthmlem.QneM | . . . . . . . 8 ⊢ (𝜑 → 𝑄 ≠ 𝑀) | |
12 | 3, 9, 11 | subne0d 11605 | . . . . . . 7 ⊢ (𝜑 → (𝑄 − 𝑀) ≠ 0) |
13 | 6, 9 | subcld 11596 | . . . . . . 7 ⊢ (𝜑 → (𝐵 − 𝑀) ∈ ℂ) |
14 | 4 | oveq1d 7430 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (𝑀 · 2) = (((𝐴 + 𝐵) / 2) · 2)) |
15 | 9 | times2d 12481 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (𝑀 · 2) = (𝑀 + 𝑀)) |
16 | 2cnd 12315 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 2 ∈ ℂ) | |
17 | 2ne0 12341 | . . . . . . . . . . . . . . . 16 ⊢ 2 ≠ 0 | |
18 | 17 | a1i 11 | . . . . . . . . . . . . . . 15 ⊢ (𝜑 → 2 ≠ 0) |
19 | 7, 16, 18 | divcan1d 12016 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (((𝐴 + 𝐵) / 2) · 2) = (𝐴 + 𝐵)) |
20 | 14, 15, 19 | 3eqtr3d 2776 | . . . . . . . . . . . . 13 ⊢ (𝜑 → (𝑀 + 𝑀) = (𝐴 + 𝐵)) |
21 | chordthmlem.AneB | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
22 | 5, 6, 6, 21 | addneintr2d 11447 | . . . . . . . . . . . . 13 ⊢ (𝜑 → (𝐴 + 𝐵) ≠ (𝐵 + 𝐵)) |
23 | 20, 22 | eqnetrd 3004 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝑀 + 𝑀) ≠ (𝐵 + 𝐵)) |
24 | 23 | neneqd 2941 | . . . . . . . . . . 11 ⊢ (𝜑 → ¬ (𝑀 + 𝑀) = (𝐵 + 𝐵)) |
25 | oveq12 7424 | . . . . . . . . . . . 12 ⊢ ((𝑀 = 𝐵 ∧ 𝑀 = 𝐵) → (𝑀 + 𝑀) = (𝐵 + 𝐵)) | |
26 | 25 | anidms 566 | . . . . . . . . . . 11 ⊢ (𝑀 = 𝐵 → (𝑀 + 𝑀) = (𝐵 + 𝐵)) |
27 | 24, 26 | nsyl 140 | . . . . . . . . . 10 ⊢ (𝜑 → ¬ 𝑀 = 𝐵) |
28 | 27 | neqned 2943 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ≠ 𝐵) |
29 | 28 | necomd 2992 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ≠ 𝑀) |
30 | 6, 9, 29 | subne0d 11605 | . . . . . . 7 ⊢ (𝜑 → (𝐵 − 𝑀) ≠ 0) |
31 | 2, 10, 12, 13, 30 | angcld 26731 | . . . . . 6 ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ (-π(,]π)) |
32 | 1, 31 | sselid 3977 | . . . . 5 ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ ℝ) |
33 | 32 | recnd 11267 | . . . 4 ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ ℂ) |
34 | 33 | coscld 16102 | . . 3 ⊢ (𝜑 → (cos‘((𝑄 − 𝑀)𝐹(𝐵 − 𝑀))) ∈ ℂ) |
35 | 6, 9 | negsubdi2d 11612 | . . . . . . 7 ⊢ (𝜑 → -(𝐵 − 𝑀) = (𝑀 − 𝐵)) |
36 | 9, 9, 5, 6 | addsubeq4d 11647 | . . . . . . . 8 ⊢ (𝜑 → ((𝑀 + 𝑀) = (𝐴 + 𝐵) ↔ (𝐴 − 𝑀) = (𝑀 − 𝐵))) |
37 | 20, 36 | mpbid 231 | . . . . . . 7 ⊢ (𝜑 → (𝐴 − 𝑀) = (𝑀 − 𝐵)) |
38 | 35, 37 | eqtr4d 2771 | . . . . . 6 ⊢ (𝜑 → -(𝐵 − 𝑀) = (𝐴 − 𝑀)) |
39 | 38 | oveq2d 7431 | . . . . 5 ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹-(𝐵 − 𝑀)) = ((𝑄 − 𝑀)𝐹(𝐴 − 𝑀))) |
40 | 39 | fveq2d 6896 | . . . 4 ⊢ (𝜑 → (cos‘((𝑄 − 𝑀)𝐹-(𝐵 − 𝑀))) = (cos‘((𝑄 − 𝑀)𝐹(𝐴 − 𝑀)))) |
41 | 2, 10, 12, 13, 30 | cosangneg2d 26733 | . . . 4 ⊢ (𝜑 → (cos‘((𝑄 − 𝑀)𝐹-(𝐵 − 𝑀))) = -(cos‘((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)))) |
42 | 5, 5, 6, 21 | addneintrd 11446 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐴 + 𝐴) ≠ (𝐴 + 𝐵)) |
43 | 42, 20 | neeqtrrd 3011 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 + 𝐴) ≠ (𝑀 + 𝑀)) |
44 | 43 | necomd 2992 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 + 𝑀) ≠ (𝐴 + 𝐴)) |
45 | 44 | neneqd 2941 | . . . . . . 7 ⊢ (𝜑 → ¬ (𝑀 + 𝑀) = (𝐴 + 𝐴)) |
46 | oveq12 7424 | . . . . . . . 8 ⊢ ((𝑀 = 𝐴 ∧ 𝑀 = 𝐴) → (𝑀 + 𝑀) = (𝐴 + 𝐴)) | |
47 | 46 | anidms 566 | . . . . . . 7 ⊢ (𝑀 = 𝐴 → (𝑀 + 𝑀) = (𝐴 + 𝐴)) |
48 | 45, 47 | nsyl 140 | . . . . . 6 ⊢ (𝜑 → ¬ 𝑀 = 𝐴) |
49 | 48 | neqned 2943 | . . . . 5 ⊢ (𝜑 → 𝑀 ≠ 𝐴) |
50 | eqidd 2729 | . . . . 5 ⊢ (𝜑 → (abs‘(𝑄 − 𝑀)) = (abs‘(𝑄 − 𝑀))) | |
51 | 5, 9 | subcld 11596 | . . . . . . 7 ⊢ (𝜑 → (𝐴 − 𝑀) ∈ ℂ) |
52 | 51 | absnegd 15423 | . . . . . 6 ⊢ (𝜑 → (abs‘-(𝐴 − 𝑀)) = (abs‘(𝐴 − 𝑀))) |
53 | 5, 9 | negsubdi2d 11612 | . . . . . . 7 ⊢ (𝜑 → -(𝐴 − 𝑀) = (𝑀 − 𝐴)) |
54 | 53 | fveq2d 6896 | . . . . . 6 ⊢ (𝜑 → (abs‘-(𝐴 − 𝑀)) = (abs‘(𝑀 − 𝐴))) |
55 | 37 | fveq2d 6896 | . . . . . 6 ⊢ (𝜑 → (abs‘(𝐴 − 𝑀)) = (abs‘(𝑀 − 𝐵))) |
56 | 52, 54, 55 | 3eqtr3d 2776 | . . . . 5 ⊢ (𝜑 → (abs‘(𝑀 − 𝐴)) = (abs‘(𝑀 − 𝐵))) |
57 | chordthmlem.ABequidistQ | . . . . 5 ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) | |
58 | 2, 3, 9, 5, 3, 9, 6, 11, 49, 11, 28, 50, 56, 57 | ssscongptld 26748 | . . . 4 ⊢ (𝜑 → (cos‘((𝑄 − 𝑀)𝐹(𝐴 − 𝑀))) = (cos‘((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)))) |
59 | 40, 41, 58 | 3eqtr3rd 2777 | . . 3 ⊢ (𝜑 → (cos‘((𝑄 − 𝑀)𝐹(𝐵 − 𝑀))) = -(cos‘((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)))) |
60 | 34, 59 | eqnegad 11961 | . 2 ⊢ (𝜑 → (cos‘((𝑄 − 𝑀)𝐹(𝐵 − 𝑀))) = 0) |
61 | coseq0negpitopi 26432 | . . 3 ⊢ (((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ (-π(,]π) → ((cos‘((𝑄 − 𝑀)𝐹(𝐵 − 𝑀))) = 0 ↔ ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ {(π / 2), -(π / 2)})) | |
62 | 31, 61 | syl 17 | . 2 ⊢ (𝜑 → ((cos‘((𝑄 − 𝑀)𝐹(𝐵 − 𝑀))) = 0 ↔ ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ {(π / 2), -(π / 2)})) |
63 | 60, 62 | mpbid 231 | 1 ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ {(π / 2), -(π / 2)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ∖ cdif 3942 {csn 4625 {cpr 4627 ‘cfv 6543 (class class class)co 7415 ∈ cmpo 7417 ℂcc 11131 ℝcr 11132 0cc0 11133 + caddc 11136 · cmul 11138 − cmin 11469 -cneg 11470 / cdiv 11896 2c2 12292 (,]cioc 13352 ℑcim 15072 abscabs 15208 cosccos 16035 πcpi 16037 logclog 26482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-inf2 9659 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 ax-addf 11212 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-iin 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7680 df-om 7866 df-1st 7988 df-2nd 7989 df-supp 8161 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-2o 8482 df-er 8719 df-map 8841 df-pm 8842 df-ixp 8911 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-fsupp 9381 df-fi 9429 df-sup 9460 df-inf 9461 df-oi 9528 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-q 12958 df-rp 13002 df-xneg 13119 df-xadd 13120 df-xmul 13121 df-ioo 13355 df-ioc 13356 df-ico 13357 df-icc 13358 df-fz 13512 df-fzo 13655 df-fl 13784 df-mod 13862 df-seq 13994 df-exp 14054 df-fac 14260 df-bc 14289 df-hash 14317 df-shft 15041 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-limsup 15442 df-clim 15459 df-rlim 15460 df-sum 15660 df-ef 16038 df-sin 16040 df-cos 16041 df-pi 16043 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17398 df-topn 17399 df-0g 17417 df-gsum 17418 df-topgen 17419 df-pt 17420 df-prds 17423 df-xrs 17478 df-qtop 17483 df-imas 17484 df-xps 17486 df-mre 17560 df-mrc 17561 df-acs 17563 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-submnd 18735 df-mulg 19018 df-cntz 19262 df-cmn 19731 df-psmet 21265 df-xmet 21266 df-met 21267 df-bl 21268 df-mopn 21269 df-fbas 21270 df-fg 21271 df-cnfld 21274 df-top 22790 df-topon 22807 df-topsp 22829 df-bases 22843 df-cld 22917 df-ntr 22918 df-cls 22919 df-nei 22996 df-lp 23034 df-perf 23035 df-cn 23125 df-cnp 23126 df-haus 23213 df-tx 23460 df-hmeo 23653 df-fil 23744 df-fm 23836 df-flim 23837 df-flf 23838 df-xms 24220 df-ms 24221 df-tms 24222 df-cncf 24792 df-limc 25789 df-dv 25790 df-log 26484 |
This theorem is referenced by: chordthmlem2 26759 |
Copyright terms: Public domain | W3C validator |