MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rplogsumlem1 Structured version   Visualization version   GIF version

Theorem rplogsumlem1 27546
Description: Lemma for rplogsum 27589. (Contributed by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
rplogsumlem1 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ 2)
Distinct variable group:   𝐴,𝑛

Proof of Theorem rplogsumlem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 14024 . . 3 (𝐴 ∈ ℕ → (2...𝐴) ∈ Fin)
2 elfzuz 13580 . . . . . . . 8 (𝑛 ∈ (2...𝐴) → 𝑛 ∈ (ℤ‘2))
3 eluz2nn 12949 . . . . . . . 8 (𝑛 ∈ (ℤ‘2) → 𝑛 ∈ ℕ)
42, 3syl 17 . . . . . . 7 (𝑛 ∈ (2...𝐴) → 𝑛 ∈ ℕ)
54adantl 481 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ ℕ)
65nnrpd 13097 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ ℝ+)
76relogcld 26683 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘𝑛) ∈ ℝ)
82adantl 481 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ (ℤ‘2))
9 uz2m1nn 12988 . . . . . 6 (𝑛 ∈ (ℤ‘2) → (𝑛 − 1) ∈ ℕ)
108, 9syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ∈ ℕ)
115, 10nnmulcld 12346 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 · (𝑛 − 1)) ∈ ℕ)
127, 11nndivred 12347 . . 3 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((log‘𝑛) / (𝑛 · (𝑛 − 1))) ∈ ℝ)
131, 12fsumrecl 15782 . 2 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ∈ ℝ)
14 2re 12367 . . . . 5 2 ∈ ℝ
1510nnrpd 13097 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ∈ ℝ+)
1615rpsqrtcld 15460 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ∈ ℝ+)
17 rerpdivcl 13087 . . . . 5 ((2 ∈ ℝ ∧ (√‘(𝑛 − 1)) ∈ ℝ+) → (2 / (√‘(𝑛 − 1))) ∈ ℝ)
1814, 16, 17sylancr 586 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 / (√‘(𝑛 − 1))) ∈ ℝ)
196rpsqrtcld 15460 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘𝑛) ∈ ℝ+)
20 rerpdivcl 13087 . . . . 5 ((2 ∈ ℝ ∧ (√‘𝑛) ∈ ℝ+) → (2 / (√‘𝑛)) ∈ ℝ)
2114, 19, 20sylancr 586 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 / (√‘𝑛)) ∈ ℝ)
2218, 21resubcld 11718 . . 3 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ∈ ℝ)
231, 22fsumrecl 15782 . 2 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ∈ ℝ)
2414a1i 11 . 2 (𝐴 ∈ ℕ → 2 ∈ ℝ)
2516rpred 13099 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ∈ ℝ)
265nnred 12308 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ ℝ)
27 peano2rem 11603 . . . . . . . 8 (𝑛 ∈ ℝ → (𝑛 − 1) ∈ ℝ)
2826, 27syl 17 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ∈ ℝ)
2926, 28remulcld 11320 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 · (𝑛 − 1)) ∈ ℝ)
3029, 22remulcld 11320 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))) ∈ ℝ)
315nncnd 12309 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ ℂ)
32 ax-1cn 11242 . . . . . . . 8 1 ∈ ℂ
33 npcan 11545 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
3431, 32, 33sylancl 585 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 − 1) + 1) = 𝑛)
3534fveq2d 6924 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘((𝑛 − 1) + 1)) = (log‘𝑛))
3615rpge0d 13103 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 0 ≤ (𝑛 − 1))
37 loglesqrt 26822 . . . . . . 7 (((𝑛 − 1) ∈ ℝ ∧ 0 ≤ (𝑛 − 1)) → (log‘((𝑛 − 1) + 1)) ≤ (√‘(𝑛 − 1)))
3828, 36, 37syl2anc 583 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘((𝑛 − 1) + 1)) ≤ (√‘(𝑛 − 1)))
3935, 38eqbrtrrd 5190 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘𝑛) ≤ (√‘(𝑛 − 1)))
4019rpred 13099 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘𝑛) ∈ ℝ)
4140, 25readdcld 11319 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) + (√‘(𝑛 − 1))) ∈ ℝ)
42 remulcl 11269 . . . . . . . . . . 11 (((√‘𝑛) ∈ ℝ ∧ 2 ∈ ℝ) → ((√‘𝑛) · 2) ∈ ℝ)
4340, 14, 42sylancl 585 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · 2) ∈ ℝ)
4440, 25resubcld 11718 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) − (√‘(𝑛 − 1))) ∈ ℝ)
4526lem1d 12228 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ≤ 𝑛)
466rpge0d 13103 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 0 ≤ 𝑛)
4728, 36, 26, 46sqrtled 15475 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 − 1) ≤ 𝑛 ↔ (√‘(𝑛 − 1)) ≤ (√‘𝑛)))
4845, 47mpbid 232 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ≤ (√‘𝑛))
4940, 25subge0d 11880 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (0 ≤ ((√‘𝑛) − (√‘(𝑛 − 1))) ↔ (√‘(𝑛 − 1)) ≤ (√‘𝑛)))
5048, 49mpbird 257 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 0 ≤ ((√‘𝑛) − (√‘(𝑛 − 1))))
5125, 40, 40, 48leadd2dd 11905 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) + (√‘(𝑛 − 1))) ≤ ((√‘𝑛) + (√‘𝑛)))
5219rpcnd 13101 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘𝑛) ∈ ℂ)
5352times2d 12537 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · 2) = ((√‘𝑛) + (√‘𝑛)))
5451, 53breqtrrd 5194 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) + (√‘(𝑛 − 1))) ≤ ((√‘𝑛) · 2))
5541, 43, 44, 50, 54lemul1ad 12234 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) + (√‘(𝑛 − 1))) · ((√‘𝑛) − (√‘(𝑛 − 1)))) ≤ (((√‘𝑛) · 2) · ((√‘𝑛) − (√‘(𝑛 − 1)))))
5631sqsqrtd 15488 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛)↑2) = 𝑛)
57 subcl 11535 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − 1) ∈ ℂ)
5831, 32, 57sylancl 585 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ∈ ℂ)
5958sqsqrtd 15488 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘(𝑛 − 1))↑2) = (𝑛 − 1))
6056, 59oveq12d 7466 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛)↑2) − ((√‘(𝑛 − 1))↑2)) = (𝑛 − (𝑛 − 1)))
6116rpcnd 13101 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ∈ ℂ)
62 subsq 14259 . . . . . . . . . . 11 (((√‘𝑛) ∈ ℂ ∧ (√‘(𝑛 − 1)) ∈ ℂ) → (((√‘𝑛)↑2) − ((√‘(𝑛 − 1))↑2)) = (((√‘𝑛) + (√‘(𝑛 − 1))) · ((√‘𝑛) − (√‘(𝑛 − 1)))))
6352, 61, 62syl2anc 583 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛)↑2) − ((√‘(𝑛 − 1))↑2)) = (((√‘𝑛) + (√‘(𝑛 − 1))) · ((√‘𝑛) − (√‘(𝑛 − 1)))))
64 nncan 11565 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − (𝑛 − 1)) = 1)
6531, 32, 64sylancl 585 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − (𝑛 − 1)) = 1)
6660, 63, 653eqtr3d 2788 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) + (√‘(𝑛 − 1))) · ((√‘𝑛) − (√‘(𝑛 − 1)))) = 1)
67 2cn 12368 . . . . . . . . . . 11 2 ∈ ℂ
6867a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 2 ∈ ℂ)
6944recnd 11318 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) − (√‘(𝑛 − 1))) ∈ ℂ)
7052, 68, 69mulassd 11313 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · 2) · ((√‘𝑛) − (√‘(𝑛 − 1)))) = ((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
7155, 66, 703brtr3d 5197 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 1 ≤ ((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
72 1red 11291 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 1 ∈ ℝ)
73 remulcl 11269 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ ((√‘𝑛) − (√‘(𝑛 − 1))) ∈ ℝ) → (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) ∈ ℝ)
7414, 44, 73sylancr 586 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) ∈ ℝ)
7540, 74remulcld 11320 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) ∈ ℝ)
7672, 75, 16lemul1d 13142 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (1 ≤ ((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) ↔ (1 · (√‘(𝑛 − 1))) ≤ (((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) · (√‘(𝑛 − 1)))))
7771, 76mpbid 232 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (1 · (√‘(𝑛 − 1))) ≤ (((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) · (√‘(𝑛 − 1))))
7861mullidd 11308 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (1 · (√‘(𝑛 − 1))) = (√‘(𝑛 − 1)))
7974recnd 11318 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) ∈ ℂ)
8052, 79, 61mul32d 11500 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) · (√‘(𝑛 − 1))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
8177, 78, 803brtr3d 5197 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ≤ (((√‘𝑛) · (√‘(𝑛 − 1))) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
82 remsqsqrt 15305 . . . . . . . . . . 11 ((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) → ((√‘𝑛) · (√‘𝑛)) = 𝑛)
8326, 46, 82syl2anc 583 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘𝑛)) = 𝑛)
84 remsqsqrt 15305 . . . . . . . . . . 11 (((𝑛 − 1) ∈ ℝ ∧ 0 ≤ (𝑛 − 1)) → ((√‘(𝑛 − 1)) · (√‘(𝑛 − 1))) = (𝑛 − 1))
8528, 36, 84syl2anc 583 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘(𝑛 − 1)) · (√‘(𝑛 − 1))) = (𝑛 − 1))
8683, 85oveq12d 7466 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (√‘𝑛)) · ((√‘(𝑛 − 1)) · (√‘(𝑛 − 1)))) = (𝑛 · (𝑛 − 1)))
8752, 52, 61, 61mul4d 11502 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (√‘𝑛)) · ((√‘(𝑛 − 1)) · (√‘(𝑛 − 1)))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · ((√‘𝑛) · (√‘(𝑛 − 1)))))
8886, 87eqtr3d 2782 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 · (𝑛 − 1)) = (((√‘𝑛) · (√‘(𝑛 − 1))) · ((√‘𝑛) · (√‘(𝑛 − 1)))))
8916rpcnne0d 13108 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘(𝑛 − 1)) ∈ ℂ ∧ (√‘(𝑛 − 1)) ≠ 0))
9019rpcnne0d 13108 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) ∈ ℂ ∧ (√‘𝑛) ≠ 0))
91 divsubdiv 12010 . . . . . . . . . 10 (((2 ∈ ℂ ∧ 2 ∈ ℂ) ∧ (((√‘(𝑛 − 1)) ∈ ℂ ∧ (√‘(𝑛 − 1)) ≠ 0) ∧ ((√‘𝑛) ∈ ℂ ∧ (√‘𝑛) ≠ 0))) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) = (((2 · (√‘𝑛)) − (2 · (√‘(𝑛 − 1)))) / ((√‘(𝑛 − 1)) · (√‘𝑛))))
9268, 68, 89, 90, 91syl22anc 838 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) = (((2 · (√‘𝑛)) − (2 · (√‘(𝑛 − 1)))) / ((√‘(𝑛 − 1)) · (√‘𝑛))))
9368, 52, 61subdid 11746 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) = ((2 · (√‘𝑛)) − (2 · (√‘(𝑛 − 1)))))
9452, 61mulcomd 11311 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘(𝑛 − 1))) = ((√‘(𝑛 − 1)) · (√‘𝑛)))
9593, 94oveq12d 7466 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))) = (((2 · (√‘𝑛)) − (2 · (√‘(𝑛 − 1)))) / ((√‘(𝑛 − 1)) · (√‘𝑛))))
9692, 95eqtr4d 2783 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) = ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))))
9788, 96oveq12d 7466 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))) = ((((√‘𝑛) · (√‘(𝑛 − 1))) · ((√‘𝑛) · (√‘(𝑛 − 1)))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1))))))
9852, 61mulcld 11310 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘(𝑛 − 1))) ∈ ℂ)
9919, 16rpmulcld 13115 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘(𝑛 − 1))) ∈ ℝ+)
10074, 99rerpdivcld 13130 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))) ∈ ℝ)
101100recnd 11318 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))) ∈ ℂ)
10298, 98, 101mulassd 11313 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((((√‘𝑛) · (√‘(𝑛 − 1))) · ((√‘𝑛) · (√‘(𝑛 − 1)))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1))))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · (((√‘𝑛) · (√‘(𝑛 − 1))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))))))
10399rpne0d 13104 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘(𝑛 − 1))) ≠ 0)
10479, 98, 103divcan2d 12072 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (√‘(𝑛 − 1))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1))))) = (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))))
105104oveq2d 7464 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (√‘(𝑛 − 1))) · (((√‘𝑛) · (√‘(𝑛 − 1))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
10697, 102, 1053eqtrd 2784 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
10781, 106breqtrrd 5194 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ≤ ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))))
1087, 25, 30, 39, 107letrd 11447 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘𝑛) ≤ ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))))
10911nngt0d 12342 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 0 < (𝑛 · (𝑛 − 1)))
110 ledivmul 12171 . . . . 5 (((log‘𝑛) ∈ ℝ ∧ ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ∈ ℝ ∧ ((𝑛 · (𝑛 − 1)) ∈ ℝ ∧ 0 < (𝑛 · (𝑛 − 1)))) → (((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ↔ (log‘𝑛) ≤ ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))))
1117, 22, 29, 109, 110syl112anc 1374 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ↔ (log‘𝑛) ≤ ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))))
112108, 111mpbird 257 . . 3 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))
1131, 12, 22, 112fsumle 15847 . 2 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))
114 fvoveq1 7471 . . . . . 6 (𝑘 = 𝑛 → (√‘(𝑘 − 1)) = (√‘(𝑛 − 1)))
115114oveq2d 7464 . . . . 5 (𝑘 = 𝑛 → (2 / (√‘(𝑘 − 1))) = (2 / (√‘(𝑛 − 1))))
116 fvoveq1 7471 . . . . . 6 (𝑘 = (𝑛 + 1) → (√‘(𝑘 − 1)) = (√‘((𝑛 + 1) − 1)))
117116oveq2d 7464 . . . . 5 (𝑘 = (𝑛 + 1) → (2 / (√‘(𝑘 − 1))) = (2 / (√‘((𝑛 + 1) − 1))))
118 oveq1 7455 . . . . . . . . . 10 (𝑘 = 2 → (𝑘 − 1) = (2 − 1))
119 2m1e1 12419 . . . . . . . . . 10 (2 − 1) = 1
120118, 119eqtrdi 2796 . . . . . . . . 9 (𝑘 = 2 → (𝑘 − 1) = 1)
121120fveq2d 6924 . . . . . . . 8 (𝑘 = 2 → (√‘(𝑘 − 1)) = (√‘1))
122 sqrt1 15320 . . . . . . . 8 (√‘1) = 1
123121, 122eqtrdi 2796 . . . . . . 7 (𝑘 = 2 → (√‘(𝑘 − 1)) = 1)
124123oveq2d 7464 . . . . . 6 (𝑘 = 2 → (2 / (√‘(𝑘 − 1))) = (2 / 1))
12567div1i 12022 . . . . . 6 (2 / 1) = 2
126124, 125eqtrdi 2796 . . . . 5 (𝑘 = 2 → (2 / (√‘(𝑘 − 1))) = 2)
127 fvoveq1 7471 . . . . . 6 (𝑘 = (𝐴 + 1) → (√‘(𝑘 − 1)) = (√‘((𝐴 + 1) − 1)))
128127oveq2d 7464 . . . . 5 (𝑘 = (𝐴 + 1) → (2 / (√‘(𝑘 − 1))) = (2 / (√‘((𝐴 + 1) − 1))))
129 nnz 12660 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
130 eluzp1p1 12931 . . . . . . 7 (𝐴 ∈ (ℤ‘1) → (𝐴 + 1) ∈ (ℤ‘(1 + 1)))
131 nnuz 12946 . . . . . . 7 ℕ = (ℤ‘1)
132130, 131eleq2s 2862 . . . . . 6 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ (ℤ‘(1 + 1)))
133 df-2 12356 . . . . . . 7 2 = (1 + 1)
134133fveq2i 6923 . . . . . 6 (ℤ‘2) = (ℤ‘(1 + 1))
135132, 134eleqtrrdi 2855 . . . . 5 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ (ℤ‘2))
136 elfzuz 13580 . . . . . . . . . . 11 (𝑘 ∈ (2...(𝐴 + 1)) → 𝑘 ∈ (ℤ‘2))
137 uz2m1nn 12988 . . . . . . . . . . 11 (𝑘 ∈ (ℤ‘2) → (𝑘 − 1) ∈ ℕ)
138136, 137syl 17 . . . . . . . . . 10 (𝑘 ∈ (2...(𝐴 + 1)) → (𝑘 − 1) ∈ ℕ)
139138adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (𝑘 − 1) ∈ ℕ)
140139nnrpd 13097 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (𝑘 − 1) ∈ ℝ+)
141140rpsqrtcld 15460 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (√‘(𝑘 − 1)) ∈ ℝ+)
142 rerpdivcl 13087 . . . . . . 7 ((2 ∈ ℝ ∧ (√‘(𝑘 − 1)) ∈ ℝ+) → (2 / (√‘(𝑘 − 1))) ∈ ℝ)
14314, 141, 142sylancr 586 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (2 / (√‘(𝑘 − 1))) ∈ ℝ)
144143recnd 11318 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (2 / (√‘(𝑘 − 1))) ∈ ℂ)
145115, 117, 126, 128, 129, 135, 144telfsum 15852 . . . 4 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘((𝑛 + 1) − 1)))) = (2 − (2 / (√‘((𝐴 + 1) − 1)))))
146 pncan 11542 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
14731, 32, 146sylancl 585 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 + 1) − 1) = 𝑛)
148147fveq2d 6924 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘((𝑛 + 1) − 1)) = (√‘𝑛))
149148oveq2d 7464 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 / (√‘((𝑛 + 1) − 1))) = (2 / (√‘𝑛)))
150149oveq2d 7464 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘((𝑛 + 1) − 1)))) = ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))
151150sumeq2dv 15750 . . . 4 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘((𝑛 + 1) − 1)))) = Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))
152 nncn 12301 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
153 pncan 11542 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
154152, 32, 153sylancl 585 . . . . . . 7 (𝐴 ∈ ℕ → ((𝐴 + 1) − 1) = 𝐴)
155154fveq2d 6924 . . . . . 6 (𝐴 ∈ ℕ → (√‘((𝐴 + 1) − 1)) = (√‘𝐴))
156155oveq2d 7464 . . . . 5 (𝐴 ∈ ℕ → (2 / (√‘((𝐴 + 1) − 1))) = (2 / (√‘𝐴)))
157156oveq2d 7464 . . . 4 (𝐴 ∈ ℕ → (2 − (2 / (√‘((𝐴 + 1) − 1)))) = (2 − (2 / (√‘𝐴))))
158145, 151, 1573eqtr3d 2788 . . 3 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) = (2 − (2 / (√‘𝐴))))
159 2rp 13062 . . . . . 6 2 ∈ ℝ+
160 nnrp 13068 . . . . . . 7 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+)
161160rpsqrtcld 15460 . . . . . 6 (𝐴 ∈ ℕ → (√‘𝐴) ∈ ℝ+)
162 rpdivcl 13082 . . . . . 6 ((2 ∈ ℝ+ ∧ (√‘𝐴) ∈ ℝ+) → (2 / (√‘𝐴)) ∈ ℝ+)
163159, 161, 162sylancr 586 . . . . 5 (𝐴 ∈ ℕ → (2 / (√‘𝐴)) ∈ ℝ+)
164163rpge0d 13103 . . . 4 (𝐴 ∈ ℕ → 0 ≤ (2 / (√‘𝐴)))
165163rpred 13099 . . . . 5 (𝐴 ∈ ℕ → (2 / (√‘𝐴)) ∈ ℝ)
166 subge02 11806 . . . . 5 ((2 ∈ ℝ ∧ (2 / (√‘𝐴)) ∈ ℝ) → (0 ≤ (2 / (√‘𝐴)) ↔ (2 − (2 / (√‘𝐴))) ≤ 2))
16714, 165, 166sylancr 586 . . . 4 (𝐴 ∈ ℕ → (0 ≤ (2 / (√‘𝐴)) ↔ (2 − (2 / (√‘𝐴))) ≤ 2))
168164, 167mpbid 232 . . 3 (𝐴 ∈ ℕ → (2 − (2 / (√‘𝐴))) ≤ 2)
169158, 168eqbrtrd 5188 . 2 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ≤ 2)
17013, 23, 24, 113, 169letrd 11447 1 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  cuz 12903  +crp 13057  ...cfz 13567  cexp 14112  csqrt 15282  Σcsu 15734  logclog 26614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-tan 16119  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-cxp 26617
This theorem is referenced by:  rplogsumlem2  27547
  Copyright terms: Public domain W3C validator