Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nexple Structured version   Visualization version   GIF version

Theorem nexple 32853
Description: A lower bound for an exponentiation. (Contributed by Thierry Arnoux, 19-Aug-2017.)
Assertion
Ref Expression
nexple ((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐴 ≤ (𝐵𝐴))

Proof of Theorem nexple
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 ∈ ℕ) → 𝐴 ∈ ℕ)
2 simpl2 1193 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 ∈ ℕ) → 𝐵 ∈ ℝ)
3 simpl3 1194 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 ∈ ℕ) → 2 ≤ 𝐵)
4 id 22 . . . . . . 7 (𝑘 = 1 → 𝑘 = 1)
5 oveq2 7363 . . . . . . 7 (𝑘 = 1 → (𝐵𝑘) = (𝐵↑1))
64, 5breq12d 5108 . . . . . 6 (𝑘 = 1 → (𝑘 ≤ (𝐵𝑘) ↔ 1 ≤ (𝐵↑1)))
76imbi2d 340 . . . . 5 (𝑘 = 1 → (((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑘 ≤ (𝐵𝑘)) ↔ ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ≤ (𝐵↑1))))
8 id 22 . . . . . . 7 (𝑘 = 𝑛𝑘 = 𝑛)
9 oveq2 7363 . . . . . . 7 (𝑘 = 𝑛 → (𝐵𝑘) = (𝐵𝑛))
108, 9breq12d 5108 . . . . . 6 (𝑘 = 𝑛 → (𝑘 ≤ (𝐵𝑘) ↔ 𝑛 ≤ (𝐵𝑛)))
1110imbi2d 340 . . . . 5 (𝑘 = 𝑛 → (((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑘 ≤ (𝐵𝑘)) ↔ ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑛 ≤ (𝐵𝑛))))
12 id 22 . . . . . . 7 (𝑘 = (𝑛 + 1) → 𝑘 = (𝑛 + 1))
13 oveq2 7363 . . . . . . 7 (𝑘 = (𝑛 + 1) → (𝐵𝑘) = (𝐵↑(𝑛 + 1)))
1412, 13breq12d 5108 . . . . . 6 (𝑘 = (𝑛 + 1) → (𝑘 ≤ (𝐵𝑘) ↔ (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1))))
1514imbi2d 340 . . . . 5 (𝑘 = (𝑛 + 1) → (((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑘 ≤ (𝐵𝑘)) ↔ ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1)))))
16 id 22 . . . . . . 7 (𝑘 = 𝐴𝑘 = 𝐴)
17 oveq2 7363 . . . . . . 7 (𝑘 = 𝐴 → (𝐵𝑘) = (𝐵𝐴))
1816, 17breq12d 5108 . . . . . 6 (𝑘 = 𝐴 → (𝑘 ≤ (𝐵𝑘) ↔ 𝐴 ≤ (𝐵𝐴)))
1918imbi2d 340 . . . . 5 (𝑘 = 𝐴 → (((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑘 ≤ (𝐵𝑘)) ↔ ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐴 ≤ (𝐵𝐴))))
20 simpl 482 . . . . . 6 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐵 ∈ ℝ)
21 1nn0 12408 . . . . . . 7 1 ∈ ℕ0
2221a1i 11 . . . . . 6 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ∈ ℕ0)
23 1red 11124 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ∈ ℝ)
24 2re 12210 . . . . . . . 8 2 ∈ ℝ
2524a1i 11 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 2 ∈ ℝ)
26 1le2 12340 . . . . . . . 8 1 ≤ 2
2726a1i 11 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ≤ 2)
28 simpr 484 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 2 ≤ 𝐵)
2923, 25, 20, 27, 28letrd 11281 . . . . . 6 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ≤ 𝐵)
3020, 22, 29expge1d 14079 . . . . 5 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ≤ (𝐵↑1))
31 simp1 1136 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝑛 ∈ ℕ)
3231nnred 12151 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝑛 ∈ ℝ)
33 1red 11124 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 1 ∈ ℝ)
3432, 33readdcld 11152 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 + 1) ∈ ℝ)
35203ad2ant2 1134 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝐵 ∈ ℝ)
3632, 35remulcld 11153 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 · 𝐵) ∈ ℝ)
3731nnnn0d 12453 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝑛 ∈ ℕ0)
3835, 37reexpcld 14077 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝐵𝑛) ∈ ℝ)
3938, 35remulcld 11153 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → ((𝐵𝑛) · 𝐵) ∈ ℝ)
4024a1i 11 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 2 ∈ ℝ)
4132, 40remulcld 11153 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 · 2) ∈ ℝ)
4231nnge1d 12184 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 1 ≤ 𝑛)
4333, 32, 32, 42leadd2dd 11743 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 + 1) ≤ (𝑛 + 𝑛))
4432recnd 11151 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝑛 ∈ ℂ)
4544times2d 12376 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 · 2) = (𝑛 + 𝑛))
4643, 45breqtrrd 5123 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 + 1) ≤ (𝑛 · 2))
4737nn0ge0d 12456 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 0 ≤ 𝑛)
48 simp2r 1201 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 2 ≤ 𝐵)
4940, 35, 32, 47, 48lemul2ad 12073 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 · 2) ≤ (𝑛 · 𝐵))
5034, 41, 36, 46, 49letrd 11281 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 + 1) ≤ (𝑛 · 𝐵))
51 0red 11126 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 0 ∈ ℝ)
52 0le2 12238 . . . . . . . . . . . . 13 0 ≤ 2
5352a1i 11 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 0 ≤ 2)
5451, 25, 20, 53, 28letrd 11281 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 0 ≤ 𝐵)
55543ad2ant2 1134 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 0 ≤ 𝐵)
56 simp3 1138 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝑛 ≤ (𝐵𝑛))
5732, 38, 35, 55, 56lemul1ad 12072 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 · 𝐵) ≤ ((𝐵𝑛) · 𝐵))
5834, 36, 39, 50, 57letrd 11281 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 + 1) ≤ ((𝐵𝑛) · 𝐵))
5935recnd 11151 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝐵 ∈ ℂ)
6059, 37expp1d 14061 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝐵↑(𝑛 + 1)) = ((𝐵𝑛) · 𝐵))
6158, 60breqtrrd 5123 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1)))
62613exp 1119 . . . . . 6 (𝑛 ∈ ℕ → ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → (𝑛 ≤ (𝐵𝑛) → (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1)))))
6362a2d 29 . . . . 5 (𝑛 ∈ ℕ → (((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑛 ≤ (𝐵𝑛)) → ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1)))))
647, 11, 15, 19, 30, 63nnind 12154 . . . 4 (𝐴 ∈ ℕ → ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐴 ≤ (𝐵𝐴)))
65643impib 1116 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐴 ≤ (𝐵𝐴))
661, 2, 3, 65syl3anc 1373 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 ∈ ℕ) → 𝐴 ≤ (𝐵𝐴))
67 0le1 11651 . . . 4 0 ≤ 1
6867a1i 11 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 0 ≤ 1)
69 simpr 484 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 𝐴 = 0)
7069oveq2d 7371 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → (𝐵𝐴) = (𝐵↑0))
71 simpl2 1193 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 𝐵 ∈ ℝ)
7271recnd 11151 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 𝐵 ∈ ℂ)
7372exp0d 14054 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → (𝐵↑0) = 1)
7470, 73eqtrd 2768 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → (𝐵𝐴) = 1)
7568, 69, 743brtr4d 5127 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 𝐴 ≤ (𝐵𝐴))
76 elnn0 12394 . . . 4 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
7776biimpi 216 . . 3 (𝐴 ∈ ℕ0 → (𝐴 ∈ ℕ ∨ 𝐴 = 0))
78773ad2ant1 1133 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → (𝐴 ∈ ℕ ∨ 𝐴 = 0))
7966, 75, 78mpjaodan 960 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐴 ≤ (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5095  (class class class)co 7355  cr 11016  0cc0 11017  1c1 11018   + caddc 11020   · cmul 11022  cle 11158  cn 12136  2c2 12191  0cn0 12392  cexp 13975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-n0 12393  df-z 12480  df-uz 12743  df-seq 13916  df-exp 13976
This theorem is referenced by:  oddpwdc  34439
  Copyright terms: Public domain W3C validator