Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nexple Structured version   Visualization version   GIF version

Theorem nexple 31877
Description: A lower bound for an exponentiation. (Contributed by Thierry Arnoux, 19-Aug-2017.)
Assertion
Ref Expression
nexple ((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐴 ≤ (𝐵𝐴))

Proof of Theorem nexple
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 ∈ ℕ) → 𝐴 ∈ ℕ)
2 simpl2 1190 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 ∈ ℕ) → 𝐵 ∈ ℝ)
3 simpl3 1191 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 ∈ ℕ) → 2 ≤ 𝐵)
4 id 22 . . . . . . 7 (𝑘 = 1 → 𝑘 = 1)
5 oveq2 7263 . . . . . . 7 (𝑘 = 1 → (𝐵𝑘) = (𝐵↑1))
64, 5breq12d 5083 . . . . . 6 (𝑘 = 1 → (𝑘 ≤ (𝐵𝑘) ↔ 1 ≤ (𝐵↑1)))
76imbi2d 340 . . . . 5 (𝑘 = 1 → (((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑘 ≤ (𝐵𝑘)) ↔ ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ≤ (𝐵↑1))))
8 id 22 . . . . . . 7 (𝑘 = 𝑛𝑘 = 𝑛)
9 oveq2 7263 . . . . . . 7 (𝑘 = 𝑛 → (𝐵𝑘) = (𝐵𝑛))
108, 9breq12d 5083 . . . . . 6 (𝑘 = 𝑛 → (𝑘 ≤ (𝐵𝑘) ↔ 𝑛 ≤ (𝐵𝑛)))
1110imbi2d 340 . . . . 5 (𝑘 = 𝑛 → (((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑘 ≤ (𝐵𝑘)) ↔ ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑛 ≤ (𝐵𝑛))))
12 id 22 . . . . . . 7 (𝑘 = (𝑛 + 1) → 𝑘 = (𝑛 + 1))
13 oveq2 7263 . . . . . . 7 (𝑘 = (𝑛 + 1) → (𝐵𝑘) = (𝐵↑(𝑛 + 1)))
1412, 13breq12d 5083 . . . . . 6 (𝑘 = (𝑛 + 1) → (𝑘 ≤ (𝐵𝑘) ↔ (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1))))
1514imbi2d 340 . . . . 5 (𝑘 = (𝑛 + 1) → (((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑘 ≤ (𝐵𝑘)) ↔ ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1)))))
16 id 22 . . . . . . 7 (𝑘 = 𝐴𝑘 = 𝐴)
17 oveq2 7263 . . . . . . 7 (𝑘 = 𝐴 → (𝐵𝑘) = (𝐵𝐴))
1816, 17breq12d 5083 . . . . . 6 (𝑘 = 𝐴 → (𝑘 ≤ (𝐵𝑘) ↔ 𝐴 ≤ (𝐵𝐴)))
1918imbi2d 340 . . . . 5 (𝑘 = 𝐴 → (((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑘 ≤ (𝐵𝑘)) ↔ ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐴 ≤ (𝐵𝐴))))
20 simpl 482 . . . . . 6 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐵 ∈ ℝ)
21 1nn0 12179 . . . . . . 7 1 ∈ ℕ0
2221a1i 11 . . . . . 6 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ∈ ℕ0)
23 1red 10907 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ∈ ℝ)
24 2re 11977 . . . . . . . 8 2 ∈ ℝ
2524a1i 11 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 2 ∈ ℝ)
26 1le2 12112 . . . . . . . 8 1 ≤ 2
2726a1i 11 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ≤ 2)
28 simpr 484 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 2 ≤ 𝐵)
2923, 25, 20, 27, 28letrd 11062 . . . . . 6 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ≤ 𝐵)
3020, 22, 29expge1d 13811 . . . . 5 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ≤ (𝐵↑1))
31 simp1 1134 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝑛 ∈ ℕ)
3231nnnn0d 12223 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝑛 ∈ ℕ0)
3332nn0red 12224 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝑛 ∈ ℝ)
34 1red 10907 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 1 ∈ ℝ)
3533, 34readdcld 10935 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 + 1) ∈ ℝ)
36203ad2ant2 1132 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝐵 ∈ ℝ)
3733, 36remulcld 10936 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 · 𝐵) ∈ ℝ)
3836, 32reexpcld 13809 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝐵𝑛) ∈ ℝ)
3938, 36remulcld 10936 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → ((𝐵𝑛) · 𝐵) ∈ ℝ)
4024a1i 11 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 2 ∈ ℝ)
4133, 40remulcld 10936 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 · 2) ∈ ℝ)
4231nnge1d 11951 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 1 ≤ 𝑛)
4334, 33, 33, 42leadd2dd 11520 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 + 1) ≤ (𝑛 + 𝑛))
4433recnd 10934 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝑛 ∈ ℂ)
4544times2d 12147 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 · 2) = (𝑛 + 𝑛))
4643, 45breqtrrd 5098 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 + 1) ≤ (𝑛 · 2))
4732nn0ge0d 12226 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 0 ≤ 𝑛)
48 simp2r 1198 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 2 ≤ 𝐵)
4940, 36, 33, 47, 48lemul2ad 11845 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 · 2) ≤ (𝑛 · 𝐵))
5035, 41, 37, 46, 49letrd 11062 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 + 1) ≤ (𝑛 · 𝐵))
51 0red 10909 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 0 ∈ ℝ)
52 0le2 12005 . . . . . . . . . . . . 13 0 ≤ 2
5352a1i 11 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 0 ≤ 2)
5451, 25, 20, 53, 28letrd 11062 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 0 ≤ 𝐵)
55543ad2ant2 1132 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 0 ≤ 𝐵)
56 simp3 1136 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝑛 ≤ (𝐵𝑛))
5733, 38, 36, 55, 56lemul1ad 11844 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 · 𝐵) ≤ ((𝐵𝑛) · 𝐵))
5835, 37, 39, 50, 57letrd 11062 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 + 1) ≤ ((𝐵𝑛) · 𝐵))
5936recnd 10934 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝐵 ∈ ℂ)
6059, 32expp1d 13793 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝐵↑(𝑛 + 1)) = ((𝐵𝑛) · 𝐵))
6158, 60breqtrrd 5098 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1)))
62613exp 1117 . . . . . 6 (𝑛 ∈ ℕ → ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → (𝑛 ≤ (𝐵𝑛) → (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1)))))
6362a2d 29 . . . . 5 (𝑛 ∈ ℕ → (((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑛 ≤ (𝐵𝑛)) → ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1)))))
647, 11, 15, 19, 30, 63nnind 11921 . . . 4 (𝐴 ∈ ℕ → ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐴 ≤ (𝐵𝐴)))
65643impib 1114 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐴 ≤ (𝐵𝐴))
661, 2, 3, 65syl3anc 1369 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 ∈ ℕ) → 𝐴 ≤ (𝐵𝐴))
67 0le1 11428 . . . 4 0 ≤ 1
6867a1i 11 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 0 ≤ 1)
69 simpr 484 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 𝐴 = 0)
7069oveq2d 7271 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → (𝐵𝐴) = (𝐵↑0))
71 simpl2 1190 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 𝐵 ∈ ℝ)
7271recnd 10934 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 𝐵 ∈ ℂ)
7372exp0d 13786 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → (𝐵↑0) = 1)
7470, 73eqtrd 2778 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → (𝐵𝐴) = 1)
7568, 69, 743brtr4d 5102 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 𝐴 ≤ (𝐵𝐴))
76 elnn0 12165 . . . 4 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
7776biimpi 215 . . 3 (𝐴 ∈ ℕ0 → (𝐴 ∈ ℕ ∨ 𝐴 = 0))
78773ad2ant1 1131 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → (𝐴 ∈ ℕ ∨ 𝐴 = 0))
7966, 75, 78mpjaodan 955 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐴 ≤ (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cle 10941  cn 11903  2c2 11958  0cn0 12163  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-exp 13711
This theorem is referenced by:  oddpwdc  32221
  Copyright terms: Public domain W3C validator