Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nexple Structured version   Visualization version   GIF version

Theorem nexple 31643
Description: A lower bound for an exponentiation. (Contributed by Thierry Arnoux, 19-Aug-2017.)
Assertion
Ref Expression
nexple ((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐴 ≤ (𝐵𝐴))

Proof of Theorem nexple
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 ∈ ℕ) → 𝐴 ∈ ℕ)
2 simpl2 1194 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 ∈ ℕ) → 𝐵 ∈ ℝ)
3 simpl3 1195 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 ∈ ℕ) → 2 ≤ 𝐵)
4 id 22 . . . . . . 7 (𝑘 = 1 → 𝑘 = 1)
5 oveq2 7199 . . . . . . 7 (𝑘 = 1 → (𝐵𝑘) = (𝐵↑1))
64, 5breq12d 5052 . . . . . 6 (𝑘 = 1 → (𝑘 ≤ (𝐵𝑘) ↔ 1 ≤ (𝐵↑1)))
76imbi2d 344 . . . . 5 (𝑘 = 1 → (((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑘 ≤ (𝐵𝑘)) ↔ ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ≤ (𝐵↑1))))
8 id 22 . . . . . . 7 (𝑘 = 𝑛𝑘 = 𝑛)
9 oveq2 7199 . . . . . . 7 (𝑘 = 𝑛 → (𝐵𝑘) = (𝐵𝑛))
108, 9breq12d 5052 . . . . . 6 (𝑘 = 𝑛 → (𝑘 ≤ (𝐵𝑘) ↔ 𝑛 ≤ (𝐵𝑛)))
1110imbi2d 344 . . . . 5 (𝑘 = 𝑛 → (((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑘 ≤ (𝐵𝑘)) ↔ ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑛 ≤ (𝐵𝑛))))
12 id 22 . . . . . . 7 (𝑘 = (𝑛 + 1) → 𝑘 = (𝑛 + 1))
13 oveq2 7199 . . . . . . 7 (𝑘 = (𝑛 + 1) → (𝐵𝑘) = (𝐵↑(𝑛 + 1)))
1412, 13breq12d 5052 . . . . . 6 (𝑘 = (𝑛 + 1) → (𝑘 ≤ (𝐵𝑘) ↔ (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1))))
1514imbi2d 344 . . . . 5 (𝑘 = (𝑛 + 1) → (((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑘 ≤ (𝐵𝑘)) ↔ ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1)))))
16 id 22 . . . . . . 7 (𝑘 = 𝐴𝑘 = 𝐴)
17 oveq2 7199 . . . . . . 7 (𝑘 = 𝐴 → (𝐵𝑘) = (𝐵𝐴))
1816, 17breq12d 5052 . . . . . 6 (𝑘 = 𝐴 → (𝑘 ≤ (𝐵𝑘) ↔ 𝐴 ≤ (𝐵𝐴)))
1918imbi2d 344 . . . . 5 (𝑘 = 𝐴 → (((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑘 ≤ (𝐵𝑘)) ↔ ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐴 ≤ (𝐵𝐴))))
20 simpl 486 . . . . . 6 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐵 ∈ ℝ)
21 1nn0 12071 . . . . . . 7 1 ∈ ℕ0
2221a1i 11 . . . . . 6 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ∈ ℕ0)
23 1red 10799 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ∈ ℝ)
24 2re 11869 . . . . . . . 8 2 ∈ ℝ
2524a1i 11 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 2 ∈ ℝ)
26 1le2 12004 . . . . . . . 8 1 ≤ 2
2726a1i 11 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ≤ 2)
28 simpr 488 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 2 ≤ 𝐵)
2923, 25, 20, 27, 28letrd 10954 . . . . . 6 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ≤ 𝐵)
3020, 22, 29expge1d 13700 . . . . 5 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ≤ (𝐵↑1))
31 simp1 1138 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝑛 ∈ ℕ)
3231nnnn0d 12115 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝑛 ∈ ℕ0)
3332nn0red 12116 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝑛 ∈ ℝ)
34 1red 10799 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 1 ∈ ℝ)
3533, 34readdcld 10827 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 + 1) ∈ ℝ)
36203ad2ant2 1136 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝐵 ∈ ℝ)
3733, 36remulcld 10828 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 · 𝐵) ∈ ℝ)
3836, 32reexpcld 13698 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝐵𝑛) ∈ ℝ)
3938, 36remulcld 10828 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → ((𝐵𝑛) · 𝐵) ∈ ℝ)
4024a1i 11 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 2 ∈ ℝ)
4133, 40remulcld 10828 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 · 2) ∈ ℝ)
4231nnge1d 11843 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 1 ≤ 𝑛)
4334, 33, 33, 42leadd2dd 11412 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 + 1) ≤ (𝑛 + 𝑛))
4433recnd 10826 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝑛 ∈ ℂ)
4544times2d 12039 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 · 2) = (𝑛 + 𝑛))
4643, 45breqtrrd 5067 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 + 1) ≤ (𝑛 · 2))
4732nn0ge0d 12118 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 0 ≤ 𝑛)
48 simp2r 1202 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 2 ≤ 𝐵)
4940, 36, 33, 47, 48lemul2ad 11737 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 · 2) ≤ (𝑛 · 𝐵))
5035, 41, 37, 46, 49letrd 10954 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 + 1) ≤ (𝑛 · 𝐵))
51 0red 10801 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 0 ∈ ℝ)
52 0le2 11897 . . . . . . . . . . . . 13 0 ≤ 2
5352a1i 11 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 0 ≤ 2)
5451, 25, 20, 53, 28letrd 10954 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 0 ≤ 𝐵)
55543ad2ant2 1136 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 0 ≤ 𝐵)
56 simp3 1140 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝑛 ≤ (𝐵𝑛))
5733, 38, 36, 55, 56lemul1ad 11736 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 · 𝐵) ≤ ((𝐵𝑛) · 𝐵))
5835, 37, 39, 50, 57letrd 10954 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 + 1) ≤ ((𝐵𝑛) · 𝐵))
5936recnd 10826 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝐵 ∈ ℂ)
6059, 32expp1d 13682 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝐵↑(𝑛 + 1)) = ((𝐵𝑛) · 𝐵))
6158, 60breqtrrd 5067 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1)))
62613exp 1121 . . . . . 6 (𝑛 ∈ ℕ → ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → (𝑛 ≤ (𝐵𝑛) → (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1)))))
6362a2d 29 . . . . 5 (𝑛 ∈ ℕ → (((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑛 ≤ (𝐵𝑛)) → ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1)))))
647, 11, 15, 19, 30, 63nnind 11813 . . . 4 (𝐴 ∈ ℕ → ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐴 ≤ (𝐵𝐴)))
65643impib 1118 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐴 ≤ (𝐵𝐴))
661, 2, 3, 65syl3anc 1373 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 ∈ ℕ) → 𝐴 ≤ (𝐵𝐴))
67 0le1 11320 . . . 4 0 ≤ 1
6867a1i 11 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 0 ≤ 1)
69 simpr 488 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 𝐴 = 0)
7069oveq2d 7207 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → (𝐵𝐴) = (𝐵↑0))
71 simpl2 1194 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 𝐵 ∈ ℝ)
7271recnd 10826 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 𝐵 ∈ ℂ)
7372exp0d 13675 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → (𝐵↑0) = 1)
7470, 73eqtrd 2771 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → (𝐵𝐴) = 1)
7568, 69, 743brtr4d 5071 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 𝐴 ≤ (𝐵𝐴))
76 elnn0 12057 . . . 4 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
7776biimpi 219 . . 3 (𝐴 ∈ ℕ0 → (𝐴 ∈ ℕ ∨ 𝐴 = 0))
78773ad2ant1 1135 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → (𝐴 ∈ ℕ ∨ 𝐴 = 0))
7966, 75, 78mpjaodan 959 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐴 ≤ (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2112   class class class wbr 5039  (class class class)co 7191  cr 10693  0cc0 10694  1c1 10695   + caddc 10697   · cmul 10699  cle 10833  cn 11795  2c2 11850  0cn0 12055  cexp 13600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-n0 12056  df-z 12142  df-uz 12404  df-seq 13540  df-exp 13601
This theorem is referenced by:  oddpwdc  31987
  Copyright terms: Public domain W3C validator