Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . 3
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈ ℝ
∧ 2 ≤ 𝐵) ∧ 𝐴 ∈ ℕ) → 𝐴 ∈
ℕ) |
2 | | simpl2 1190 |
. . 3
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈ ℝ
∧ 2 ≤ 𝐵) ∧ 𝐴 ∈ ℕ) → 𝐵 ∈
ℝ) |
3 | | simpl3 1191 |
. . 3
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈ ℝ
∧ 2 ≤ 𝐵) ∧ 𝐴 ∈ ℕ) → 2 ≤
𝐵) |
4 | | id 22 |
. . . . . . 7
⊢ (𝑘 = 1 → 𝑘 = 1) |
5 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑘 = 1 → (𝐵↑𝑘) = (𝐵↑1)) |
6 | 4, 5 | breq12d 5083 |
. . . . . 6
⊢ (𝑘 = 1 → (𝑘 ≤ (𝐵↑𝑘) ↔ 1 ≤ (𝐵↑1))) |
7 | 6 | imbi2d 340 |
. . . . 5
⊢ (𝑘 = 1 → (((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑘 ≤ (𝐵↑𝑘)) ↔ ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ≤ (𝐵↑1)))) |
8 | | id 22 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → 𝑘 = 𝑛) |
9 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → (𝐵↑𝑘) = (𝐵↑𝑛)) |
10 | 8, 9 | breq12d 5083 |
. . . . . 6
⊢ (𝑘 = 𝑛 → (𝑘 ≤ (𝐵↑𝑘) ↔ 𝑛 ≤ (𝐵↑𝑛))) |
11 | 10 | imbi2d 340 |
. . . . 5
⊢ (𝑘 = 𝑛 → (((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑘 ≤ (𝐵↑𝑘)) ↔ ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑛 ≤ (𝐵↑𝑛)))) |
12 | | id 22 |
. . . . . . 7
⊢ (𝑘 = (𝑛 + 1) → 𝑘 = (𝑛 + 1)) |
13 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑘 = (𝑛 + 1) → (𝐵↑𝑘) = (𝐵↑(𝑛 + 1))) |
14 | 12, 13 | breq12d 5083 |
. . . . . 6
⊢ (𝑘 = (𝑛 + 1) → (𝑘 ≤ (𝐵↑𝑘) ↔ (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1)))) |
15 | 14 | imbi2d 340 |
. . . . 5
⊢ (𝑘 = (𝑛 + 1) → (((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑘 ≤ (𝐵↑𝑘)) ↔ ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1))))) |
16 | | id 22 |
. . . . . . 7
⊢ (𝑘 = 𝐴 → 𝑘 = 𝐴) |
17 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑘 = 𝐴 → (𝐵↑𝑘) = (𝐵↑𝐴)) |
18 | 16, 17 | breq12d 5083 |
. . . . . 6
⊢ (𝑘 = 𝐴 → (𝑘 ≤ (𝐵↑𝑘) ↔ 𝐴 ≤ (𝐵↑𝐴))) |
19 | 18 | imbi2d 340 |
. . . . 5
⊢ (𝑘 = 𝐴 → (((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑘 ≤ (𝐵↑𝑘)) ↔ ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐴 ≤ (𝐵↑𝐴)))) |
20 | | simpl 482 |
. . . . . 6
⊢ ((𝐵 ∈ ℝ ∧ 2 ≤
𝐵) → 𝐵 ∈ ℝ) |
21 | | 1nn0 12179 |
. . . . . . 7
⊢ 1 ∈
ℕ0 |
22 | 21 | a1i 11 |
. . . . . 6
⊢ ((𝐵 ∈ ℝ ∧ 2 ≤
𝐵) → 1 ∈
ℕ0) |
23 | | 1red 10907 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ 2 ≤
𝐵) → 1 ∈
ℝ) |
24 | | 2re 11977 |
. . . . . . . 8
⊢ 2 ∈
ℝ |
25 | 24 | a1i 11 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ 2 ≤
𝐵) → 2 ∈
ℝ) |
26 | | 1le2 12112 |
. . . . . . . 8
⊢ 1 ≤
2 |
27 | 26 | a1i 11 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ 2 ≤
𝐵) → 1 ≤
2) |
28 | | simpr 484 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ 2 ≤
𝐵) → 2 ≤ 𝐵) |
29 | 23, 25, 20, 27, 28 | letrd 11062 |
. . . . . 6
⊢ ((𝐵 ∈ ℝ ∧ 2 ≤
𝐵) → 1 ≤ 𝐵) |
30 | 20, 22, 29 | expge1d 13811 |
. . . . 5
⊢ ((𝐵 ∈ ℝ ∧ 2 ≤
𝐵) → 1 ≤ (𝐵↑1)) |
31 | | simp1 1134 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → 𝑛 ∈ ℕ) |
32 | 31 | nnnn0d 12223 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → 𝑛 ∈ ℕ0) |
33 | 32 | nn0red 12224 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → 𝑛 ∈ ℝ) |
34 | | 1red 10907 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → 1 ∈ ℝ) |
35 | 33, 34 | readdcld 10935 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → (𝑛 + 1) ∈ ℝ) |
36 | 20 | 3ad2ant2 1132 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → 𝐵 ∈ ℝ) |
37 | 33, 36 | remulcld 10936 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → (𝑛 · 𝐵) ∈ ℝ) |
38 | 36, 32 | reexpcld 13809 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → (𝐵↑𝑛) ∈ ℝ) |
39 | 38, 36 | remulcld 10936 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → ((𝐵↑𝑛) · 𝐵) ∈ ℝ) |
40 | 24 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → 2 ∈ ℝ) |
41 | 33, 40 | remulcld 10936 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → (𝑛 · 2) ∈ ℝ) |
42 | 31 | nnge1d 11951 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → 1 ≤ 𝑛) |
43 | 34, 33, 33, 42 | leadd2dd 11520 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → (𝑛 + 1) ≤ (𝑛 + 𝑛)) |
44 | 33 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → 𝑛 ∈ ℂ) |
45 | 44 | times2d 12147 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → (𝑛 · 2) = (𝑛 + 𝑛)) |
46 | 43, 45 | breqtrrd 5098 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → (𝑛 + 1) ≤ (𝑛 · 2)) |
47 | 32 | nn0ge0d 12226 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → 0 ≤ 𝑛) |
48 | | simp2r 1198 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → 2 ≤ 𝐵) |
49 | 40, 36, 33, 47, 48 | lemul2ad 11845 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → (𝑛 · 2) ≤ (𝑛 · 𝐵)) |
50 | 35, 41, 37, 46, 49 | letrd 11062 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → (𝑛 + 1) ≤ (𝑛 · 𝐵)) |
51 | | 0red 10909 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℝ ∧ 2 ≤
𝐵) → 0 ∈
ℝ) |
52 | | 0le2 12005 |
. . . . . . . . . . . . 13
⊢ 0 ≤
2 |
53 | 52 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℝ ∧ 2 ≤
𝐵) → 0 ≤
2) |
54 | 51, 25, 20, 53, 28 | letrd 11062 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℝ ∧ 2 ≤
𝐵) → 0 ≤ 𝐵) |
55 | 54 | 3ad2ant2 1132 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → 0 ≤ 𝐵) |
56 | | simp3 1136 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → 𝑛 ≤ (𝐵↑𝑛)) |
57 | 33, 38, 36, 55, 56 | lemul1ad 11844 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → (𝑛 · 𝐵) ≤ ((𝐵↑𝑛) · 𝐵)) |
58 | 35, 37, 39, 50, 57 | letrd 11062 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → (𝑛 + 1) ≤ ((𝐵↑𝑛) · 𝐵)) |
59 | 36 | recnd 10934 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → 𝐵 ∈ ℂ) |
60 | 59, 32 | expp1d 13793 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → (𝐵↑(𝑛 + 1)) = ((𝐵↑𝑛) · 𝐵)) |
61 | 58, 60 | breqtrrd 5098 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤
𝐵) ∧ 𝑛 ≤ (𝐵↑𝑛)) → (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1))) |
62 | 61 | 3exp 1117 |
. . . . . 6
⊢ (𝑛 ∈ ℕ → ((𝐵 ∈ ℝ ∧ 2 ≤
𝐵) → (𝑛 ≤ (𝐵↑𝑛) → (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1))))) |
63 | 62 | a2d 29 |
. . . . 5
⊢ (𝑛 ∈ ℕ → (((𝐵 ∈ ℝ ∧ 2 ≤
𝐵) → 𝑛 ≤ (𝐵↑𝑛)) → ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1))))) |
64 | 7, 11, 15, 19, 30, 63 | nnind 11921 |
. . . 4
⊢ (𝐴 ∈ ℕ → ((𝐵 ∈ ℝ ∧ 2 ≤
𝐵) → 𝐴 ≤ (𝐵↑𝐴))) |
65 | 64 | 3impib 1114 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ ∧ 2 ≤
𝐵) → 𝐴 ≤ (𝐵↑𝐴)) |
66 | 1, 2, 3, 65 | syl3anc 1369 |
. 2
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈ ℝ
∧ 2 ≤ 𝐵) ∧ 𝐴 ∈ ℕ) → 𝐴 ≤ (𝐵↑𝐴)) |
67 | | 0le1 11428 |
. . . 4
⊢ 0 ≤
1 |
68 | 67 | a1i 11 |
. . 3
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈ ℝ
∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 0 ≤
1) |
69 | | simpr 484 |
. . 3
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈ ℝ
∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 𝐴 = 0) |
70 | 69 | oveq2d 7271 |
. . . 4
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈ ℝ
∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → (𝐵↑𝐴) = (𝐵↑0)) |
71 | | simpl2 1190 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈ ℝ
∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 𝐵 ∈ ℝ) |
72 | 71 | recnd 10934 |
. . . . 5
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈ ℝ
∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 𝐵 ∈ ℂ) |
73 | 72 | exp0d 13786 |
. . . 4
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈ ℝ
∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → (𝐵↑0) = 1) |
74 | 70, 73 | eqtrd 2778 |
. . 3
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈ ℝ
∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → (𝐵↑𝐴) = 1) |
75 | 68, 69, 74 | 3brtr4d 5102 |
. 2
⊢ (((𝐴 ∈ ℕ0
∧ 𝐵 ∈ ℝ
∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 𝐴 ≤ (𝐵↑𝐴)) |
76 | | elnn0 12165 |
. . . 4
⊢ (𝐴 ∈ ℕ0
↔ (𝐴 ∈ ℕ
∨ 𝐴 =
0)) |
77 | 76 | biimpi 215 |
. . 3
⊢ (𝐴 ∈ ℕ0
→ (𝐴 ∈ ℕ
∨ 𝐴 =
0)) |
78 | 77 | 3ad2ant1 1131 |
. 2
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈ ℝ
∧ 2 ≤ 𝐵) →
(𝐴 ∈ ℕ ∨
𝐴 = 0)) |
79 | 66, 75, 78 | mpjaodan 955 |
1
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈ ℝ
∧ 2 ≤ 𝐵) →
𝐴 ≤ (𝐵↑𝐴)) |