Step | Hyp | Ref
| Expression |
1 | | oveq1 6917 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → (𝑥 + 1) = (0 + 1)) |
2 | | 0p1e1 11487 |
. . . . . . . . . . 11
⊢ (0 + 1) =
1 |
3 | 1, 2 | syl6eq 2877 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → (𝑥 + 1) = 1) |
4 | 3 | oveq2d 6926 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (2↑(𝑥 + 1)) =
(2↑1)) |
5 | | 2cn 11433 |
. . . . . . . . . . 11
⊢ 2 ∈
ℂ |
6 | | exp1 13167 |
. . . . . . . . . . 11
⊢ (2 ∈
ℂ → (2↑1) = 2) |
7 | 5, 6 | ax-mp 5 |
. . . . . . . . . 10
⊢
(2↑1) = 2 |
8 | | df-2 11421 |
. . . . . . . . . 10
⊢ 2 = (1 +
1) |
9 | 7, 8 | eqtri 2849 |
. . . . . . . . 9
⊢
(2↑1) = (1 + 1) |
10 | 4, 9 | syl6eq 2877 |
. . . . . . . 8
⊢ (𝑥 = 0 → (2↑(𝑥 + 1)) = (1 +
1)) |
11 | 10 | oveq1d 6925 |
. . . . . . 7
⊢ (𝑥 = 0 → ((2↑(𝑥 + 1)) − 1) = ((1 + 1)
− 1)) |
12 | | ax-1cn 10317 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
13 | 12, 12 | pncan3oi 10625 |
. . . . . . 7
⊢ ((1 + 1)
− 1) = 1 |
14 | 11, 13 | syl6eq 2877 |
. . . . . 6
⊢ (𝑥 = 0 → ((2↑(𝑥 + 1)) − 1) =
1) |
15 | 14 | fveq2d 6441 |
. . . . 5
⊢ (𝑥 = 0 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + ,
𝐹)‘1)) |
16 | | fveq2 6437 |
. . . . 5
⊢ (𝑥 = 0 → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘0)) |
17 | 15, 16 | breq12d 4888 |
. . . 4
⊢ (𝑥 = 0 → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( +
, 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘1) ≤ (seq0( + , 𝐺)‘0))) |
18 | 17 | imbi2d 332 |
. . 3
⊢ (𝑥 = 0 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘1) ≤ (seq0( + , 𝐺)‘0)))) |
19 | | oveq1 6917 |
. . . . . . 7
⊢ (𝑥 = 𝑗 → (𝑥 + 1) = (𝑗 + 1)) |
20 | 19 | oveq2d 6926 |
. . . . . 6
⊢ (𝑥 = 𝑗 → (2↑(𝑥 + 1)) = (2↑(𝑗 + 1))) |
21 | 20 | fvoveq1d 6932 |
. . . . 5
⊢ (𝑥 = 𝑗 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) −
1))) |
22 | | fveq2 6437 |
. . . . 5
⊢ (𝑥 = 𝑗 → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘𝑗)) |
23 | 21, 22 | breq12d 4888 |
. . . 4
⊢ (𝑥 = 𝑗 → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗))) |
24 | 23 | imbi2d 332 |
. . 3
⊢ (𝑥 = 𝑗 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗)))) |
25 | | oveq1 6917 |
. . . . . . 7
⊢ (𝑥 = (𝑗 + 1) → (𝑥 + 1) = ((𝑗 + 1) + 1)) |
26 | 25 | oveq2d 6926 |
. . . . . 6
⊢ (𝑥 = (𝑗 + 1) → (2↑(𝑥 + 1)) = (2↑((𝑗 + 1) + 1))) |
27 | 26 | fvoveq1d 6932 |
. . . . 5
⊢ (𝑥 = (𝑗 + 1) → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) −
1))) |
28 | | fveq2 6437 |
. . . . 5
⊢ (𝑥 = (𝑗 + 1) → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘(𝑗 + 1))) |
29 | 27, 28 | breq12d 4888 |
. . . 4
⊢ (𝑥 = (𝑗 + 1) → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1)))) |
30 | 29 | imbi2d 332 |
. . 3
⊢ (𝑥 = (𝑗 + 1) → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1))))) |
31 | | oveq1 6917 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (𝑥 + 1) = (𝑁 + 1)) |
32 | 31 | oveq2d 6926 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (2↑(𝑥 + 1)) = (2↑(𝑁 + 1))) |
33 | 32 | fvoveq1d 6932 |
. . . . 5
⊢ (𝑥 = 𝑁 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) −
1))) |
34 | | fveq2 6437 |
. . . . 5
⊢ (𝑥 = 𝑁 → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘𝑁)) |
35 | 33, 34 | breq12d 4888 |
. . . 4
⊢ (𝑥 = 𝑁 → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁))) |
36 | 35 | imbi2d 332 |
. . 3
⊢ (𝑥 = 𝑁 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁)))) |
37 | | fveq2 6437 |
. . . . . . . 8
⊢ (𝑘 = 1 → (𝐹‘𝑘) = (𝐹‘1)) |
38 | 37 | eleq1d 2891 |
. . . . . . 7
⊢ (𝑘 = 1 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘1) ∈ ℝ)) |
39 | | climcnds.1 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) |
40 | 39 | ralrimiva 3175 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝐹‘𝑘) ∈ ℝ) |
41 | | 1nn 11370 |
. . . . . . . 8
⊢ 1 ∈
ℕ |
42 | 41 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℕ) |
43 | 38, 40, 42 | rspcdva 3532 |
. . . . . 6
⊢ (𝜑 → (𝐹‘1) ∈ ℝ) |
44 | 43 | leidd 10925 |
. . . . 5
⊢ (𝜑 → (𝐹‘1) ≤ (𝐹‘1)) |
45 | 43 | recnd 10392 |
. . . . . 6
⊢ (𝜑 → (𝐹‘1) ∈ ℂ) |
46 | 45 | mulid2d 10382 |
. . . . 5
⊢ (𝜑 → (1 · (𝐹‘1)) = (𝐹‘1)) |
47 | 44, 46 | breqtrrd 4903 |
. . . 4
⊢ (𝜑 → (𝐹‘1) ≤ (1 · (𝐹‘1))) |
48 | | 1z 11742 |
. . . . 5
⊢ 1 ∈
ℤ |
49 | | eqidd 2826 |
. . . . 5
⊢ (𝜑 → (𝐹‘1) = (𝐹‘1)) |
50 | 48, 49 | seq1i 13116 |
. . . 4
⊢ (𝜑 → (seq1( + , 𝐹)‘1) = (𝐹‘1)) |
51 | | 0z 11722 |
. . . . 5
⊢ 0 ∈
ℤ |
52 | | fveq2 6437 |
. . . . . . 7
⊢ (𝑛 = 0 → (𝐺‘𝑛) = (𝐺‘0)) |
53 | | oveq2 6918 |
. . . . . . . . 9
⊢ (𝑛 = 0 → (2↑𝑛) = (2↑0)) |
54 | | exp0 13165 |
. . . . . . . . . 10
⊢ (2 ∈
ℂ → (2↑0) = 1) |
55 | 5, 54 | ax-mp 5 |
. . . . . . . . 9
⊢
(2↑0) = 1 |
56 | 53, 55 | syl6eq 2877 |
. . . . . . . 8
⊢ (𝑛 = 0 → (2↑𝑛) = 1) |
57 | 56 | fveq2d 6441 |
. . . . . . . 8
⊢ (𝑛 = 0 → (𝐹‘(2↑𝑛)) = (𝐹‘1)) |
58 | 56, 57 | oveq12d 6928 |
. . . . . . 7
⊢ (𝑛 = 0 → ((2↑𝑛) · (𝐹‘(2↑𝑛))) = (1 · (𝐹‘1))) |
59 | 52, 58 | eqeq12d 2840 |
. . . . . 6
⊢ (𝑛 = 0 → ((𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) ↔ (𝐺‘0) = (1 · (𝐹‘1)))) |
60 | | climcnds.4 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛)))) |
61 | 60 | ralrimiva 3175 |
. . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ ℕ0 (𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛)))) |
62 | | 0nn0 11642 |
. . . . . . 7
⊢ 0 ∈
ℕ0 |
63 | 62 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℕ0) |
64 | 59, 61, 63 | rspcdva 3532 |
. . . . 5
⊢ (𝜑 → (𝐺‘0) = (1 · (𝐹‘1))) |
65 | 51, 64 | seq1i 13116 |
. . . 4
⊢ (𝜑 → (seq0( + , 𝐺)‘0) = (1 · (𝐹‘1))) |
66 | 47, 50, 65 | 3brtr4d 4907 |
. . 3
⊢ (𝜑 → (seq1( + , 𝐹)‘1) ≤ (seq0( + , 𝐺)‘0)) |
67 | | fzfid 13074 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑(𝑗 +
1))...((2↑((𝑗 + 1) +
1)) − 1)) ∈ Fin) |
68 | | simpl 476 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝜑) |
69 | 68 | adantr 474 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) →
𝜑) |
70 | | 2nn 11431 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℕ |
71 | | peano2nn0 11667 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ0
→ (𝑗 + 1) ∈
ℕ0) |
72 | 71 | adantl 475 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝑗 + 1) ∈
ℕ0) |
73 | | nnexpcl 13174 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℕ ∧ (𝑗 +
1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ) |
74 | 70, 72, 73 | sylancr 581 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑(𝑗 + 1)) ∈
ℕ) |
75 | | elfzuz 12638 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) →
𝑘 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) |
76 | | eluznn 12048 |
. . . . . . . . . . 11
⊢
(((2↑(𝑗 + 1))
∈ ℕ ∧ 𝑘
∈ (ℤ≥‘(2↑(𝑗 + 1)))) → 𝑘 ∈ ℕ) |
77 | 74, 75, 76 | syl2an 589 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) →
𝑘 ∈
ℕ) |
78 | 69, 77, 39 | syl2anc 579 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) →
(𝐹‘𝑘) ∈ ℝ) |
79 | | fveq2 6437 |
. . . . . . . . . . . 12
⊢ (𝑘 = (2↑(𝑗 + 1)) → (𝐹‘𝑘) = (𝐹‘(2↑(𝑗 + 1)))) |
80 | 79 | eleq1d 2891 |
. . . . . . . . . . 11
⊢ (𝑘 = (2↑(𝑗 + 1)) → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ)) |
81 | 40 | adantr 474 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
∀𝑘 ∈ ℕ
(𝐹‘𝑘) ∈ ℝ) |
82 | 80, 81, 74 | rspcdva 3532 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘(2↑(𝑗 + 1))) ∈
ℝ) |
83 | 82 | adantr 474 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) →
(𝐹‘(2↑(𝑗 + 1))) ∈
ℝ) |
84 | | simpr 479 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) → 𝑛 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) |
85 | | simplll 791 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...𝑛)) → 𝜑) |
86 | 74 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) → (2↑(𝑗 + 1)) ∈ ℕ) |
87 | | elfzuz 12638 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ((2↑(𝑗 + 1))...𝑛) → 𝑘 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) |
88 | 86, 87, 76 | syl2an 589 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...𝑛)) → 𝑘 ∈ ℕ) |
89 | 85, 88, 39 | syl2anc 579 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...𝑛)) → (𝐹‘𝑘) ∈ ℝ) |
90 | | simplll 791 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1))) → 𝜑) |
91 | | elfzuz 12638 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1)) → 𝑘 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) |
92 | 86, 91, 76 | syl2an 589 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1))) → 𝑘 ∈ ℕ) |
93 | | climcnds.3 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
94 | 90, 92, 93 | syl2anc 579 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
95 | 84, 89, 94 | monoord2 13133 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) → (𝐹‘𝑛) ≤ (𝐹‘(2↑(𝑗 + 1)))) |
96 | 95 | ralrimiva 3175 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
∀𝑛 ∈
(ℤ≥‘(2↑(𝑗 + 1)))(𝐹‘𝑛) ≤ (𝐹‘(2↑(𝑗 + 1)))) |
97 | | fveq2 6437 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) |
98 | 97 | breq1d 4885 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → ((𝐹‘𝑛) ≤ (𝐹‘(2↑(𝑗 + 1))) ↔ (𝐹‘𝑘) ≤ (𝐹‘(2↑(𝑗 + 1))))) |
99 | 98 | rspccva 3525 |
. . . . . . . . . 10
⊢
((∀𝑛 ∈
(ℤ≥‘(2↑(𝑗 + 1)))(𝐹‘𝑛) ≤ (𝐹‘(2↑(𝑗 + 1))) ∧ 𝑘 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) → (𝐹‘𝑘) ≤ (𝐹‘(2↑(𝑗 + 1)))) |
100 | 96, 75, 99 | syl2an 589 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) →
(𝐹‘𝑘) ≤ (𝐹‘(2↑(𝑗 + 1)))) |
101 | 67, 78, 83, 100 | fsumle 14912 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
Σ𝑘 ∈
((2↑(𝑗 +
1))...((2↑((𝑗 + 1) +
1)) − 1))(𝐹‘𝑘) ≤ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1)))) |
102 | | fzfid 13074 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(1...((2↑(𝑗 + 1))
− 1)) ∈ Fin) |
103 | | hashcl 13444 |
. . . . . . . . . . . . 13
⊢
((1...((2↑(𝑗 +
1)) − 1)) ∈ Fin → (♯‘(1...((2↑(𝑗 + 1)) − 1))) ∈
ℕ0) |
104 | 102, 103 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(♯‘(1...((2↑(𝑗 + 1)) − 1))) ∈
ℕ0) |
105 | 104 | nn0cnd 11687 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(♯‘(1...((2↑(𝑗 + 1)) − 1))) ∈
ℂ) |
106 | 74 | nnred 11374 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑(𝑗 + 1)) ∈
ℝ) |
107 | 106 | recnd 10392 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑(𝑗 + 1)) ∈
ℂ) |
108 | | hashcl 13444 |
. . . . . . . . . . . . 13
⊢
(((2↑(𝑗 +
1))...((2↑((𝑗 + 1) +
1)) − 1)) ∈ Fin → (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) ∈
ℕ0) |
109 | 67, 108 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(♯‘((2↑(𝑗
+ 1))...((2↑((𝑗 + 1) +
1)) − 1))) ∈ ℕ0) |
110 | 109 | nn0cnd 11687 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(♯‘((2↑(𝑗
+ 1))...((2↑((𝑗 + 1) +
1)) − 1))) ∈ ℂ) |
111 | | 2z 11744 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℤ |
112 | | zexpcl 13176 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((2
∈ ℤ ∧ (𝑗 +
1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℤ) |
113 | 111, 72, 112 | sylancr 581 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑(𝑗 + 1)) ∈
ℤ) |
114 | | nn0p1nn 11666 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ ℕ0
→ (𝑗 + 1) ∈
ℕ) |
115 | 114 | adantl 475 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝑗 + 1) ∈
ℕ) |
116 | | nnuz 12012 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ℕ =
(ℤ≥‘1) |
117 | 115, 116 | syl6eleq 2916 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝑗 + 1) ∈
(ℤ≥‘1)) |
118 | | 2re 11432 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ∈
ℝ |
119 | | 1le2 11574 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 1 ≤
2 |
120 | | leexp2a 13217 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((2
∈ ℝ ∧ 1 ≤ 2 ∧ (𝑗 + 1) ∈
(ℤ≥‘1)) → (2↑1) ≤ (2↑(𝑗 + 1))) |
121 | 118, 119,
120 | mp3an12 1579 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑗 + 1) ∈
(ℤ≥‘1) → (2↑1) ≤ (2↑(𝑗 + 1))) |
122 | 117, 121 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑1) ≤ (2↑(𝑗
+ 1))) |
123 | 7, 122 | syl5eqbrr 4911 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 2 ≤
(2↑(𝑗 +
1))) |
124 | 111 | eluz1i 11983 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2↑(𝑗 + 1))
∈ (ℤ≥‘2) ↔ ((2↑(𝑗 + 1)) ∈ ℤ ∧ 2 ≤
(2↑(𝑗 +
1)))) |
125 | 113, 123,
124 | sylanbrc 578 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑(𝑗 + 1)) ∈
(ℤ≥‘2)) |
126 | | uz2m1nn 12053 |
. . . . . . . . . . . . . . . . . 18
⊢
((2↑(𝑗 + 1))
∈ (ℤ≥‘2) → ((2↑(𝑗 + 1)) − 1) ∈
ℕ) |
127 | 125, 126 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑(𝑗 + 1)) −
1) ∈ ℕ) |
128 | 127, 116 | syl6eleq 2916 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑(𝑗 + 1)) −
1) ∈ (ℤ≥‘1)) |
129 | | peano2zm 11755 |
. . . . . . . . . . . . . . . . . 18
⊢
((2↑(𝑗 + 1))
∈ ℤ → ((2↑(𝑗 + 1)) − 1) ∈
ℤ) |
130 | 113, 129 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑(𝑗 + 1)) −
1) ∈ ℤ) |
131 | | peano2nn0 11667 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 + 1) ∈ ℕ0
→ ((𝑗 + 1) + 1) ∈
ℕ0) |
132 | 72, 131 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝑗 + 1) + 1) ∈
ℕ0) |
133 | | zexpcl 13176 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((2
∈ ℤ ∧ ((𝑗 +
1) + 1) ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) ∈ ℤ) |
134 | 111, 132,
133 | sylancr 581 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑((𝑗 + 1) + 1))
∈ ℤ) |
135 | | peano2zm 11755 |
. . . . . . . . . . . . . . . . . 18
⊢
((2↑((𝑗 + 1) +
1)) ∈ ℤ → ((2↑((𝑗 + 1) + 1)) − 1) ∈
ℤ) |
136 | 134, 135 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑((𝑗 + 1) + 1))
− 1) ∈ ℤ) |
137 | 113 | zred 11817 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑(𝑗 + 1)) ∈
ℝ) |
138 | 134 | zred 11817 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑((𝑗 + 1) + 1))
∈ ℝ) |
139 | | 1red 10364 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 1 ∈
ℝ) |
140 | 72 | nn0zd 11815 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝑗 + 1) ∈
ℤ) |
141 | | uzid 11990 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 + 1) ∈ ℤ →
(𝑗 + 1) ∈
(ℤ≥‘(𝑗 + 1))) |
142 | | peano2uz 12030 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 + 1) ∈
(ℤ≥‘(𝑗 + 1)) → ((𝑗 + 1) + 1) ∈
(ℤ≥‘(𝑗 + 1))) |
143 | | leexp2a 13217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((2
∈ ℝ ∧ 1 ≤ 2 ∧ ((𝑗 + 1) + 1) ∈
(ℤ≥‘(𝑗 + 1))) → (2↑(𝑗 + 1)) ≤ (2↑((𝑗 + 1) + 1))) |
144 | 118, 119,
143 | mp3an12 1579 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑗 + 1) + 1) ∈
(ℤ≥‘(𝑗 + 1)) → (2↑(𝑗 + 1)) ≤ (2↑((𝑗 + 1) + 1))) |
145 | 140, 141,
142, 144 | 4syl 19 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑(𝑗 + 1)) ≤
(2↑((𝑗 + 1) +
1))) |
146 | 137, 138,
139, 145 | lesub1dd 10975 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑(𝑗 + 1)) −
1) ≤ ((2↑((𝑗 + 1) +
1)) − 1)) |
147 | | eluz2 11981 |
. . . . . . . . . . . . . . . . 17
⊢
(((2↑((𝑗 + 1) +
1)) − 1) ∈ (ℤ≥‘((2↑(𝑗 + 1)) − 1)) ↔
(((2↑(𝑗 + 1)) −
1) ∈ ℤ ∧ ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℤ ∧
((2↑(𝑗 + 1)) −
1) ≤ ((2↑((𝑗 + 1) +
1)) − 1))) |
148 | 130, 136,
146, 147 | syl3anbrc 1447 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑((𝑗 + 1) + 1))
− 1) ∈ (ℤ≥‘((2↑(𝑗 + 1)) − 1))) |
149 | | elfzuzb 12636 |
. . . . . . . . . . . . . . . 16
⊢
(((2↑(𝑗 + 1))
− 1) ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)) ↔
(((2↑(𝑗 + 1)) −
1) ∈ (ℤ≥‘1) ∧ ((2↑((𝑗 + 1) + 1)) − 1) ∈
(ℤ≥‘((2↑(𝑗 + 1)) − 1)))) |
150 | 128, 148,
149 | sylanbrc 578 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑(𝑗 + 1)) −
1) ∈ (1...((2↑((𝑗
+ 1) + 1)) − 1))) |
151 | | fzsplit 12667 |
. . . . . . . . . . . . . . 15
⊢
(((2↑(𝑗 + 1))
− 1) ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)) →
(1...((2↑((𝑗 + 1) +
1)) − 1)) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((((2↑(𝑗 + 1)) − 1) +
1)...((2↑((𝑗 + 1) +
1)) − 1)))) |
152 | 150, 151 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(1...((2↑((𝑗 + 1) +
1)) − 1)) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((((2↑(𝑗 + 1)) − 1) +
1)...((2↑((𝑗 + 1) +
1)) − 1)))) |
153 | | npcan 10618 |
. . . . . . . . . . . . . . . . 17
⊢
(((2↑(𝑗 + 1))
∈ ℂ ∧ 1 ∈ ℂ) → (((2↑(𝑗 + 1)) − 1) + 1) = (2↑(𝑗 + 1))) |
154 | 107, 12, 153 | sylancl 580 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(((2↑(𝑗 + 1)) −
1) + 1) = (2↑(𝑗 +
1))) |
155 | 154 | oveq1d 6925 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((((2↑(𝑗 + 1)) −
1) + 1)...((2↑((𝑗 + 1)
+ 1)) − 1)) = ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) |
156 | 155 | uneq2d 3996 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((1...((2↑(𝑗 + 1))
− 1)) ∪ ((((2↑(𝑗 + 1)) − 1) + 1)...((2↑((𝑗 + 1) + 1)) − 1))) =
((1...((2↑(𝑗 + 1))
− 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))) |
157 | 152, 156 | eqtrd 2861 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(1...((2↑((𝑗 + 1) +
1)) − 1)) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) −
1)))) |
158 | 157 | fveq2d 6441 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(♯‘(1...((2↑((𝑗 + 1) + 1)) − 1))) =
(♯‘((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) −
1))))) |
159 | | expp1 13168 |
. . . . . . . . . . . . . . . . 17
⊢ ((2
∈ ℂ ∧ (𝑗 +
1) ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) = ((2↑(𝑗 + 1)) · 2)) |
160 | 5, 72, 159 | sylancr 581 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑((𝑗 + 1) + 1)) =
((2↑(𝑗 + 1)) ·
2)) |
161 | 107 | times2d 11609 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑(𝑗 + 1)) ·
2) = ((2↑(𝑗 + 1)) +
(2↑(𝑗 +
1)))) |
162 | 160, 161 | eqtrd 2861 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑((𝑗 + 1) + 1)) =
((2↑(𝑗 + 1)) +
(2↑(𝑗 +
1)))) |
163 | 162 | oveq1d 6925 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑((𝑗 + 1) + 1))
− 1) = (((2↑(𝑗 +
1)) + (2↑(𝑗 + 1)))
− 1)) |
164 | | 1cnd 10358 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 1 ∈
ℂ) |
165 | 107, 107,
164 | addsubd 10741 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(((2↑(𝑗 + 1)) +
(2↑(𝑗 + 1))) −
1) = (((2↑(𝑗 + 1))
− 1) + (2↑(𝑗 +
1)))) |
166 | 163, 165 | eqtrd 2861 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑((𝑗 + 1) + 1))
− 1) = (((2↑(𝑗 +
1)) − 1) + (2↑(𝑗
+ 1)))) |
167 | | uztrn 11992 |
. . . . . . . . . . . . . . . . 17
⊢
((((2↑((𝑗 + 1)
+ 1)) − 1) ∈ (ℤ≥‘((2↑(𝑗 + 1)) − 1)) ∧
((2↑(𝑗 + 1)) −
1) ∈ (ℤ≥‘1)) → ((2↑((𝑗 + 1) + 1)) − 1) ∈
(ℤ≥‘1)) |
168 | 148, 128,
167 | syl2anc 579 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑((𝑗 + 1) + 1))
− 1) ∈ (ℤ≥‘1)) |
169 | 168, 116 | syl6eleqr 2917 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑((𝑗 + 1) + 1))
− 1) ∈ ℕ) |
170 | 169 | nnnn0d 11685 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑((𝑗 + 1) + 1))
− 1) ∈ ℕ0) |
171 | | hashfz1 13433 |
. . . . . . . . . . . . . 14
⊢
(((2↑((𝑗 + 1) +
1)) − 1) ∈ ℕ0 →
(♯‘(1...((2↑((𝑗 + 1) + 1)) − 1))) = ((2↑((𝑗 + 1) + 1)) −
1)) |
172 | 170, 171 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(♯‘(1...((2↑((𝑗 + 1) + 1)) − 1))) = ((2↑((𝑗 + 1) + 1)) −
1)) |
173 | 127 | nnnn0d 11685 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑(𝑗 + 1)) −
1) ∈ ℕ0) |
174 | | hashfz1 13433 |
. . . . . . . . . . . . . . 15
⊢
(((2↑(𝑗 + 1))
− 1) ∈ ℕ0 →
(♯‘(1...((2↑(𝑗 + 1)) − 1))) = ((2↑(𝑗 + 1)) −
1)) |
175 | 173, 174 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(♯‘(1...((2↑(𝑗 + 1)) − 1))) = ((2↑(𝑗 + 1)) −
1)) |
176 | 175 | oveq1d 6925 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (2↑(𝑗 + 1))) = (((2↑(𝑗 + 1)) − 1) +
(2↑(𝑗 +
1)))) |
177 | 166, 172,
176 | 3eqtr4d 2871 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(♯‘(1...((2↑((𝑗 + 1) + 1)) − 1))) =
((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (2↑(𝑗 + 1)))) |
178 | 106 | ltm1d 11293 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑(𝑗 + 1)) −
1) < (2↑(𝑗 +
1))) |
179 | | fzdisj 12668 |
. . . . . . . . . . . . . 14
⊢
(((2↑(𝑗 + 1))
− 1) < (2↑(𝑗
+ 1)) → ((1...((2↑(𝑗 + 1)) − 1)) ∩ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) =
∅) |
180 | 178, 179 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((1...((2↑(𝑗 + 1))
− 1)) ∩ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) =
∅) |
181 | | hashun 13468 |
. . . . . . . . . . . . 13
⊢
(((1...((2↑(𝑗 +
1)) − 1)) ∈ Fin ∧ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin ∧
((1...((2↑(𝑗 + 1))
− 1)) ∩ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) = ∅) →
(♯‘((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))) =
((♯‘(1...((2↑(𝑗 + 1)) − 1))) +
(♯‘((2↑(𝑗
+ 1))...((2↑((𝑗 + 1) +
1)) − 1))))) |
182 | 102, 67, 180, 181 | syl3anc 1494 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(♯‘((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))) =
((♯‘(1...((2↑(𝑗 + 1)) − 1))) +
(♯‘((2↑(𝑗
+ 1))...((2↑((𝑗 + 1) +
1)) − 1))))) |
183 | 158, 177,
182 | 3eqtr3d 2869 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (2↑(𝑗 + 1))) =
((♯‘(1...((2↑(𝑗 + 1)) − 1))) +
(♯‘((2↑(𝑗
+ 1))...((2↑((𝑗 + 1) +
1)) − 1))))) |
184 | 105, 107,
110, 183 | addcanad 10567 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑(𝑗 + 1)) =
(♯‘((2↑(𝑗
+ 1))...((2↑((𝑗 + 1) +
1)) − 1)))) |
185 | 184 | oveq1d 6925 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑(𝑗 + 1)) ·
(𝐹‘(2↑(𝑗 + 1)))) =
((♯‘((2↑(𝑗
+ 1))...((2↑((𝑗 + 1) +
1)) − 1))) · (𝐹‘(2↑(𝑗 + 1))))) |
186 | | fveq2 6437 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑗 + 1) → (𝐺‘𝑛) = (𝐺‘(𝑗 + 1))) |
187 | | oveq2 6918 |
. . . . . . . . . . . 12
⊢ (𝑛 = (𝑗 + 1) → (2↑𝑛) = (2↑(𝑗 + 1))) |
188 | 187 | fveq2d 6441 |
. . . . . . . . . . . 12
⊢ (𝑛 = (𝑗 + 1) → (𝐹‘(2↑𝑛)) = (𝐹‘(2↑(𝑗 + 1)))) |
189 | 187, 188 | oveq12d 6928 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑗 + 1) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1))))) |
190 | 186, 189 | eqeq12d 2840 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑗 + 1) → ((𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) ↔ (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))))) |
191 | 61 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
∀𝑛 ∈
ℕ0 (𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛)))) |
192 | 190, 191,
72 | rspcdva 3532 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1))))) |
193 | 82 | recnd 10392 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘(2↑(𝑗 + 1))) ∈
ℂ) |
194 | | fsumconst 14903 |
. . . . . . . . . 10
⊢
((((2↑(𝑗 +
1))...((2↑((𝑗 + 1) +
1)) − 1)) ∈ Fin ∧ (𝐹‘(2↑(𝑗 + 1))) ∈ ℂ) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1))) =
((♯‘((2↑(𝑗
+ 1))...((2↑((𝑗 + 1) +
1)) − 1))) · (𝐹‘(2↑(𝑗 + 1))))) |
195 | 67, 193, 194 | syl2anc 579 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
Σ𝑘 ∈
((2↑(𝑗 +
1))...((2↑((𝑗 + 1) +
1)) − 1))(𝐹‘(2↑(𝑗 + 1))) = ((♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))
· (𝐹‘(2↑(𝑗 + 1))))) |
196 | 185, 192,
195 | 3eqtr4d 2871 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐺‘(𝑗 + 1)) = Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1)))) |
197 | 101, 196 | breqtrrd 4903 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
Σ𝑘 ∈
((2↑(𝑗 +
1))...((2↑((𝑗 + 1) +
1)) − 1))(𝐹‘𝑘) ≤ (𝐺‘(𝑗 + 1))) |
198 | | elfznn 12670 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1)) → 𝑘 ∈
ℕ) |
199 | 68, 198, 39 | syl2an 589 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) →
(𝐹‘𝑘) ∈ ℝ) |
200 | 102, 199 | fsumrecl 14849 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
Σ𝑘 ∈
(1...((2↑(𝑗 + 1))
− 1))(𝐹‘𝑘) ∈
ℝ) |
201 | 67, 78 | fsumrecl 14849 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
Σ𝑘 ∈
((2↑(𝑗 +
1))...((2↑((𝑗 + 1) +
1)) − 1))(𝐹‘𝑘) ∈ ℝ) |
202 | | nn0uz 12011 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
203 | | 0zd 11723 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈
ℤ) |
204 | | simpr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
205 | | nnexpcl 13174 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ ℕ ∧ 𝑛
∈ ℕ0) → (2↑𝑛) ∈ ℕ) |
206 | 70, 204, 205 | sylancr 581 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(2↑𝑛) ∈
ℕ) |
207 | 206 | nnred 11374 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(2↑𝑛) ∈
ℝ) |
208 | | fveq2 6437 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (2↑𝑛) → (𝐹‘𝑘) = (𝐹‘(2↑𝑛))) |
209 | 208 | eleq1d 2891 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (2↑𝑛) → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘(2↑𝑛)) ∈ ℝ)) |
210 | 40 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
∀𝑘 ∈ ℕ
(𝐹‘𝑘) ∈ ℝ) |
211 | 209, 210,
206 | rspcdva 3532 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐹‘(2↑𝑛)) ∈
ℝ) |
212 | 207, 211 | remulcld 10394 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
((2↑𝑛) · (𝐹‘(2↑𝑛))) ∈
ℝ) |
213 | 60, 212 | eqeltrd 2906 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) ∈ ℝ) |
214 | 202, 203,
213 | serfre 13131 |
. . . . . . . . 9
⊢ (𝜑 → seq0( + , 𝐺):ℕ0⟶ℝ) |
215 | 214 | ffvelrnda 6613 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (seq0( +
, 𝐺)‘𝑗) ∈
ℝ) |
216 | 137, 82 | remulcld 10394 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑(𝑗 + 1)) ·
(𝐹‘(2↑(𝑗 + 1)))) ∈
ℝ) |
217 | 192, 216 | eqeltrd 2906 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐺‘(𝑗 + 1)) ∈ ℝ) |
218 | | le2add 10841 |
. . . . . . . 8
⊢
(((Σ𝑘 ∈
(1...((2↑(𝑗 + 1))
− 1))(𝐹‘𝑘) ∈ ℝ ∧
Σ𝑘 ∈
((2↑(𝑗 +
1))...((2↑((𝑗 + 1) +
1)) − 1))(𝐹‘𝑘) ∈ ℝ) ∧ ((seq0( + , 𝐺)‘𝑗) ∈ ℝ ∧ (𝐺‘(𝑗 + 1)) ∈ ℝ)) → ((Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹‘𝑘) ≤ (seq0( + , 𝐺)‘𝑗) ∧ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘𝑘) ≤ (𝐺‘(𝑗 + 1))) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))) |
219 | 200, 201,
215, 217, 218 | syl22anc 872 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((Σ𝑘 ∈
(1...((2↑(𝑗 + 1))
− 1))(𝐹‘𝑘) ≤ (seq0( + , 𝐺)‘𝑗) ∧ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘𝑘) ≤ (𝐺‘(𝑗 + 1))) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))) |
220 | 197, 219 | mpan2d 685 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(Σ𝑘 ∈
(1...((2↑(𝑗 + 1))
− 1))(𝐹‘𝑘) ≤ (seq0( + , 𝐺)‘𝑗) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))) |
221 | | eqidd 2826 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) →
(𝐹‘𝑘) = (𝐹‘𝑘)) |
222 | 39 | recnd 10392 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
223 | 68, 198, 222 | syl2an 589 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) →
(𝐹‘𝑘) ∈ ℂ) |
224 | 221, 128,
223 | fsumser 14845 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
Σ𝑘 ∈
(1...((2↑(𝑗 + 1))
− 1))(𝐹‘𝑘) = (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1))) |
225 | 224 | eqcomd 2831 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (seq1( +
, 𝐹)‘((2↑(𝑗 + 1)) − 1)) =
Σ𝑘 ∈
(1...((2↑(𝑗 + 1))
− 1))(𝐹‘𝑘)) |
226 | 225 | breq1d 4885 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((seq1( +
, 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( +
, 𝐺)‘𝑗) ↔ Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹‘𝑘) ≤ (seq0( + , 𝐺)‘𝑗))) |
227 | | eqidd 2826 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1))) →
(𝐹‘𝑘) = (𝐹‘𝑘)) |
228 | | elfznn 12670 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)) →
𝑘 ∈
ℕ) |
229 | 68, 228, 222 | syl2an 589 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1))) →
(𝐹‘𝑘) ∈ ℂ) |
230 | 227, 168,
229 | fsumser 14845 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
Σ𝑘 ∈
(1...((2↑((𝑗 + 1) +
1)) − 1))(𝐹‘𝑘) = (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1))) |
231 | | fzfid 13074 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(1...((2↑((𝑗 + 1) +
1)) − 1)) ∈ Fin) |
232 | 180, 157,
231, 229 | fsumsplit 14855 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
Σ𝑘 ∈
(1...((2↑((𝑗 + 1) +
1)) − 1))(𝐹‘𝑘) = (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘𝑘))) |
233 | 230, 232 | eqtr3d 2863 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (seq1( +
, 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) =
(Σ𝑘 ∈
(1...((2↑(𝑗 + 1))
− 1))(𝐹‘𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘𝑘))) |
234 | | simpr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈
ℕ0) |
235 | 234, 202 | syl6eleq 2916 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈
(ℤ≥‘0)) |
236 | | seqp1 13117 |
. . . . . . . 8
⊢ (𝑗 ∈
(ℤ≥‘0) → (seq0( + , 𝐺)‘(𝑗 + 1)) = ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))) |
237 | 235, 236 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (seq0( +
, 𝐺)‘(𝑗 + 1)) = ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))) |
238 | 233, 237 | breq12d 4888 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((seq1( +
, 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤
(seq0( + , 𝐺)‘(𝑗 + 1)) ↔ (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))) |
239 | 220, 226,
238 | 3imtr4d 286 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((seq1( +
, 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( +
, 𝐺)‘𝑗) → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤
(seq0( + , 𝐺)‘(𝑗 + 1)))) |
240 | 239 | expcom 404 |
. . . 4
⊢ (𝑗 ∈ ℕ0
→ (𝜑 → ((seq1( + ,
𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( +
, 𝐺)‘𝑗) → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤
(seq0( + , 𝐺)‘(𝑗 + 1))))) |
241 | 240 | a2d 29 |
. . 3
⊢ (𝑗 ∈ ℕ0
→ ((𝜑 → (seq1( + ,
𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( +
, 𝐺)‘𝑗)) → (𝜑 → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1))))) |
242 | 18, 24, 30, 36, 66, 241 | nn0ind 11807 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝜑 → (seq1( + ,
𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( +
, 𝐺)‘𝑁))) |
243 | 242 | impcom 398 |
1
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (seq1( +
, 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( +
, 𝐺)‘𝑁)) |