MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcndslem1 Structured version   Visualization version   GIF version

Theorem climcndslem1 14962
Description: Lemma for climcnds 14964: bound the original series by the condensed series. (Contributed by Mario Carneiro, 18-Jul-2014.)
Hypotheses
Ref Expression
climcnds.1 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
climcnds.2 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
climcnds.3 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climcnds.4 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
Assertion
Ref Expression
climcndslem1 ((𝜑𝑁 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑘,𝑛,𝐹   𝑘,𝐺,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝑁(𝑘,𝑛)

Proof of Theorem climcndslem1
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6917 . . . . . . . . . . 11 (𝑥 = 0 → (𝑥 + 1) = (0 + 1))
2 0p1e1 11487 . . . . . . . . . . 11 (0 + 1) = 1
31, 2syl6eq 2877 . . . . . . . . . 10 (𝑥 = 0 → (𝑥 + 1) = 1)
43oveq2d 6926 . . . . . . . . 9 (𝑥 = 0 → (2↑(𝑥 + 1)) = (2↑1))
5 2cn 11433 . . . . . . . . . . 11 2 ∈ ℂ
6 exp1 13167 . . . . . . . . . . 11 (2 ∈ ℂ → (2↑1) = 2)
75, 6ax-mp 5 . . . . . . . . . 10 (2↑1) = 2
8 df-2 11421 . . . . . . . . . 10 2 = (1 + 1)
97, 8eqtri 2849 . . . . . . . . 9 (2↑1) = (1 + 1)
104, 9syl6eq 2877 . . . . . . . 8 (𝑥 = 0 → (2↑(𝑥 + 1)) = (1 + 1))
1110oveq1d 6925 . . . . . . 7 (𝑥 = 0 → ((2↑(𝑥 + 1)) − 1) = ((1 + 1) − 1))
12 ax-1cn 10317 . . . . . . . 8 1 ∈ ℂ
1312, 12pncan3oi 10625 . . . . . . 7 ((1 + 1) − 1) = 1
1411, 13syl6eq 2877 . . . . . 6 (𝑥 = 0 → ((2↑(𝑥 + 1)) − 1) = 1)
1514fveq2d 6441 . . . . 5 (𝑥 = 0 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘1))
16 fveq2 6437 . . . . 5 (𝑥 = 0 → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘0))
1715, 16breq12d 4888 . . . 4 (𝑥 = 0 → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘1) ≤ (seq0( + , 𝐺)‘0)))
1817imbi2d 332 . . 3 (𝑥 = 0 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘1) ≤ (seq0( + , 𝐺)‘0))))
19 oveq1 6917 . . . . . . 7 (𝑥 = 𝑗 → (𝑥 + 1) = (𝑗 + 1))
2019oveq2d 6926 . . . . . 6 (𝑥 = 𝑗 → (2↑(𝑥 + 1)) = (2↑(𝑗 + 1)))
2120fvoveq1d 6932 . . . . 5 (𝑥 = 𝑗 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)))
22 fveq2 6437 . . . . 5 (𝑥 = 𝑗 → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘𝑗))
2321, 22breq12d 4888 . . . 4 (𝑥 = 𝑗 → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗)))
2423imbi2d 332 . . 3 (𝑥 = 𝑗 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗))))
25 oveq1 6917 . . . . . . 7 (𝑥 = (𝑗 + 1) → (𝑥 + 1) = ((𝑗 + 1) + 1))
2625oveq2d 6926 . . . . . 6 (𝑥 = (𝑗 + 1) → (2↑(𝑥 + 1)) = (2↑((𝑗 + 1) + 1)))
2726fvoveq1d 6932 . . . . 5 (𝑥 = (𝑗 + 1) → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)))
28 fveq2 6437 . . . . 5 (𝑥 = (𝑗 + 1) → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘(𝑗 + 1)))
2927, 28breq12d 4888 . . . 4 (𝑥 = (𝑗 + 1) → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1))))
3029imbi2d 332 . . 3 (𝑥 = (𝑗 + 1) → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1)))))
31 oveq1 6917 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 + 1) = (𝑁 + 1))
3231oveq2d 6926 . . . . . 6 (𝑥 = 𝑁 → (2↑(𝑥 + 1)) = (2↑(𝑁 + 1)))
3332fvoveq1d 6932 . . . . 5 (𝑥 = 𝑁 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)))
34 fveq2 6437 . . . . 5 (𝑥 = 𝑁 → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘𝑁))
3533, 34breq12d 4888 . . . 4 (𝑥 = 𝑁 → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁)))
3635imbi2d 332 . . 3 (𝑥 = 𝑁 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁))))
37 fveq2 6437 . . . . . . . 8 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
3837eleq1d 2891 . . . . . . 7 (𝑘 = 1 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘1) ∈ ℝ))
39 climcnds.1 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
4039ralrimiva 3175 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
41 1nn 11370 . . . . . . . 8 1 ∈ ℕ
4241a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
4338, 40, 42rspcdva 3532 . . . . . 6 (𝜑 → (𝐹‘1) ∈ ℝ)
4443leidd 10925 . . . . 5 (𝜑 → (𝐹‘1) ≤ (𝐹‘1))
4543recnd 10392 . . . . . 6 (𝜑 → (𝐹‘1) ∈ ℂ)
4645mulid2d 10382 . . . . 5 (𝜑 → (1 · (𝐹‘1)) = (𝐹‘1))
4744, 46breqtrrd 4903 . . . 4 (𝜑 → (𝐹‘1) ≤ (1 · (𝐹‘1)))
48 1z 11742 . . . . 5 1 ∈ ℤ
49 eqidd 2826 . . . . 5 (𝜑 → (𝐹‘1) = (𝐹‘1))
5048, 49seq1i 13116 . . . 4 (𝜑 → (seq1( + , 𝐹)‘1) = (𝐹‘1))
51 0z 11722 . . . . 5 0 ∈ ℤ
52 fveq2 6437 . . . . . . 7 (𝑛 = 0 → (𝐺𝑛) = (𝐺‘0))
53 oveq2 6918 . . . . . . . . 9 (𝑛 = 0 → (2↑𝑛) = (2↑0))
54 exp0 13165 . . . . . . . . . 10 (2 ∈ ℂ → (2↑0) = 1)
555, 54ax-mp 5 . . . . . . . . 9 (2↑0) = 1
5653, 55syl6eq 2877 . . . . . . . 8 (𝑛 = 0 → (2↑𝑛) = 1)
5756fveq2d 6441 . . . . . . . 8 (𝑛 = 0 → (𝐹‘(2↑𝑛)) = (𝐹‘1))
5856, 57oveq12d 6928 . . . . . . 7 (𝑛 = 0 → ((2↑𝑛) · (𝐹‘(2↑𝑛))) = (1 · (𝐹‘1)))
5952, 58eqeq12d 2840 . . . . . 6 (𝑛 = 0 → ((𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) ↔ (𝐺‘0) = (1 · (𝐹‘1))))
60 climcnds.4 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
6160ralrimiva 3175 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ0 (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
62 0nn0 11642 . . . . . . 7 0 ∈ ℕ0
6362a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
6459, 61, 63rspcdva 3532 . . . . 5 (𝜑 → (𝐺‘0) = (1 · (𝐹‘1)))
6551, 64seq1i 13116 . . . 4 (𝜑 → (seq0( + , 𝐺)‘0) = (1 · (𝐹‘1)))
6647, 50, 653brtr4d 4907 . . 3 (𝜑 → (seq1( + , 𝐹)‘1) ≤ (seq0( + , 𝐺)‘0))
67 fzfid 13074 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin)
68 simpl 476 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → 𝜑)
6968adantr 474 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) → 𝜑)
70 2nn 11431 . . . . . . . . . . . 12 2 ∈ ℕ
71 peano2nn0 11667 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
7271adantl 475 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (𝑗 + 1) ∈ ℕ0)
73 nnexpcl 13174 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ)
7470, 72, 73sylancr 581 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ)
75 elfzuz 12638 . . . . . . . . . . 11 (𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) → 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1))))
76 eluznn 12048 . . . . . . . . . . 11 (((2↑(𝑗 + 1)) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1)))) → 𝑘 ∈ ℕ)
7774, 75, 76syl2an 589 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) → 𝑘 ∈ ℕ)
7869, 77, 39syl2anc 579 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹𝑘) ∈ ℝ)
79 fveq2 6437 . . . . . . . . . . . 12 (𝑘 = (2↑(𝑗 + 1)) → (𝐹𝑘) = (𝐹‘(2↑(𝑗 + 1))))
8079eleq1d 2891 . . . . . . . . . . 11 (𝑘 = (2↑(𝑗 + 1)) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ))
8140adantr 474 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
8280, 81, 74rspcdva 3532 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ)
8382adantr 474 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ)
84 simpr 479 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) → 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1))))
85 simplll 791 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...𝑛)) → 𝜑)
8674adantr 474 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) → (2↑(𝑗 + 1)) ∈ ℕ)
87 elfzuz 12638 . . . . . . . . . . . . . 14 (𝑘 ∈ ((2↑(𝑗 + 1))...𝑛) → 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1))))
8886, 87, 76syl2an 589 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...𝑛)) → 𝑘 ∈ ℕ)
8985, 88, 39syl2anc 579 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...𝑛)) → (𝐹𝑘) ∈ ℝ)
90 simplll 791 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1))) → 𝜑)
91 elfzuz 12638 . . . . . . . . . . . . . 14 (𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1)) → 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1))))
9286, 91, 76syl2an 589 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1))) → 𝑘 ∈ ℕ)
93 climcnds.3 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
9490, 92, 93syl2anc 579 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
9584, 89, 94monoord2 13133 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) → (𝐹𝑛) ≤ (𝐹‘(2↑(𝑗 + 1))))
9695ralrimiva 3175 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ∀𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))(𝐹𝑛) ≤ (𝐹‘(2↑(𝑗 + 1))))
97 fveq2 6437 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
9897breq1d 4885 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((𝐹𝑛) ≤ (𝐹‘(2↑(𝑗 + 1))) ↔ (𝐹𝑘) ≤ (𝐹‘(2↑(𝑗 + 1)))))
9998rspccva 3525 . . . . . . . . . 10 ((∀𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))(𝐹𝑛) ≤ (𝐹‘(2↑(𝑗 + 1))) ∧ 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1)))) → (𝐹𝑘) ≤ (𝐹‘(2↑(𝑗 + 1))))
10096, 75, 99syl2an 589 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹𝑘) ≤ (𝐹‘(2↑(𝑗 + 1))))
10167, 78, 83, 100fsumle 14912 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ≤ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1))))
102 fzfid 13074 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (1...((2↑(𝑗 + 1)) − 1)) ∈ Fin)
103 hashcl 13444 . . . . . . . . . . . . 13 ((1...((2↑(𝑗 + 1)) − 1)) ∈ Fin → (♯‘(1...((2↑(𝑗 + 1)) − 1))) ∈ ℕ0)
104102, 103syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (♯‘(1...((2↑(𝑗 + 1)) − 1))) ∈ ℕ0)
105104nn0cnd 11687 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (♯‘(1...((2↑(𝑗 + 1)) − 1))) ∈ ℂ)
10674nnred 11374 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℝ)
107106recnd 10392 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℂ)
108 hashcl 13444 . . . . . . . . . . . . 13 (((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin → (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) ∈ ℕ0)
10967, 108syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) ∈ ℕ0)
110109nn0cnd 11687 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) ∈ ℂ)
111 2z 11744 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℤ
112 zexpcl 13176 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℤ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℤ)
113111, 72, 112sylancr 581 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℤ)
114 nn0p1nn 11666 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ)
115114adantl 475 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ ℕ0) → (𝑗 + 1) ∈ ℕ)
116 nnuz 12012 . . . . . . . . . . . . . . . . . . . . . 22 ℕ = (ℤ‘1)
117115, 116syl6eleq 2916 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ0) → (𝑗 + 1) ∈ (ℤ‘1))
118 2re 11432 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ
119 1le2 11574 . . . . . . . . . . . . . . . . . . . . . 22 1 ≤ 2
120 leexp2a 13217 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℝ ∧ 1 ≤ 2 ∧ (𝑗 + 1) ∈ (ℤ‘1)) → (2↑1) ≤ (2↑(𝑗 + 1)))
121118, 119, 120mp3an12 1579 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 + 1) ∈ (ℤ‘1) → (2↑1) ≤ (2↑(𝑗 + 1)))
122117, 121syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ0) → (2↑1) ≤ (2↑(𝑗 + 1)))
1237, 122syl5eqbrr 4911 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ0) → 2 ≤ (2↑(𝑗 + 1)))
124111eluz1i 11983 . . . . . . . . . . . . . . . . . . 19 ((2↑(𝑗 + 1)) ∈ (ℤ‘2) ↔ ((2↑(𝑗 + 1)) ∈ ℤ ∧ 2 ≤ (2↑(𝑗 + 1))))
125113, 123, 124sylanbrc 578 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ (ℤ‘2))
126 uz2m1nn 12053 . . . . . . . . . . . . . . . . . 18 ((2↑(𝑗 + 1)) ∈ (ℤ‘2) → ((2↑(𝑗 + 1)) − 1) ∈ ℕ)
127125, 126syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ ℕ)
128127, 116syl6eleq 2916 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ (ℤ‘1))
129 peano2zm 11755 . . . . . . . . . . . . . . . . . 18 ((2↑(𝑗 + 1)) ∈ ℤ → ((2↑(𝑗 + 1)) − 1) ∈ ℤ)
130113, 129syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ ℤ)
131 peano2nn0 11667 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 + 1) ∈ ℕ0 → ((𝑗 + 1) + 1) ∈ ℕ0)
13272, 131syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ0) → ((𝑗 + 1) + 1) ∈ ℕ0)
133 zexpcl 13176 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ ((𝑗 + 1) + 1) ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) ∈ ℤ)
134111, 132, 133sylancr 581 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) ∈ ℤ)
135 peano2zm 11755 . . . . . . . . . . . . . . . . . 18 ((2↑((𝑗 + 1) + 1)) ∈ ℤ → ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℤ)
136134, 135syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℤ)
137113zred 11817 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℝ)
138134zred 11817 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) ∈ ℝ)
139 1red 10364 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → 1 ∈ ℝ)
14072nn0zd 11815 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ0) → (𝑗 + 1) ∈ ℤ)
141 uzid 11990 . . . . . . . . . . . . . . . . . . 19 ((𝑗 + 1) ∈ ℤ → (𝑗 + 1) ∈ (ℤ‘(𝑗 + 1)))
142 peano2uz 12030 . . . . . . . . . . . . . . . . . . 19 ((𝑗 + 1) ∈ (ℤ‘(𝑗 + 1)) → ((𝑗 + 1) + 1) ∈ (ℤ‘(𝑗 + 1)))
143 leexp2a 13217 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ ∧ 1 ≤ 2 ∧ ((𝑗 + 1) + 1) ∈ (ℤ‘(𝑗 + 1))) → (2↑(𝑗 + 1)) ≤ (2↑((𝑗 + 1) + 1)))
144118, 119, 143mp3an12 1579 . . . . . . . . . . . . . . . . . . 19 (((𝑗 + 1) + 1) ∈ (ℤ‘(𝑗 + 1)) → (2↑(𝑗 + 1)) ≤ (2↑((𝑗 + 1) + 1)))
145140, 141, 142, 1444syl 19 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ≤ (2↑((𝑗 + 1) + 1)))
146137, 138, 139, 145lesub1dd 10975 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ≤ ((2↑((𝑗 + 1) + 1)) − 1))
147 eluz2 11981 . . . . . . . . . . . . . . . . 17 (((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘((2↑(𝑗 + 1)) − 1)) ↔ (((2↑(𝑗 + 1)) − 1) ∈ ℤ ∧ ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℤ ∧ ((2↑(𝑗 + 1)) − 1) ≤ ((2↑((𝑗 + 1) + 1)) − 1)))
148130, 136, 146, 147syl3anbrc 1447 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘((2↑(𝑗 + 1)) − 1)))
149 elfzuzb 12636 . . . . . . . . . . . . . . . 16 (((2↑(𝑗 + 1)) − 1) ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)) ↔ (((2↑(𝑗 + 1)) − 1) ∈ (ℤ‘1) ∧ ((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘((2↑(𝑗 + 1)) − 1))))
150128, 148, 149sylanbrc 578 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)))
151 fzsplit 12667 . . . . . . . . . . . . . . 15 (((2↑(𝑗 + 1)) − 1) ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)) → (1...((2↑((𝑗 + 1) + 1)) − 1)) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((((2↑(𝑗 + 1)) − 1) + 1)...((2↑((𝑗 + 1) + 1)) − 1))))
152150, 151syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (1...((2↑((𝑗 + 1) + 1)) − 1)) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((((2↑(𝑗 + 1)) − 1) + 1)...((2↑((𝑗 + 1) + 1)) − 1))))
153 npcan 10618 . . . . . . . . . . . . . . . . 17 (((2↑(𝑗 + 1)) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑(𝑗 + 1)) − 1) + 1) = (2↑(𝑗 + 1)))
154107, 12, 153sylancl 580 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → (((2↑(𝑗 + 1)) − 1) + 1) = (2↑(𝑗 + 1)))
155154oveq1d 6925 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → ((((2↑(𝑗 + 1)) − 1) + 1)...((2↑((𝑗 + 1) + 1)) − 1)) = ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))
156155uneq2d 3996 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((((2↑(𝑗 + 1)) − 1) + 1)...((2↑((𝑗 + 1) + 1)) − 1))) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))))
157152, 156eqtrd 2861 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (1...((2↑((𝑗 + 1) + 1)) − 1)) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))))
158157fveq2d 6441 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (♯‘(1...((2↑((𝑗 + 1) + 1)) − 1))) = (♯‘((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))))
159 expp1 13168 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) = ((2↑(𝑗 + 1)) · 2))
1605, 72, 159sylancr 581 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) = ((2↑(𝑗 + 1)) · 2))
161107times2d 11609 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) · 2) = ((2↑(𝑗 + 1)) + (2↑(𝑗 + 1))))
162160, 161eqtrd 2861 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) = ((2↑(𝑗 + 1)) + (2↑(𝑗 + 1))))
163162oveq1d 6925 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) = (((2↑(𝑗 + 1)) + (2↑(𝑗 + 1))) − 1))
164 1cnd 10358 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → 1 ∈ ℂ)
165107, 107, 164addsubd 10741 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (((2↑(𝑗 + 1)) + (2↑(𝑗 + 1))) − 1) = (((2↑(𝑗 + 1)) − 1) + (2↑(𝑗 + 1))))
166163, 165eqtrd 2861 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) = (((2↑(𝑗 + 1)) − 1) + (2↑(𝑗 + 1))))
167 uztrn 11992 . . . . . . . . . . . . . . . . 17 ((((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘((2↑(𝑗 + 1)) − 1)) ∧ ((2↑(𝑗 + 1)) − 1) ∈ (ℤ‘1)) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘1))
168148, 128, 167syl2anc 579 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘1))
169168, 116syl6eleqr 2917 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℕ)
170169nnnn0d 11685 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℕ0)
171 hashfz1 13433 . . . . . . . . . . . . . 14 (((2↑((𝑗 + 1) + 1)) − 1) ∈ ℕ0 → (♯‘(1...((2↑((𝑗 + 1) + 1)) − 1))) = ((2↑((𝑗 + 1) + 1)) − 1))
172170, 171syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (♯‘(1...((2↑((𝑗 + 1) + 1)) − 1))) = ((2↑((𝑗 + 1) + 1)) − 1))
173127nnnn0d 11685 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ ℕ0)
174 hashfz1 13433 . . . . . . . . . . . . . . 15 (((2↑(𝑗 + 1)) − 1) ∈ ℕ0 → (♯‘(1...((2↑(𝑗 + 1)) − 1))) = ((2↑(𝑗 + 1)) − 1))
175173, 174syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (♯‘(1...((2↑(𝑗 + 1)) − 1))) = ((2↑(𝑗 + 1)) − 1))
176175oveq1d 6925 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → ((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (2↑(𝑗 + 1))) = (((2↑(𝑗 + 1)) − 1) + (2↑(𝑗 + 1))))
177166, 172, 1763eqtr4d 2871 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (♯‘(1...((2↑((𝑗 + 1) + 1)) − 1))) = ((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (2↑(𝑗 + 1))))
178106ltm1d 11293 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) < (2↑(𝑗 + 1)))
179 fzdisj 12668 . . . . . . . . . . . . . 14 (((2↑(𝑗 + 1)) − 1) < (2↑(𝑗 + 1)) → ((1...((2↑(𝑗 + 1)) − 1)) ∩ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) = ∅)
180178, 179syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → ((1...((2↑(𝑗 + 1)) − 1)) ∩ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) = ∅)
181 hashun 13468 . . . . . . . . . . . . 13 (((1...((2↑(𝑗 + 1)) − 1)) ∈ Fin ∧ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin ∧ ((1...((2↑(𝑗 + 1)) − 1)) ∩ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) = ∅) → (♯‘((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))) = ((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))))
182102, 67, 180, 181syl3anc 1494 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (♯‘((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))) = ((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))))
183158, 177, 1823eqtr3d 2869 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (2↑(𝑗 + 1))) = ((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))))
184105, 107, 110, 183addcanad 10567 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) = (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))))
185184oveq1d 6925 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))) = ((♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) · (𝐹‘(2↑(𝑗 + 1)))))
186 fveq2 6437 . . . . . . . . . . 11 (𝑛 = (𝑗 + 1) → (𝐺𝑛) = (𝐺‘(𝑗 + 1)))
187 oveq2 6918 . . . . . . . . . . . 12 (𝑛 = (𝑗 + 1) → (2↑𝑛) = (2↑(𝑗 + 1)))
188187fveq2d 6441 . . . . . . . . . . . 12 (𝑛 = (𝑗 + 1) → (𝐹‘(2↑𝑛)) = (𝐹‘(2↑(𝑗 + 1))))
189187, 188oveq12d 6928 . . . . . . . . . . 11 (𝑛 = (𝑗 + 1) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))))
190186, 189eqeq12d 2840 . . . . . . . . . 10 (𝑛 = (𝑗 + 1) → ((𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) ↔ (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1))))))
19161adantr 474 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ∀𝑛 ∈ ℕ0 (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
192190, 191, 72rspcdva 3532 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))))
19382recnd 10392 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℂ)
194 fsumconst 14903 . . . . . . . . . 10 ((((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin ∧ (𝐹‘(2↑(𝑗 + 1))) ∈ ℂ) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1))) = ((♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) · (𝐹‘(2↑(𝑗 + 1)))))
19567, 193, 194syl2anc 579 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1))) = ((♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) · (𝐹‘(2↑(𝑗 + 1)))))
196185, 192, 1953eqtr4d 2871 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑗 + 1)) = Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1))))
197101, 196breqtrrd 4903 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ≤ (𝐺‘(𝑗 + 1)))
198 elfznn 12670 . . . . . . . . . 10 (𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1)) → 𝑘 ∈ ℕ)
19968, 198, 39syl2an 589 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) → (𝐹𝑘) ∈ ℝ)
200102, 199fsumrecl 14849 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ∈ ℝ)
20167, 78fsumrecl 14849 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ∈ ℝ)
202 nn0uz 12011 . . . . . . . . . 10 0 = (ℤ‘0)
203 0zd 11723 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
204 simpr 479 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
205 nnexpcl 13174 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
20670, 204, 205sylancr 581 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
207206nnred 11374 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℝ)
208 fveq2 6437 . . . . . . . . . . . . . 14 (𝑘 = (2↑𝑛) → (𝐹𝑘) = (𝐹‘(2↑𝑛)))
209208eleq1d 2891 . . . . . . . . . . . . 13 (𝑘 = (2↑𝑛) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(2↑𝑛)) ∈ ℝ))
21040adantr 474 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
211209, 210, 206rspcdva 3532 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → (𝐹‘(2↑𝑛)) ∈ ℝ)
212207, 211remulcld 10394 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) ∈ ℝ)
21360, 212eqeltrd 2906 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℝ)
214202, 203, 213serfre 13131 . . . . . . . . 9 (𝜑 → seq0( + , 𝐺):ℕ0⟶ℝ)
215214ffvelrnda 6613 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (seq0( + , 𝐺)‘𝑗) ∈ ℝ)
216137, 82remulcld 10394 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))) ∈ ℝ)
217192, 216eqeltrd 2906 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑗 + 1)) ∈ ℝ)
218 le2add 10841 . . . . . . . 8 (((Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ∈ ℝ ∧ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ∈ ℝ) ∧ ((seq0( + , 𝐺)‘𝑗) ∈ ℝ ∧ (𝐺‘(𝑗 + 1)) ∈ ℝ)) → ((Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ≤ (seq0( + , 𝐺)‘𝑗) ∧ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ≤ (𝐺‘(𝑗 + 1))) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))))
219200, 201, 215, 217, 218syl22anc 872 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ≤ (seq0( + , 𝐺)‘𝑗) ∧ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ≤ (𝐺‘(𝑗 + 1))) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))))
220197, 219mpan2d 685 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ≤ (seq0( + , 𝐺)‘𝑗) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))))
221 eqidd 2826 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) → (𝐹𝑘) = (𝐹𝑘))
22239recnd 10392 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
22368, 198, 222syl2an 589 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) → (𝐹𝑘) ∈ ℂ)
224221, 128, 223fsumser 14845 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) = (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)))
225224eqcomd 2831 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) = Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘))
226225breq1d 4885 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗) ↔ Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ≤ (seq0( + , 𝐺)‘𝑗)))
227 eqidd 2826 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹𝑘) = (𝐹𝑘))
228 elfznn 12670 . . . . . . . . . 10 (𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)) → 𝑘 ∈ ℕ)
22968, 228, 222syl2an 589 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹𝑘) ∈ ℂ)
230227, 168, 229fsumser 14845 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) = (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)))
231 fzfid 13074 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (1...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin)
232180, 157, 231, 229fsumsplit 14855 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) = (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)))
233230, 232eqtr3d 2863 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) = (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)))
234 simpr 479 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
235234, 202syl6eleq 2916 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ (ℤ‘0))
236 seqp1 13117 . . . . . . . 8 (𝑗 ∈ (ℤ‘0) → (seq0( + , 𝐺)‘(𝑗 + 1)) = ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))
237235, 236syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (seq0( + , 𝐺)‘(𝑗 + 1)) = ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))
238233, 237breq12d 4888 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1)) ↔ (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))))
239220, 226, 2383imtr4d 286 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗) → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1))))
240239expcom 404 . . . 4 (𝑗 ∈ ℕ0 → (𝜑 → ((seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗) → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1)))))
241240a2d 29 . . 3 (𝑗 ∈ ℕ0 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗)) → (𝜑 → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1)))))
24218, 24, 30, 36, 66, 241nn0ind 11807 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁)))
243242impcom 398 1 ((𝜑𝑁 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  wral 3117  cun 3796  cin 3797  c0 4146   class class class wbr 4875  cfv 6127  (class class class)co 6910  Fincfn 8228  cc 10257  cr 10258  0cc0 10259  1c1 10260   + caddc 10262   · cmul 10264   < clt 10398  cle 10399  cmin 10592  cn 11357  2c2 11413  0cn0 11625  cz 11711  cuz 11975  ...cfz 12626  seqcseq 13102  cexp 13161  chash 13417  Σcsu 14800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-sup 8623  df-oi 8691  df-card 9085  df-cda 9312  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-n0 11626  df-z 11712  df-uz 11976  df-rp 12120  df-ico 12476  df-fz 12627  df-fzo 12768  df-seq 13103  df-exp 13162  df-hash 13418  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-clim 14603  df-sum 14801
This theorem is referenced by:  climcnds  14964
  Copyright terms: Public domain W3C validator