MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcndslem1 Structured version   Visualization version   GIF version

Theorem climcndslem1 15865
Description: Lemma for climcnds 15867: bound the original series by the condensed series. (Contributed by Mario Carneiro, 18-Jul-2014.)
Hypotheses
Ref Expression
climcnds.1 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
climcnds.2 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
climcnds.3 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climcnds.4 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
Assertion
Ref Expression
climcndslem1 ((𝜑𝑁 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑘,𝑛,𝐹   𝑘,𝐺,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝑁(𝑘,𝑛)

Proof of Theorem climcndslem1
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7412 . . . . . . . . . . 11 (𝑥 = 0 → (𝑥 + 1) = (0 + 1))
2 0p1e1 12362 . . . . . . . . . . 11 (0 + 1) = 1
31, 2eqtrdi 2786 . . . . . . . . . 10 (𝑥 = 0 → (𝑥 + 1) = 1)
43oveq2d 7421 . . . . . . . . 9 (𝑥 = 0 → (2↑(𝑥 + 1)) = (2↑1))
5 2cn 12315 . . . . . . . . . . 11 2 ∈ ℂ
6 exp1 14085 . . . . . . . . . . 11 (2 ∈ ℂ → (2↑1) = 2)
75, 6ax-mp 5 . . . . . . . . . 10 (2↑1) = 2
8 df-2 12303 . . . . . . . . . 10 2 = (1 + 1)
97, 8eqtri 2758 . . . . . . . . 9 (2↑1) = (1 + 1)
104, 9eqtrdi 2786 . . . . . . . 8 (𝑥 = 0 → (2↑(𝑥 + 1)) = (1 + 1))
1110oveq1d 7420 . . . . . . 7 (𝑥 = 0 → ((2↑(𝑥 + 1)) − 1) = ((1 + 1) − 1))
12 ax-1cn 11187 . . . . . . . 8 1 ∈ ℂ
1312, 12pncan3oi 11498 . . . . . . 7 ((1 + 1) − 1) = 1
1411, 13eqtrdi 2786 . . . . . 6 (𝑥 = 0 → ((2↑(𝑥 + 1)) − 1) = 1)
1514fveq2d 6880 . . . . 5 (𝑥 = 0 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘1))
16 fveq2 6876 . . . . 5 (𝑥 = 0 → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘0))
1715, 16breq12d 5132 . . . 4 (𝑥 = 0 → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘1) ≤ (seq0( + , 𝐺)‘0)))
1817imbi2d 340 . . 3 (𝑥 = 0 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘1) ≤ (seq0( + , 𝐺)‘0))))
19 oveq1 7412 . . . . . . 7 (𝑥 = 𝑗 → (𝑥 + 1) = (𝑗 + 1))
2019oveq2d 7421 . . . . . 6 (𝑥 = 𝑗 → (2↑(𝑥 + 1)) = (2↑(𝑗 + 1)))
2120fvoveq1d 7427 . . . . 5 (𝑥 = 𝑗 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)))
22 fveq2 6876 . . . . 5 (𝑥 = 𝑗 → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘𝑗))
2321, 22breq12d 5132 . . . 4 (𝑥 = 𝑗 → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗)))
2423imbi2d 340 . . 3 (𝑥 = 𝑗 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗))))
25 oveq1 7412 . . . . . . 7 (𝑥 = (𝑗 + 1) → (𝑥 + 1) = ((𝑗 + 1) + 1))
2625oveq2d 7421 . . . . . 6 (𝑥 = (𝑗 + 1) → (2↑(𝑥 + 1)) = (2↑((𝑗 + 1) + 1)))
2726fvoveq1d 7427 . . . . 5 (𝑥 = (𝑗 + 1) → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)))
28 fveq2 6876 . . . . 5 (𝑥 = (𝑗 + 1) → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘(𝑗 + 1)))
2927, 28breq12d 5132 . . . 4 (𝑥 = (𝑗 + 1) → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1))))
3029imbi2d 340 . . 3 (𝑥 = (𝑗 + 1) → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1)))))
31 oveq1 7412 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 + 1) = (𝑁 + 1))
3231oveq2d 7421 . . . . . 6 (𝑥 = 𝑁 → (2↑(𝑥 + 1)) = (2↑(𝑁 + 1)))
3332fvoveq1d 7427 . . . . 5 (𝑥 = 𝑁 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)))
34 fveq2 6876 . . . . 5 (𝑥 = 𝑁 → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘𝑁))
3533, 34breq12d 5132 . . . 4 (𝑥 = 𝑁 → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁)))
3635imbi2d 340 . . 3 (𝑥 = 𝑁 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁))))
37 fveq2 6876 . . . . . . . 8 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
3837eleq1d 2819 . . . . . . 7 (𝑘 = 1 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘1) ∈ ℝ))
39 climcnds.1 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
4039ralrimiva 3132 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
41 1nn 12251 . . . . . . . 8 1 ∈ ℕ
4241a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
4338, 40, 42rspcdva 3602 . . . . . 6 (𝜑 → (𝐹‘1) ∈ ℝ)
4443leidd 11803 . . . . 5 (𝜑 → (𝐹‘1) ≤ (𝐹‘1))
4543recnd 11263 . . . . . 6 (𝜑 → (𝐹‘1) ∈ ℂ)
4645mullidd 11253 . . . . 5 (𝜑 → (1 · (𝐹‘1)) = (𝐹‘1))
4744, 46breqtrrd 5147 . . . 4 (𝜑 → (𝐹‘1) ≤ (1 · (𝐹‘1)))
48 1z 12622 . . . . 5 1 ∈ ℤ
49 eqidd 2736 . . . . 5 (𝜑 → (𝐹‘1) = (𝐹‘1))
5048, 49seq1i 14033 . . . 4 (𝜑 → (seq1( + , 𝐹)‘1) = (𝐹‘1))
51 0z 12599 . . . . 5 0 ∈ ℤ
52 fveq2 6876 . . . . . . 7 (𝑛 = 0 → (𝐺𝑛) = (𝐺‘0))
53 oveq2 7413 . . . . . . . . 9 (𝑛 = 0 → (2↑𝑛) = (2↑0))
54 exp0 14083 . . . . . . . . . 10 (2 ∈ ℂ → (2↑0) = 1)
555, 54ax-mp 5 . . . . . . . . 9 (2↑0) = 1
5653, 55eqtrdi 2786 . . . . . . . 8 (𝑛 = 0 → (2↑𝑛) = 1)
5756fveq2d 6880 . . . . . . . 8 (𝑛 = 0 → (𝐹‘(2↑𝑛)) = (𝐹‘1))
5856, 57oveq12d 7423 . . . . . . 7 (𝑛 = 0 → ((2↑𝑛) · (𝐹‘(2↑𝑛))) = (1 · (𝐹‘1)))
5952, 58eqeq12d 2751 . . . . . 6 (𝑛 = 0 → ((𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) ↔ (𝐺‘0) = (1 · (𝐹‘1))))
60 climcnds.4 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
6160ralrimiva 3132 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ0 (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
62 0nn0 12516 . . . . . . 7 0 ∈ ℕ0
6362a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
6459, 61, 63rspcdva 3602 . . . . 5 (𝜑 → (𝐺‘0) = (1 · (𝐹‘1)))
6551, 64seq1i 14033 . . . 4 (𝜑 → (seq0( + , 𝐺)‘0) = (1 · (𝐹‘1)))
6647, 50, 653brtr4d 5151 . . 3 (𝜑 → (seq1( + , 𝐹)‘1) ≤ (seq0( + , 𝐺)‘0))
67 fzfid 13991 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin)
68 simpl 482 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → 𝜑)
69 2nn 12313 . . . . . . . . . . . 12 2 ∈ ℕ
70 peano2nn0 12541 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
7170adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (𝑗 + 1) ∈ ℕ0)
72 nnexpcl 14092 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ)
7369, 71, 72sylancr 587 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ)
74 elfzuz 13537 . . . . . . . . . . 11 (𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) → 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1))))
75 eluznn 12934 . . . . . . . . . . 11 (((2↑(𝑗 + 1)) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1)))) → 𝑘 ∈ ℕ)
7673, 74, 75syl2an 596 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) → 𝑘 ∈ ℕ)
7768, 76, 39syl2an2r 685 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹𝑘) ∈ ℝ)
78 fveq2 6876 . . . . . . . . . . . 12 (𝑘 = (2↑(𝑗 + 1)) → (𝐹𝑘) = (𝐹‘(2↑(𝑗 + 1))))
7978eleq1d 2819 . . . . . . . . . . 11 (𝑘 = (2↑(𝑗 + 1)) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ))
8040adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
8179, 80, 73rspcdva 3602 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ)
8281adantr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ)
83 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) → 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1))))
84 simplll 774 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...𝑛)) → 𝜑)
8573adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) → (2↑(𝑗 + 1)) ∈ ℕ)
86 elfzuz 13537 . . . . . . . . . . . . . 14 (𝑘 ∈ ((2↑(𝑗 + 1))...𝑛) → 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1))))
8785, 86, 75syl2an 596 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...𝑛)) → 𝑘 ∈ ℕ)
8884, 87, 39syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...𝑛)) → (𝐹𝑘) ∈ ℝ)
89 simplll 774 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1))) → 𝜑)
90 elfzuz 13537 . . . . . . . . . . . . . 14 (𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1)) → 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1))))
9185, 90, 75syl2an 596 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1))) → 𝑘 ∈ ℕ)
92 climcnds.3 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
9389, 91, 92syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
9483, 88, 93monoord2 14051 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) → (𝐹𝑛) ≤ (𝐹‘(2↑(𝑗 + 1))))
9594ralrimiva 3132 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ∀𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))(𝐹𝑛) ≤ (𝐹‘(2↑(𝑗 + 1))))
96 fveq2 6876 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
9796breq1d 5129 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((𝐹𝑛) ≤ (𝐹‘(2↑(𝑗 + 1))) ↔ (𝐹𝑘) ≤ (𝐹‘(2↑(𝑗 + 1)))))
9897rspccva 3600 . . . . . . . . . 10 ((∀𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))(𝐹𝑛) ≤ (𝐹‘(2↑(𝑗 + 1))) ∧ 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1)))) → (𝐹𝑘) ≤ (𝐹‘(2↑(𝑗 + 1))))
9995, 74, 98syl2an 596 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹𝑘) ≤ (𝐹‘(2↑(𝑗 + 1))))
10067, 77, 82, 99fsumle 15815 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ≤ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1))))
101 fzfid 13991 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (1...((2↑(𝑗 + 1)) − 1)) ∈ Fin)
102 hashcl 14374 . . . . . . . . . . . . 13 ((1...((2↑(𝑗 + 1)) − 1)) ∈ Fin → (♯‘(1...((2↑(𝑗 + 1)) − 1))) ∈ ℕ0)
103101, 102syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (♯‘(1...((2↑(𝑗 + 1)) − 1))) ∈ ℕ0)
104103nn0cnd 12564 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (♯‘(1...((2↑(𝑗 + 1)) − 1))) ∈ ℂ)
10573nnred 12255 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℝ)
106105recnd 11263 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℂ)
107 hashcl 14374 . . . . . . . . . . . . 13 (((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin → (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) ∈ ℕ0)
10867, 107syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) ∈ ℕ0)
109108nn0cnd 12564 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) ∈ ℂ)
110 2z 12624 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℤ
111 zexpcl 14094 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℤ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℤ)
112110, 71, 111sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℤ)
113 2re 12314 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ
114 1le2 12449 . . . . . . . . . . . . . . . . . . . . 21 1 ≤ 2
115 nn0p1nn 12540 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ)
116115adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ ℕ0) → (𝑗 + 1) ∈ ℕ)
117 nnuz 12895 . . . . . . . . . . . . . . . . . . . . . 22 ℕ = (ℤ‘1)
118116, 117eleqtrdi 2844 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ0) → (𝑗 + 1) ∈ (ℤ‘1))
119 leexp2a 14190 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℝ ∧ 1 ≤ 2 ∧ (𝑗 + 1) ∈ (ℤ‘1)) → (2↑1) ≤ (2↑(𝑗 + 1)))
120113, 114, 118, 119mp3an12i 1467 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ0) → (2↑1) ≤ (2↑(𝑗 + 1)))
1217, 120eqbrtrrid 5155 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ0) → 2 ≤ (2↑(𝑗 + 1)))
122110eluz1i 12860 . . . . . . . . . . . . . . . . . . 19 ((2↑(𝑗 + 1)) ∈ (ℤ‘2) ↔ ((2↑(𝑗 + 1)) ∈ ℤ ∧ 2 ≤ (2↑(𝑗 + 1))))
123112, 121, 122sylanbrc 583 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ (ℤ‘2))
124 uz2m1nn 12939 . . . . . . . . . . . . . . . . . 18 ((2↑(𝑗 + 1)) ∈ (ℤ‘2) → ((2↑(𝑗 + 1)) − 1) ∈ ℕ)
125123, 124syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ ℕ)
126125, 117eleqtrdi 2844 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ (ℤ‘1))
127 peano2zm 12635 . . . . . . . . . . . . . . . . . 18 ((2↑(𝑗 + 1)) ∈ ℤ → ((2↑(𝑗 + 1)) − 1) ∈ ℤ)
128112, 127syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ ℤ)
129 peano2nn0 12541 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 + 1) ∈ ℕ0 → ((𝑗 + 1) + 1) ∈ ℕ0)
13071, 129syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ0) → ((𝑗 + 1) + 1) ∈ ℕ0)
131 zexpcl 14094 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ ((𝑗 + 1) + 1) ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) ∈ ℤ)
132110, 130, 131sylancr 587 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) ∈ ℤ)
133 peano2zm 12635 . . . . . . . . . . . . . . . . . 18 ((2↑((𝑗 + 1) + 1)) ∈ ℤ → ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℤ)
134132, 133syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℤ)
135112zred 12697 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℝ)
136132zred 12697 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) ∈ ℝ)
137 1red 11236 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → 1 ∈ ℝ)
13871nn0zd 12614 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ0) → (𝑗 + 1) ∈ ℤ)
139 uzid 12867 . . . . . . . . . . . . . . . . . . 19 ((𝑗 + 1) ∈ ℤ → (𝑗 + 1) ∈ (ℤ‘(𝑗 + 1)))
140 peano2uz 12917 . . . . . . . . . . . . . . . . . . 19 ((𝑗 + 1) ∈ (ℤ‘(𝑗 + 1)) → ((𝑗 + 1) + 1) ∈ (ℤ‘(𝑗 + 1)))
141 leexp2a 14190 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ ∧ 1 ≤ 2 ∧ ((𝑗 + 1) + 1) ∈ (ℤ‘(𝑗 + 1))) → (2↑(𝑗 + 1)) ≤ (2↑((𝑗 + 1) + 1)))
142113, 114, 141mp3an12 1453 . . . . . . . . . . . . . . . . . . 19 (((𝑗 + 1) + 1) ∈ (ℤ‘(𝑗 + 1)) → (2↑(𝑗 + 1)) ≤ (2↑((𝑗 + 1) + 1)))
143138, 139, 140, 1424syl 19 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ≤ (2↑((𝑗 + 1) + 1)))
144135, 136, 137, 143lesub1dd 11853 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ≤ ((2↑((𝑗 + 1) + 1)) − 1))
145 eluz2 12858 . . . . . . . . . . . . . . . . 17 (((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘((2↑(𝑗 + 1)) − 1)) ↔ (((2↑(𝑗 + 1)) − 1) ∈ ℤ ∧ ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℤ ∧ ((2↑(𝑗 + 1)) − 1) ≤ ((2↑((𝑗 + 1) + 1)) − 1)))
146128, 134, 144, 145syl3anbrc 1344 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘((2↑(𝑗 + 1)) − 1)))
147 elfzuzb 13535 . . . . . . . . . . . . . . . 16 (((2↑(𝑗 + 1)) − 1) ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)) ↔ (((2↑(𝑗 + 1)) − 1) ∈ (ℤ‘1) ∧ ((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘((2↑(𝑗 + 1)) − 1))))
148126, 146, 147sylanbrc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)))
149 fzsplit 13567 . . . . . . . . . . . . . . 15 (((2↑(𝑗 + 1)) − 1) ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)) → (1...((2↑((𝑗 + 1) + 1)) − 1)) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((((2↑(𝑗 + 1)) − 1) + 1)...((2↑((𝑗 + 1) + 1)) − 1))))
150148, 149syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (1...((2↑((𝑗 + 1) + 1)) − 1)) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((((2↑(𝑗 + 1)) − 1) + 1)...((2↑((𝑗 + 1) + 1)) − 1))))
151 npcan 11491 . . . . . . . . . . . . . . . . 17 (((2↑(𝑗 + 1)) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑(𝑗 + 1)) − 1) + 1) = (2↑(𝑗 + 1)))
152106, 12, 151sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → (((2↑(𝑗 + 1)) − 1) + 1) = (2↑(𝑗 + 1)))
153152oveq1d 7420 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → ((((2↑(𝑗 + 1)) − 1) + 1)...((2↑((𝑗 + 1) + 1)) − 1)) = ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))
154153uneq2d 4143 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((((2↑(𝑗 + 1)) − 1) + 1)...((2↑((𝑗 + 1) + 1)) − 1))) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))))
155150, 154eqtrd 2770 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (1...((2↑((𝑗 + 1) + 1)) − 1)) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))))
156155fveq2d 6880 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (♯‘(1...((2↑((𝑗 + 1) + 1)) − 1))) = (♯‘((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))))
157 expp1 14086 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) = ((2↑(𝑗 + 1)) · 2))
1585, 71, 157sylancr 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) = ((2↑(𝑗 + 1)) · 2))
159106times2d 12485 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) · 2) = ((2↑(𝑗 + 1)) + (2↑(𝑗 + 1))))
160158, 159eqtrd 2770 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) = ((2↑(𝑗 + 1)) + (2↑(𝑗 + 1))))
161160oveq1d 7420 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) = (((2↑(𝑗 + 1)) + (2↑(𝑗 + 1))) − 1))
162 1cnd 11230 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → 1 ∈ ℂ)
163106, 106, 162addsubd 11615 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (((2↑(𝑗 + 1)) + (2↑(𝑗 + 1))) − 1) = (((2↑(𝑗 + 1)) − 1) + (2↑(𝑗 + 1))))
164161, 163eqtrd 2770 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) = (((2↑(𝑗 + 1)) − 1) + (2↑(𝑗 + 1))))
165 uztrn 12870 . . . . . . . . . . . . . . . . 17 ((((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘((2↑(𝑗 + 1)) − 1)) ∧ ((2↑(𝑗 + 1)) − 1) ∈ (ℤ‘1)) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘1))
166146, 126, 165syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘1))
167166, 117eleqtrrdi 2845 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℕ)
168167nnnn0d 12562 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℕ0)
169 hashfz1 14364 . . . . . . . . . . . . . 14 (((2↑((𝑗 + 1) + 1)) − 1) ∈ ℕ0 → (♯‘(1...((2↑((𝑗 + 1) + 1)) − 1))) = ((2↑((𝑗 + 1) + 1)) − 1))
170168, 169syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (♯‘(1...((2↑((𝑗 + 1) + 1)) − 1))) = ((2↑((𝑗 + 1) + 1)) − 1))
171125nnnn0d 12562 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ ℕ0)
172 hashfz1 14364 . . . . . . . . . . . . . . 15 (((2↑(𝑗 + 1)) − 1) ∈ ℕ0 → (♯‘(1...((2↑(𝑗 + 1)) − 1))) = ((2↑(𝑗 + 1)) − 1))
173171, 172syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (♯‘(1...((2↑(𝑗 + 1)) − 1))) = ((2↑(𝑗 + 1)) − 1))
174173oveq1d 7420 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → ((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (2↑(𝑗 + 1))) = (((2↑(𝑗 + 1)) − 1) + (2↑(𝑗 + 1))))
175164, 170, 1743eqtr4d 2780 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (♯‘(1...((2↑((𝑗 + 1) + 1)) − 1))) = ((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (2↑(𝑗 + 1))))
176105ltm1d 12174 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) < (2↑(𝑗 + 1)))
177 fzdisj 13568 . . . . . . . . . . . . . 14 (((2↑(𝑗 + 1)) − 1) < (2↑(𝑗 + 1)) → ((1...((2↑(𝑗 + 1)) − 1)) ∩ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) = ∅)
178176, 177syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → ((1...((2↑(𝑗 + 1)) − 1)) ∩ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) = ∅)
179 hashun 14400 . . . . . . . . . . . . 13 (((1...((2↑(𝑗 + 1)) − 1)) ∈ Fin ∧ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin ∧ ((1...((2↑(𝑗 + 1)) − 1)) ∩ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) = ∅) → (♯‘((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))) = ((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))))
180101, 67, 178, 179syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (♯‘((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))) = ((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))))
181156, 175, 1803eqtr3d 2778 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (2↑(𝑗 + 1))) = ((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))))
182104, 106, 109, 181addcanad 11440 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) = (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))))
183182oveq1d 7420 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))) = ((♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) · (𝐹‘(2↑(𝑗 + 1)))))
184 fveq2 6876 . . . . . . . . . . 11 (𝑛 = (𝑗 + 1) → (𝐺𝑛) = (𝐺‘(𝑗 + 1)))
185 oveq2 7413 . . . . . . . . . . . 12 (𝑛 = (𝑗 + 1) → (2↑𝑛) = (2↑(𝑗 + 1)))
186185fveq2d 6880 . . . . . . . . . . . 12 (𝑛 = (𝑗 + 1) → (𝐹‘(2↑𝑛)) = (𝐹‘(2↑(𝑗 + 1))))
187185, 186oveq12d 7423 . . . . . . . . . . 11 (𝑛 = (𝑗 + 1) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))))
188184, 187eqeq12d 2751 . . . . . . . . . 10 (𝑛 = (𝑗 + 1) → ((𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) ↔ (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1))))))
18961adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ∀𝑛 ∈ ℕ0 (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
190188, 189, 71rspcdva 3602 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))))
19181recnd 11263 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℂ)
192 fsumconst 15806 . . . . . . . . . 10 ((((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin ∧ (𝐹‘(2↑(𝑗 + 1))) ∈ ℂ) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1))) = ((♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) · (𝐹‘(2↑(𝑗 + 1)))))
19367, 191, 192syl2anc 584 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1))) = ((♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) · (𝐹‘(2↑(𝑗 + 1)))))
194183, 190, 1933eqtr4d 2780 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑗 + 1)) = Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1))))
195100, 194breqtrrd 5147 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ≤ (𝐺‘(𝑗 + 1)))
196 elfznn 13570 . . . . . . . . . 10 (𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1)) → 𝑘 ∈ ℕ)
19768, 196, 39syl2an 596 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) → (𝐹𝑘) ∈ ℝ)
198101, 197fsumrecl 15750 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ∈ ℝ)
19967, 77fsumrecl 15750 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ∈ ℝ)
200 nn0uz 12894 . . . . . . . . . 10 0 = (ℤ‘0)
201 0zd 12600 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
202 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
203 nnexpcl 14092 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
20469, 202, 203sylancr 587 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
205204nnred 12255 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℝ)
206 fveq2 6876 . . . . . . . . . . . . . 14 (𝑘 = (2↑𝑛) → (𝐹𝑘) = (𝐹‘(2↑𝑛)))
207206eleq1d 2819 . . . . . . . . . . . . 13 (𝑘 = (2↑𝑛) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(2↑𝑛)) ∈ ℝ))
20840adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
209207, 208, 204rspcdva 3602 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → (𝐹‘(2↑𝑛)) ∈ ℝ)
210205, 209remulcld 11265 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) ∈ ℝ)
21160, 210eqeltrd 2834 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℝ)
212200, 201, 211serfre 14049 . . . . . . . . 9 (𝜑 → seq0( + , 𝐺):ℕ0⟶ℝ)
213212ffvelcdmda 7074 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (seq0( + , 𝐺)‘𝑗) ∈ ℝ)
214135, 81remulcld 11265 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))) ∈ ℝ)
215190, 214eqeltrd 2834 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑗 + 1)) ∈ ℝ)
216 le2add 11719 . . . . . . . 8 (((Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ∈ ℝ ∧ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ∈ ℝ) ∧ ((seq0( + , 𝐺)‘𝑗) ∈ ℝ ∧ (𝐺‘(𝑗 + 1)) ∈ ℝ)) → ((Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ≤ (seq0( + , 𝐺)‘𝑗) ∧ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ≤ (𝐺‘(𝑗 + 1))) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))))
217198, 199, 213, 215, 216syl22anc 838 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ≤ (seq0( + , 𝐺)‘𝑗) ∧ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ≤ (𝐺‘(𝑗 + 1))) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))))
218195, 217mpan2d 694 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ≤ (seq0( + , 𝐺)‘𝑗) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))))
219 eqidd 2736 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) → (𝐹𝑘) = (𝐹𝑘))
22039recnd 11263 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
22168, 196, 220syl2an 596 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) → (𝐹𝑘) ∈ ℂ)
222219, 126, 221fsumser 15746 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) = (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)))
223222eqcomd 2741 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) = Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘))
224223breq1d 5129 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗) ↔ Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ≤ (seq0( + , 𝐺)‘𝑗)))
225 eqidd 2736 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹𝑘) = (𝐹𝑘))
226 elfznn 13570 . . . . . . . . . 10 (𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)) → 𝑘 ∈ ℕ)
22768, 226, 220syl2an 596 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹𝑘) ∈ ℂ)
228225, 166, 227fsumser 15746 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) = (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)))
229 fzfid 13991 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (1...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin)
230178, 155, 229, 227fsumsplit 15757 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) = (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)))
231228, 230eqtr3d 2772 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) = (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)))
232 simpr 484 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
233232, 200eleqtrdi 2844 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ (ℤ‘0))
234 seqp1 14034 . . . . . . . 8 (𝑗 ∈ (ℤ‘0) → (seq0( + , 𝐺)‘(𝑗 + 1)) = ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))
235233, 234syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (seq0( + , 𝐺)‘(𝑗 + 1)) = ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))
236231, 235breq12d 5132 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1)) ↔ (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))))
237218, 224, 2363imtr4d 294 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗) → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1))))
238237expcom 413 . . . 4 (𝑗 ∈ ℕ0 → (𝜑 → ((seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗) → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1)))))
239238a2d 29 . . 3 (𝑗 ∈ ℕ0 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗)) → (𝜑 → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1)))))
24018, 24, 30, 36, 66, 239nn0ind 12688 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁)))
241240impcom 407 1 ((𝜑𝑁 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  cun 3924  cin 3925  c0 4308   class class class wbr 5119  cfv 6531  (class class class)co 7405  Fincfn 8959  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134   < clt 11269  cle 11270  cmin 11466  cn 12240  2c2 12295  0cn0 12501  cz 12588  cuz 12852  ...cfz 13524  seqcseq 14019  cexp 14079  chash 14348  Σcsu 15702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-ico 13368  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703
This theorem is referenced by:  climcnds  15867
  Copyright terms: Public domain W3C validator