Step | Hyp | Ref
| Expression |
1 | | oveq1 7282 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → (𝑥 + 1) = (0 + 1)) |
2 | | 0p1e1 12095 |
. . . . . . . . . . 11
⊢ (0 + 1) =
1 |
3 | 1, 2 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → (𝑥 + 1) = 1) |
4 | 3 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (2↑(𝑥 + 1)) =
(2↑1)) |
5 | | 2cn 12048 |
. . . . . . . . . . 11
⊢ 2 ∈
ℂ |
6 | | exp1 13788 |
. . . . . . . . . . 11
⊢ (2 ∈
ℂ → (2↑1) = 2) |
7 | 5, 6 | ax-mp 5 |
. . . . . . . . . 10
⊢
(2↑1) = 2 |
8 | | df-2 12036 |
. . . . . . . . . 10
⊢ 2 = (1 +
1) |
9 | 7, 8 | eqtri 2766 |
. . . . . . . . 9
⊢
(2↑1) = (1 + 1) |
10 | 4, 9 | eqtrdi 2794 |
. . . . . . . 8
⊢ (𝑥 = 0 → (2↑(𝑥 + 1)) = (1 +
1)) |
11 | 10 | oveq1d 7290 |
. . . . . . 7
⊢ (𝑥 = 0 → ((2↑(𝑥 + 1)) − 1) = ((1 + 1)
− 1)) |
12 | | ax-1cn 10929 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
13 | 12, 12 | pncan3oi 11237 |
. . . . . . 7
⊢ ((1 + 1)
− 1) = 1 |
14 | 11, 13 | eqtrdi 2794 |
. . . . . 6
⊢ (𝑥 = 0 → ((2↑(𝑥 + 1)) − 1) =
1) |
15 | 14 | fveq2d 6778 |
. . . . 5
⊢ (𝑥 = 0 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + ,
𝐹)‘1)) |
16 | | fveq2 6774 |
. . . . 5
⊢ (𝑥 = 0 → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘0)) |
17 | 15, 16 | breq12d 5087 |
. . . 4
⊢ (𝑥 = 0 → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( +
, 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘1) ≤ (seq0( + , 𝐺)‘0))) |
18 | 17 | imbi2d 341 |
. . 3
⊢ (𝑥 = 0 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘1) ≤ (seq0( + , 𝐺)‘0)))) |
19 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑥 = 𝑗 → (𝑥 + 1) = (𝑗 + 1)) |
20 | 19 | oveq2d 7291 |
. . . . . 6
⊢ (𝑥 = 𝑗 → (2↑(𝑥 + 1)) = (2↑(𝑗 + 1))) |
21 | 20 | fvoveq1d 7297 |
. . . . 5
⊢ (𝑥 = 𝑗 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) −
1))) |
22 | | fveq2 6774 |
. . . . 5
⊢ (𝑥 = 𝑗 → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘𝑗)) |
23 | 21, 22 | breq12d 5087 |
. . . 4
⊢ (𝑥 = 𝑗 → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗))) |
24 | 23 | imbi2d 341 |
. . 3
⊢ (𝑥 = 𝑗 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗)))) |
25 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑥 = (𝑗 + 1) → (𝑥 + 1) = ((𝑗 + 1) + 1)) |
26 | 25 | oveq2d 7291 |
. . . . . 6
⊢ (𝑥 = (𝑗 + 1) → (2↑(𝑥 + 1)) = (2↑((𝑗 + 1) + 1))) |
27 | 26 | fvoveq1d 7297 |
. . . . 5
⊢ (𝑥 = (𝑗 + 1) → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) −
1))) |
28 | | fveq2 6774 |
. . . . 5
⊢ (𝑥 = (𝑗 + 1) → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘(𝑗 + 1))) |
29 | 27, 28 | breq12d 5087 |
. . . 4
⊢ (𝑥 = (𝑗 + 1) → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1)))) |
30 | 29 | imbi2d 341 |
. . 3
⊢ (𝑥 = (𝑗 + 1) → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1))))) |
31 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (𝑥 + 1) = (𝑁 + 1)) |
32 | 31 | oveq2d 7291 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (2↑(𝑥 + 1)) = (2↑(𝑁 + 1))) |
33 | 32 | fvoveq1d 7297 |
. . . . 5
⊢ (𝑥 = 𝑁 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) −
1))) |
34 | | fveq2 6774 |
. . . . 5
⊢ (𝑥 = 𝑁 → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘𝑁)) |
35 | 33, 34 | breq12d 5087 |
. . . 4
⊢ (𝑥 = 𝑁 → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁))) |
36 | 35 | imbi2d 341 |
. . 3
⊢ (𝑥 = 𝑁 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁)))) |
37 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑘 = 1 → (𝐹‘𝑘) = (𝐹‘1)) |
38 | 37 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑘 = 1 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘1) ∈ ℝ)) |
39 | | climcnds.1 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) |
40 | 39 | ralrimiva 3103 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝐹‘𝑘) ∈ ℝ) |
41 | | 1nn 11984 |
. . . . . . . 8
⊢ 1 ∈
ℕ |
42 | 41 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℕ) |
43 | 38, 40, 42 | rspcdva 3562 |
. . . . . 6
⊢ (𝜑 → (𝐹‘1) ∈ ℝ) |
44 | 43 | leidd 11541 |
. . . . 5
⊢ (𝜑 → (𝐹‘1) ≤ (𝐹‘1)) |
45 | 43 | recnd 11003 |
. . . . . 6
⊢ (𝜑 → (𝐹‘1) ∈ ℂ) |
46 | 45 | mulid2d 10993 |
. . . . 5
⊢ (𝜑 → (1 · (𝐹‘1)) = (𝐹‘1)) |
47 | 44, 46 | breqtrrd 5102 |
. . . 4
⊢ (𝜑 → (𝐹‘1) ≤ (1 · (𝐹‘1))) |
48 | | 1z 12350 |
. . . . 5
⊢ 1 ∈
ℤ |
49 | | eqidd 2739 |
. . . . 5
⊢ (𝜑 → (𝐹‘1) = (𝐹‘1)) |
50 | 48, 49 | seq1i 13735 |
. . . 4
⊢ (𝜑 → (seq1( + , 𝐹)‘1) = (𝐹‘1)) |
51 | | 0z 12330 |
. . . . 5
⊢ 0 ∈
ℤ |
52 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑛 = 0 → (𝐺‘𝑛) = (𝐺‘0)) |
53 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑛 = 0 → (2↑𝑛) = (2↑0)) |
54 | | exp0 13786 |
. . . . . . . . . 10
⊢ (2 ∈
ℂ → (2↑0) = 1) |
55 | 5, 54 | ax-mp 5 |
. . . . . . . . 9
⊢
(2↑0) = 1 |
56 | 53, 55 | eqtrdi 2794 |
. . . . . . . 8
⊢ (𝑛 = 0 → (2↑𝑛) = 1) |
57 | 56 | fveq2d 6778 |
. . . . . . . 8
⊢ (𝑛 = 0 → (𝐹‘(2↑𝑛)) = (𝐹‘1)) |
58 | 56, 57 | oveq12d 7293 |
. . . . . . 7
⊢ (𝑛 = 0 → ((2↑𝑛) · (𝐹‘(2↑𝑛))) = (1 · (𝐹‘1))) |
59 | 52, 58 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑛 = 0 → ((𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) ↔ (𝐺‘0) = (1 · (𝐹‘1)))) |
60 | | climcnds.4 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛)))) |
61 | 60 | ralrimiva 3103 |
. . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ ℕ0 (𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛)))) |
62 | | 0nn0 12248 |
. . . . . . 7
⊢ 0 ∈
ℕ0 |
63 | 62 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℕ0) |
64 | 59, 61, 63 | rspcdva 3562 |
. . . . 5
⊢ (𝜑 → (𝐺‘0) = (1 · (𝐹‘1))) |
65 | 51, 64 | seq1i 13735 |
. . . 4
⊢ (𝜑 → (seq0( + , 𝐺)‘0) = (1 · (𝐹‘1))) |
66 | 47, 50, 65 | 3brtr4d 5106 |
. . 3
⊢ (𝜑 → (seq1( + , 𝐹)‘1) ≤ (seq0( + , 𝐺)‘0)) |
67 | | fzfid 13693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑(𝑗 +
1))...((2↑((𝑗 + 1) +
1)) − 1)) ∈ Fin) |
68 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝜑) |
69 | | 2nn 12046 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℕ |
70 | | peano2nn0 12273 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ0
→ (𝑗 + 1) ∈
ℕ0) |
71 | 70 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝑗 + 1) ∈
ℕ0) |
72 | | nnexpcl 13795 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℕ ∧ (𝑗 +
1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ) |
73 | 69, 71, 72 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑(𝑗 + 1)) ∈
ℕ) |
74 | | elfzuz 13252 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) →
𝑘 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) |
75 | | eluznn 12658 |
. . . . . . . . . . 11
⊢
(((2↑(𝑗 + 1))
∈ ℕ ∧ 𝑘
∈ (ℤ≥‘(2↑(𝑗 + 1)))) → 𝑘 ∈ ℕ) |
76 | 73, 74, 75 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) →
𝑘 ∈
ℕ) |
77 | 68, 76, 39 | syl2an2r 682 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) →
(𝐹‘𝑘) ∈ ℝ) |
78 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑘 = (2↑(𝑗 + 1)) → (𝐹‘𝑘) = (𝐹‘(2↑(𝑗 + 1)))) |
79 | 78 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑘 = (2↑(𝑗 + 1)) → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ)) |
80 | 40 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
∀𝑘 ∈ ℕ
(𝐹‘𝑘) ∈ ℝ) |
81 | 79, 80, 73 | rspcdva 3562 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘(2↑(𝑗 + 1))) ∈
ℝ) |
82 | 81 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) →
(𝐹‘(2↑(𝑗 + 1))) ∈
ℝ) |
83 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) → 𝑛 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) |
84 | | simplll 772 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...𝑛)) → 𝜑) |
85 | 73 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) → (2↑(𝑗 + 1)) ∈ ℕ) |
86 | | elfzuz 13252 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ((2↑(𝑗 + 1))...𝑛) → 𝑘 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) |
87 | 85, 86, 75 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...𝑛)) → 𝑘 ∈ ℕ) |
88 | 84, 87, 39 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...𝑛)) → (𝐹‘𝑘) ∈ ℝ) |
89 | | simplll 772 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1))) → 𝜑) |
90 | | elfzuz 13252 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1)) → 𝑘 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) |
91 | 85, 90, 75 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1))) → 𝑘 ∈ ℕ) |
92 | | climcnds.3 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
93 | 89, 91, 92 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
94 | 83, 88, 93 | monoord2 13754 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑛 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) → (𝐹‘𝑛) ≤ (𝐹‘(2↑(𝑗 + 1)))) |
95 | 94 | ralrimiva 3103 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
∀𝑛 ∈
(ℤ≥‘(2↑(𝑗 + 1)))(𝐹‘𝑛) ≤ (𝐹‘(2↑(𝑗 + 1)))) |
96 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) |
97 | 96 | breq1d 5084 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → ((𝐹‘𝑛) ≤ (𝐹‘(2↑(𝑗 + 1))) ↔ (𝐹‘𝑘) ≤ (𝐹‘(2↑(𝑗 + 1))))) |
98 | 97 | rspccva 3560 |
. . . . . . . . . 10
⊢
((∀𝑛 ∈
(ℤ≥‘(2↑(𝑗 + 1)))(𝐹‘𝑛) ≤ (𝐹‘(2↑(𝑗 + 1))) ∧ 𝑘 ∈
(ℤ≥‘(2↑(𝑗 + 1)))) → (𝐹‘𝑘) ≤ (𝐹‘(2↑(𝑗 + 1)))) |
99 | 95, 74, 98 | syl2an 596 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) →
(𝐹‘𝑘) ≤ (𝐹‘(2↑(𝑗 + 1)))) |
100 | 67, 77, 82, 99 | fsumle 15511 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
Σ𝑘 ∈
((2↑(𝑗 +
1))...((2↑((𝑗 + 1) +
1)) − 1))(𝐹‘𝑘) ≤ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1)))) |
101 | | fzfid 13693 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(1...((2↑(𝑗 + 1))
− 1)) ∈ Fin) |
102 | | hashcl 14071 |
. . . . . . . . . . . . 13
⊢
((1...((2↑(𝑗 +
1)) − 1)) ∈ Fin → (♯‘(1...((2↑(𝑗 + 1)) − 1))) ∈
ℕ0) |
103 | 101, 102 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(♯‘(1...((2↑(𝑗 + 1)) − 1))) ∈
ℕ0) |
104 | 103 | nn0cnd 12295 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(♯‘(1...((2↑(𝑗 + 1)) − 1))) ∈
ℂ) |
105 | 73 | nnred 11988 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑(𝑗 + 1)) ∈
ℝ) |
106 | 105 | recnd 11003 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑(𝑗 + 1)) ∈
ℂ) |
107 | | hashcl 14071 |
. . . . . . . . . . . . 13
⊢
(((2↑(𝑗 +
1))...((2↑((𝑗 + 1) +
1)) − 1)) ∈ Fin → (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) ∈
ℕ0) |
108 | 67, 107 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(♯‘((2↑(𝑗
+ 1))...((2↑((𝑗 + 1) +
1)) − 1))) ∈ ℕ0) |
109 | 108 | nn0cnd 12295 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(♯‘((2↑(𝑗
+ 1))...((2↑((𝑗 + 1) +
1)) − 1))) ∈ ℂ) |
110 | | 2z 12352 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℤ |
111 | | zexpcl 13797 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((2
∈ ℤ ∧ (𝑗 +
1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℤ) |
112 | 110, 71, 111 | sylancr 587 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑(𝑗 + 1)) ∈
ℤ) |
113 | | 2re 12047 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 2 ∈
ℝ |
114 | | 1le2 12182 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ≤
2 |
115 | | nn0p1nn 12272 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ ℕ0
→ (𝑗 + 1) ∈
ℕ) |
116 | 115 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝑗 + 1) ∈
ℕ) |
117 | | nnuz 12621 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ℕ =
(ℤ≥‘1) |
118 | 116, 117 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝑗 + 1) ∈
(ℤ≥‘1)) |
119 | | leexp2a 13890 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((2
∈ ℝ ∧ 1 ≤ 2 ∧ (𝑗 + 1) ∈
(ℤ≥‘1)) → (2↑1) ≤ (2↑(𝑗 + 1))) |
120 | 113, 114,
118, 119 | mp3an12i 1464 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑1) ≤ (2↑(𝑗
+ 1))) |
121 | 7, 120 | eqbrtrrid 5110 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 2 ≤
(2↑(𝑗 +
1))) |
122 | 110 | eluz1i 12590 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2↑(𝑗 + 1))
∈ (ℤ≥‘2) ↔ ((2↑(𝑗 + 1)) ∈ ℤ ∧ 2 ≤
(2↑(𝑗 +
1)))) |
123 | 112, 121,
122 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑(𝑗 + 1)) ∈
(ℤ≥‘2)) |
124 | | uz2m1nn 12663 |
. . . . . . . . . . . . . . . . . 18
⊢
((2↑(𝑗 + 1))
∈ (ℤ≥‘2) → ((2↑(𝑗 + 1)) − 1) ∈
ℕ) |
125 | 123, 124 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑(𝑗 + 1)) −
1) ∈ ℕ) |
126 | 125, 117 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑(𝑗 + 1)) −
1) ∈ (ℤ≥‘1)) |
127 | | peano2zm 12363 |
. . . . . . . . . . . . . . . . . 18
⊢
((2↑(𝑗 + 1))
∈ ℤ → ((2↑(𝑗 + 1)) − 1) ∈
ℤ) |
128 | 112, 127 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑(𝑗 + 1)) −
1) ∈ ℤ) |
129 | | peano2nn0 12273 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 + 1) ∈ ℕ0
→ ((𝑗 + 1) + 1) ∈
ℕ0) |
130 | 71, 129 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝑗 + 1) + 1) ∈
ℕ0) |
131 | | zexpcl 13797 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((2
∈ ℤ ∧ ((𝑗 +
1) + 1) ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) ∈ ℤ) |
132 | 110, 130,
131 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑((𝑗 + 1) + 1))
∈ ℤ) |
133 | | peano2zm 12363 |
. . . . . . . . . . . . . . . . . 18
⊢
((2↑((𝑗 + 1) +
1)) ∈ ℤ → ((2↑((𝑗 + 1) + 1)) − 1) ∈
ℤ) |
134 | 132, 133 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑((𝑗 + 1) + 1))
− 1) ∈ ℤ) |
135 | 112 | zred 12426 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑(𝑗 + 1)) ∈
ℝ) |
136 | 132 | zred 12426 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑((𝑗 + 1) + 1))
∈ ℝ) |
137 | | 1red 10976 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 1 ∈
ℝ) |
138 | 71 | nn0zd 12424 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝑗 + 1) ∈
ℤ) |
139 | | uzid 12597 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 + 1) ∈ ℤ →
(𝑗 + 1) ∈
(ℤ≥‘(𝑗 + 1))) |
140 | | peano2uz 12641 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 + 1) ∈
(ℤ≥‘(𝑗 + 1)) → ((𝑗 + 1) + 1) ∈
(ℤ≥‘(𝑗 + 1))) |
141 | | leexp2a 13890 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((2
∈ ℝ ∧ 1 ≤ 2 ∧ ((𝑗 + 1) + 1) ∈
(ℤ≥‘(𝑗 + 1))) → (2↑(𝑗 + 1)) ≤ (2↑((𝑗 + 1) + 1))) |
142 | 113, 114,
141 | mp3an12 1450 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑗 + 1) + 1) ∈
(ℤ≥‘(𝑗 + 1)) → (2↑(𝑗 + 1)) ≤ (2↑((𝑗 + 1) + 1))) |
143 | 138, 139,
140, 142 | 4syl 19 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑(𝑗 + 1)) ≤
(2↑((𝑗 + 1) +
1))) |
144 | 135, 136,
137, 143 | lesub1dd 11591 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑(𝑗 + 1)) −
1) ≤ ((2↑((𝑗 + 1) +
1)) − 1)) |
145 | | eluz2 12588 |
. . . . . . . . . . . . . . . . 17
⊢
(((2↑((𝑗 + 1) +
1)) − 1) ∈ (ℤ≥‘((2↑(𝑗 + 1)) − 1)) ↔
(((2↑(𝑗 + 1)) −
1) ∈ ℤ ∧ ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℤ ∧
((2↑(𝑗 + 1)) −
1) ≤ ((2↑((𝑗 + 1) +
1)) − 1))) |
146 | 128, 134,
144, 145 | syl3anbrc 1342 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑((𝑗 + 1) + 1))
− 1) ∈ (ℤ≥‘((2↑(𝑗 + 1)) − 1))) |
147 | | elfzuzb 13250 |
. . . . . . . . . . . . . . . 16
⊢
(((2↑(𝑗 + 1))
− 1) ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)) ↔
(((2↑(𝑗 + 1)) −
1) ∈ (ℤ≥‘1) ∧ ((2↑((𝑗 + 1) + 1)) − 1) ∈
(ℤ≥‘((2↑(𝑗 + 1)) − 1)))) |
148 | 126, 146,
147 | sylanbrc 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑(𝑗 + 1)) −
1) ∈ (1...((2↑((𝑗
+ 1) + 1)) − 1))) |
149 | | fzsplit 13282 |
. . . . . . . . . . . . . . 15
⊢
(((2↑(𝑗 + 1))
− 1) ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)) →
(1...((2↑((𝑗 + 1) +
1)) − 1)) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((((2↑(𝑗 + 1)) − 1) +
1)...((2↑((𝑗 + 1) +
1)) − 1)))) |
150 | 148, 149 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(1...((2↑((𝑗 + 1) +
1)) − 1)) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((((2↑(𝑗 + 1)) − 1) +
1)...((2↑((𝑗 + 1) +
1)) − 1)))) |
151 | | npcan 11230 |
. . . . . . . . . . . . . . . . 17
⊢
(((2↑(𝑗 + 1))
∈ ℂ ∧ 1 ∈ ℂ) → (((2↑(𝑗 + 1)) − 1) + 1) = (2↑(𝑗 + 1))) |
152 | 106, 12, 151 | sylancl 586 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(((2↑(𝑗 + 1)) −
1) + 1) = (2↑(𝑗 +
1))) |
153 | 152 | oveq1d 7290 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((((2↑(𝑗 + 1)) −
1) + 1)...((2↑((𝑗 + 1)
+ 1)) − 1)) = ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) |
154 | 153 | uneq2d 4097 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((1...((2↑(𝑗 + 1))
− 1)) ∪ ((((2↑(𝑗 + 1)) − 1) + 1)...((2↑((𝑗 + 1) + 1)) − 1))) =
((1...((2↑(𝑗 + 1))
− 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))) |
155 | 150, 154 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(1...((2↑((𝑗 + 1) +
1)) − 1)) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) −
1)))) |
156 | 155 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(♯‘(1...((2↑((𝑗 + 1) + 1)) − 1))) =
(♯‘((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) −
1))))) |
157 | | expp1 13789 |
. . . . . . . . . . . . . . . . 17
⊢ ((2
∈ ℂ ∧ (𝑗 +
1) ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) = ((2↑(𝑗 + 1)) · 2)) |
158 | 5, 71, 157 | sylancr 587 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑((𝑗 + 1) + 1)) =
((2↑(𝑗 + 1)) ·
2)) |
159 | 106 | times2d 12217 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑(𝑗 + 1)) ·
2) = ((2↑(𝑗 + 1)) +
(2↑(𝑗 +
1)))) |
160 | 158, 159 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑((𝑗 + 1) + 1)) =
((2↑(𝑗 + 1)) +
(2↑(𝑗 +
1)))) |
161 | 160 | oveq1d 7290 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑((𝑗 + 1) + 1))
− 1) = (((2↑(𝑗 +
1)) + (2↑(𝑗 + 1)))
− 1)) |
162 | | 1cnd 10970 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 1 ∈
ℂ) |
163 | 106, 106,
162 | addsubd 11353 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(((2↑(𝑗 + 1)) +
(2↑(𝑗 + 1))) −
1) = (((2↑(𝑗 + 1))
− 1) + (2↑(𝑗 +
1)))) |
164 | 161, 163 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑((𝑗 + 1) + 1))
− 1) = (((2↑(𝑗 +
1)) − 1) + (2↑(𝑗
+ 1)))) |
165 | | uztrn 12600 |
. . . . . . . . . . . . . . . . 17
⊢
((((2↑((𝑗 + 1)
+ 1)) − 1) ∈ (ℤ≥‘((2↑(𝑗 + 1)) − 1)) ∧
((2↑(𝑗 + 1)) −
1) ∈ (ℤ≥‘1)) → ((2↑((𝑗 + 1) + 1)) − 1) ∈
(ℤ≥‘1)) |
166 | 146, 126,
165 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑((𝑗 + 1) + 1))
− 1) ∈ (ℤ≥‘1)) |
167 | 166, 117 | eleqtrrdi 2850 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑((𝑗 + 1) + 1))
− 1) ∈ ℕ) |
168 | 167 | nnnn0d 12293 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑((𝑗 + 1) + 1))
− 1) ∈ ℕ0) |
169 | | hashfz1 14060 |
. . . . . . . . . . . . . 14
⊢
(((2↑((𝑗 + 1) +
1)) − 1) ∈ ℕ0 →
(♯‘(1...((2↑((𝑗 + 1) + 1)) − 1))) = ((2↑((𝑗 + 1) + 1)) −
1)) |
170 | 168, 169 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(♯‘(1...((2↑((𝑗 + 1) + 1)) − 1))) = ((2↑((𝑗 + 1) + 1)) −
1)) |
171 | 125 | nnnn0d 12293 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑(𝑗 + 1)) −
1) ∈ ℕ0) |
172 | | hashfz1 14060 |
. . . . . . . . . . . . . . 15
⊢
(((2↑(𝑗 + 1))
− 1) ∈ ℕ0 →
(♯‘(1...((2↑(𝑗 + 1)) − 1))) = ((2↑(𝑗 + 1)) −
1)) |
173 | 171, 172 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(♯‘(1...((2↑(𝑗 + 1)) − 1))) = ((2↑(𝑗 + 1)) −
1)) |
174 | 173 | oveq1d 7290 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (2↑(𝑗 + 1))) = (((2↑(𝑗 + 1)) − 1) +
(2↑(𝑗 +
1)))) |
175 | 164, 170,
174 | 3eqtr4d 2788 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(♯‘(1...((2↑((𝑗 + 1) + 1)) − 1))) =
((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (2↑(𝑗 + 1)))) |
176 | 105 | ltm1d 11907 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑(𝑗 + 1)) −
1) < (2↑(𝑗 +
1))) |
177 | | fzdisj 13283 |
. . . . . . . . . . . . . 14
⊢
(((2↑(𝑗 + 1))
− 1) < (2↑(𝑗
+ 1)) → ((1...((2↑(𝑗 + 1)) − 1)) ∩ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) =
∅) |
178 | 176, 177 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((1...((2↑(𝑗 + 1))
− 1)) ∩ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) =
∅) |
179 | | hashun 14097 |
. . . . . . . . . . . . 13
⊢
(((1...((2↑(𝑗 +
1)) − 1)) ∈ Fin ∧ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin ∧
((1...((2↑(𝑗 + 1))
− 1)) ∩ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) = ∅) →
(♯‘((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))) =
((♯‘(1...((2↑(𝑗 + 1)) − 1))) +
(♯‘((2↑(𝑗
+ 1))...((2↑((𝑗 + 1) +
1)) − 1))))) |
180 | 101, 67, 178, 179 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(♯‘((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))) =
((♯‘(1...((2↑(𝑗 + 1)) − 1))) +
(♯‘((2↑(𝑗
+ 1))...((2↑((𝑗 + 1) +
1)) − 1))))) |
181 | 156, 175,
180 | 3eqtr3d 2786 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (2↑(𝑗 + 1))) =
((♯‘(1...((2↑(𝑗 + 1)) − 1))) +
(♯‘((2↑(𝑗
+ 1))...((2↑((𝑗 + 1) +
1)) − 1))))) |
182 | 104, 106,
109, 181 | addcanad 11180 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(2↑(𝑗 + 1)) =
(♯‘((2↑(𝑗
+ 1))...((2↑((𝑗 + 1) +
1)) − 1)))) |
183 | 182 | oveq1d 7290 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑(𝑗 + 1)) ·
(𝐹‘(2↑(𝑗 + 1)))) =
((♯‘((2↑(𝑗
+ 1))...((2↑((𝑗 + 1) +
1)) − 1))) · (𝐹‘(2↑(𝑗 + 1))))) |
184 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑗 + 1) → (𝐺‘𝑛) = (𝐺‘(𝑗 + 1))) |
185 | | oveq2 7283 |
. . . . . . . . . . . 12
⊢ (𝑛 = (𝑗 + 1) → (2↑𝑛) = (2↑(𝑗 + 1))) |
186 | 185 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝑛 = (𝑗 + 1) → (𝐹‘(2↑𝑛)) = (𝐹‘(2↑(𝑗 + 1)))) |
187 | 185, 186 | oveq12d 7293 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑗 + 1) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1))))) |
188 | 184, 187 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑗 + 1) → ((𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) ↔ (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))))) |
189 | 61 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
∀𝑛 ∈
ℕ0 (𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛)))) |
190 | 188, 189,
71 | rspcdva 3562 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1))))) |
191 | 81 | recnd 11003 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘(2↑(𝑗 + 1))) ∈
ℂ) |
192 | | fsumconst 15502 |
. . . . . . . . . 10
⊢
((((2↑(𝑗 +
1))...((2↑((𝑗 + 1) +
1)) − 1)) ∈ Fin ∧ (𝐹‘(2↑(𝑗 + 1))) ∈ ℂ) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1))) =
((♯‘((2↑(𝑗
+ 1))...((2↑((𝑗 + 1) +
1)) − 1))) · (𝐹‘(2↑(𝑗 + 1))))) |
193 | 67, 191, 192 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
Σ𝑘 ∈
((2↑(𝑗 +
1))...((2↑((𝑗 + 1) +
1)) − 1))(𝐹‘(2↑(𝑗 + 1))) = ((♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))
· (𝐹‘(2↑(𝑗 + 1))))) |
194 | 183, 190,
193 | 3eqtr4d 2788 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐺‘(𝑗 + 1)) = Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1)))) |
195 | 100, 194 | breqtrrd 5102 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
Σ𝑘 ∈
((2↑(𝑗 +
1))...((2↑((𝑗 + 1) +
1)) − 1))(𝐹‘𝑘) ≤ (𝐺‘(𝑗 + 1))) |
196 | | elfznn 13285 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1)) → 𝑘 ∈
ℕ) |
197 | 68, 196, 39 | syl2an 596 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) →
(𝐹‘𝑘) ∈ ℝ) |
198 | 101, 197 | fsumrecl 15446 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
Σ𝑘 ∈
(1...((2↑(𝑗 + 1))
− 1))(𝐹‘𝑘) ∈
ℝ) |
199 | 67, 77 | fsumrecl 15446 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
Σ𝑘 ∈
((2↑(𝑗 +
1))...((2↑((𝑗 + 1) +
1)) − 1))(𝐹‘𝑘) ∈ ℝ) |
200 | | nn0uz 12620 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
201 | | 0zd 12331 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈
ℤ) |
202 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
203 | | nnexpcl 13795 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ ℕ ∧ 𝑛
∈ ℕ0) → (2↑𝑛) ∈ ℕ) |
204 | 69, 202, 203 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(2↑𝑛) ∈
ℕ) |
205 | 204 | nnred 11988 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(2↑𝑛) ∈
ℝ) |
206 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (2↑𝑛) → (𝐹‘𝑘) = (𝐹‘(2↑𝑛))) |
207 | 206 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (2↑𝑛) → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘(2↑𝑛)) ∈ ℝ)) |
208 | 40 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
∀𝑘 ∈ ℕ
(𝐹‘𝑘) ∈ ℝ) |
209 | 207, 208,
204 | rspcdva 3562 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐹‘(2↑𝑛)) ∈
ℝ) |
210 | 205, 209 | remulcld 11005 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
((2↑𝑛) · (𝐹‘(2↑𝑛))) ∈
ℝ) |
211 | 60, 210 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) ∈ ℝ) |
212 | 200, 201,
211 | serfre 13752 |
. . . . . . . . 9
⊢ (𝜑 → seq0( + , 𝐺):ℕ0⟶ℝ) |
213 | 212 | ffvelrnda 6961 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (seq0( +
, 𝐺)‘𝑗) ∈
ℝ) |
214 | 135, 81 | remulcld 11005 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((2↑(𝑗 + 1)) ·
(𝐹‘(2↑(𝑗 + 1)))) ∈
ℝ) |
215 | 190, 214 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐺‘(𝑗 + 1)) ∈ ℝ) |
216 | | le2add 11457 |
. . . . . . . 8
⊢
(((Σ𝑘 ∈
(1...((2↑(𝑗 + 1))
− 1))(𝐹‘𝑘) ∈ ℝ ∧
Σ𝑘 ∈
((2↑(𝑗 +
1))...((2↑((𝑗 + 1) +
1)) − 1))(𝐹‘𝑘) ∈ ℝ) ∧ ((seq0( + , 𝐺)‘𝑗) ∈ ℝ ∧ (𝐺‘(𝑗 + 1)) ∈ ℝ)) → ((Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹‘𝑘) ≤ (seq0( + , 𝐺)‘𝑗) ∧ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘𝑘) ≤ (𝐺‘(𝑗 + 1))) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))) |
217 | 198, 199,
213, 215, 216 | syl22anc 836 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((Σ𝑘 ∈
(1...((2↑(𝑗 + 1))
− 1))(𝐹‘𝑘) ≤ (seq0( + , 𝐺)‘𝑗) ∧ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘𝑘) ≤ (𝐺‘(𝑗 + 1))) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))) |
218 | 195, 217 | mpan2d 691 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(Σ𝑘 ∈
(1...((2↑(𝑗 + 1))
− 1))(𝐹‘𝑘) ≤ (seq0( + , 𝐺)‘𝑗) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))) |
219 | | eqidd 2739 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) →
(𝐹‘𝑘) = (𝐹‘𝑘)) |
220 | 39 | recnd 11003 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
221 | 68, 196, 220 | syl2an 596 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) →
(𝐹‘𝑘) ∈ ℂ) |
222 | 219, 126,
221 | fsumser 15442 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
Σ𝑘 ∈
(1...((2↑(𝑗 + 1))
− 1))(𝐹‘𝑘) = (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1))) |
223 | 222 | eqcomd 2744 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (seq1( +
, 𝐹)‘((2↑(𝑗 + 1)) − 1)) =
Σ𝑘 ∈
(1...((2↑(𝑗 + 1))
− 1))(𝐹‘𝑘)) |
224 | 223 | breq1d 5084 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((seq1( +
, 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( +
, 𝐺)‘𝑗) ↔ Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹‘𝑘) ≤ (seq0( + , 𝐺)‘𝑗))) |
225 | | eqidd 2739 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1))) →
(𝐹‘𝑘) = (𝐹‘𝑘)) |
226 | | elfznn 13285 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)) →
𝑘 ∈
ℕ) |
227 | 68, 226, 220 | syl2an 596 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1))) →
(𝐹‘𝑘) ∈ ℂ) |
228 | 225, 166,
227 | fsumser 15442 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
Σ𝑘 ∈
(1...((2↑((𝑗 + 1) +
1)) − 1))(𝐹‘𝑘) = (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1))) |
229 | | fzfid 13693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(1...((2↑((𝑗 + 1) +
1)) − 1)) ∈ Fin) |
230 | 178, 155,
229, 227 | fsumsplit 15453 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
Σ𝑘 ∈
(1...((2↑((𝑗 + 1) +
1)) − 1))(𝐹‘𝑘) = (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘𝑘))) |
231 | 228, 230 | eqtr3d 2780 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (seq1( +
, 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) =
(Σ𝑘 ∈
(1...((2↑(𝑗 + 1))
− 1))(𝐹‘𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘𝑘))) |
232 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈
ℕ0) |
233 | 232, 200 | eleqtrdi 2849 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈
(ℤ≥‘0)) |
234 | | seqp1 13736 |
. . . . . . . 8
⊢ (𝑗 ∈
(ℤ≥‘0) → (seq0( + , 𝐺)‘(𝑗 + 1)) = ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))) |
235 | 233, 234 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (seq0( +
, 𝐺)‘(𝑗 + 1)) = ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))) |
236 | 231, 235 | breq12d 5087 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((seq1( +
, 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤
(seq0( + , 𝐺)‘(𝑗 + 1)) ↔ (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))) |
237 | 218, 224,
236 | 3imtr4d 294 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((seq1( +
, 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( +
, 𝐺)‘𝑗) → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤
(seq0( + , 𝐺)‘(𝑗 + 1)))) |
238 | 237 | expcom 414 |
. . . 4
⊢ (𝑗 ∈ ℕ0
→ (𝜑 → ((seq1( + ,
𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( +
, 𝐺)‘𝑗) → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤
(seq0( + , 𝐺)‘(𝑗 + 1))))) |
239 | 238 | a2d 29 |
. . 3
⊢ (𝑗 ∈ ℕ0
→ ((𝜑 → (seq1( + ,
𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( +
, 𝐺)‘𝑗)) → (𝜑 → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1))))) |
240 | 18, 24, 30, 36, 66, 239 | nn0ind 12415 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝜑 → (seq1( + ,
𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( +
, 𝐺)‘𝑁))) |
241 | 240 | impcom 408 |
1
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (seq1( +
, 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( +
, 𝐺)‘𝑁)) |