MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chordthmlem4 Structured version   Visualization version   GIF version

Theorem chordthmlem4 25890
Description: If P is on the segment AB and M is the midpoint of AB, then PA · PB = BM 2 PM 2 . If all lengths are reexpressed as fractions of AB, this reduces to the identity 𝑋 · (1 − 𝑋) = (1 / 2) 2 − ((1 / 2) − 𝑋) 2 . (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
chordthmlem4.A (𝜑𝐴 ∈ ℂ)
chordthmlem4.B (𝜑𝐵 ∈ ℂ)
chordthmlem4.X (𝜑𝑋 ∈ (0[,]1))
chordthmlem4.M (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
chordthmlem4.P (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
Assertion
Ref Expression
chordthmlem4 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑀))↑2) − ((abs‘(𝑃𝑀))↑2)))

Proof of Theorem chordthmlem4
StepHypRef Expression
1 1red 10907 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
2 unitssre 13160 . . . . . . . . 9 (0[,]1) ⊆ ℝ
3 chordthmlem4.X . . . . . . . . 9 (𝜑𝑋 ∈ (0[,]1))
42, 3sselid 3915 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
51, 4resubcld 11333 . . . . . . 7 (𝜑 → (1 − 𝑋) ∈ ℝ)
65recnd 10934 . . . . . 6 (𝜑 → (1 − 𝑋) ∈ ℂ)
76abscld 15076 . . . . 5 (𝜑 → (abs‘(1 − 𝑋)) ∈ ℝ)
87recnd 10934 . . . 4 (𝜑 → (abs‘(1 − 𝑋)) ∈ ℂ)
9 chordthmlem4.B . . . . . . 7 (𝜑𝐵 ∈ ℂ)
10 chordthmlem4.A . . . . . . 7 (𝜑𝐴 ∈ ℂ)
119, 10subcld 11262 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℂ)
1211abscld 15076 . . . . 5 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℝ)
1312recnd 10934 . . . 4 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℂ)
144recnd 10934 . . . . . 6 (𝜑𝑋 ∈ ℂ)
1514abscld 15076 . . . . 5 (𝜑 → (abs‘𝑋) ∈ ℝ)
1615recnd 10934 . . . 4 (𝜑 → (abs‘𝑋) ∈ ℂ)
178, 13, 16, 13mul4d 11117 . . 3 (𝜑 → (((abs‘(1 − 𝑋)) · (abs‘(𝐵𝐴))) · ((abs‘𝑋) · (abs‘(𝐵𝐴)))) = (((abs‘(1 − 𝑋)) · (abs‘𝑋)) · ((abs‘(𝐵𝐴)) · (abs‘(𝐵𝐴)))))
18 chordthmlem4.P . . . . . . 7 (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
1914, 10mulcld 10926 . . . . . . . . . 10 (𝜑 → (𝑋 · 𝐴) ∈ ℂ)
206, 9mulcld 10926 . . . . . . . . . 10 (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ)
2119, 20addcld 10925 . . . . . . . . 9 (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ)
2218, 21eqeltrd 2839 . . . . . . . 8 (𝜑𝑃 ∈ ℂ)
2310, 22, 9, 14affineequiv2 25879 . . . . . . 7 (𝜑 → (𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ↔ (𝑃𝐴) = ((1 − 𝑋) · (𝐵𝐴))))
2418, 23mpbid 231 . . . . . 6 (𝜑 → (𝑃𝐴) = ((1 − 𝑋) · (𝐵𝐴)))
2524fveq2d 6760 . . . . 5 (𝜑 → (abs‘(𝑃𝐴)) = (abs‘((1 − 𝑋) · (𝐵𝐴))))
266, 11absmuld 15094 . . . . 5 (𝜑 → (abs‘((1 − 𝑋) · (𝐵𝐴))) = ((abs‘(1 − 𝑋)) · (abs‘(𝐵𝐴))))
2725, 26eqtrd 2778 . . . 4 (𝜑 → (abs‘(𝑃𝐴)) = ((abs‘(1 − 𝑋)) · (abs‘(𝐵𝐴))))
2822, 9abssubd 15093 . . . . 5 (𝜑 → (abs‘(𝑃𝐵)) = (abs‘(𝐵𝑃)))
2910, 22, 9, 14affineequiv 25878 . . . . . . 7 (𝜑 → (𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ↔ (𝐵𝑃) = (𝑋 · (𝐵𝐴))))
3018, 29mpbid 231 . . . . . 6 (𝜑 → (𝐵𝑃) = (𝑋 · (𝐵𝐴)))
3130fveq2d 6760 . . . . 5 (𝜑 → (abs‘(𝐵𝑃)) = (abs‘(𝑋 · (𝐵𝐴))))
3214, 11absmuld 15094 . . . . 5 (𝜑 → (abs‘(𝑋 · (𝐵𝐴))) = ((abs‘𝑋) · (abs‘(𝐵𝐴))))
3328, 31, 323eqtrd 2782 . . . 4 (𝜑 → (abs‘(𝑃𝐵)) = ((abs‘𝑋) · (abs‘(𝐵𝐴))))
3427, 33oveq12d 7273 . . 3 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(1 − 𝑋)) · (abs‘(𝐵𝐴))) · ((abs‘𝑋) · (abs‘(𝐵𝐴)))))
3513sqvald 13789 . . . 4 (𝜑 → ((abs‘(𝐵𝐴))↑2) = ((abs‘(𝐵𝐴)) · (abs‘(𝐵𝐴))))
3635oveq2d 7271 . . 3 (𝜑 → (((abs‘(1 − 𝑋)) · (abs‘𝑋)) · ((abs‘(𝐵𝐴))↑2)) = (((abs‘(1 − 𝑋)) · (abs‘𝑋)) · ((abs‘(𝐵𝐴)) · (abs‘(𝐵𝐴)))))
3717, 34, 363eqtr4d 2788 . 2 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(1 − 𝑋)) · (abs‘𝑋)) · ((abs‘(𝐵𝐴))↑2)))
381recnd 10934 . . . . . 6 (𝜑 → 1 ∈ ℂ)
3938halfcld 12148 . . . . 5 (𝜑 → (1 / 2) ∈ ℂ)
4039sqcld 13790 . . . 4 (𝜑 → ((1 / 2)↑2) ∈ ℂ)
411rehalfcld 12150 . . . . . . . . 9 (𝜑 → (1 / 2) ∈ ℝ)
4241, 4resubcld 11333 . . . . . . . 8 (𝜑 → ((1 / 2) − 𝑋) ∈ ℝ)
4342recnd 10934 . . . . . . 7 (𝜑 → ((1 / 2) − 𝑋) ∈ ℂ)
4443abscld 15076 . . . . . 6 (𝜑 → (abs‘((1 / 2) − 𝑋)) ∈ ℝ)
4544recnd 10934 . . . . 5 (𝜑 → (abs‘((1 / 2) − 𝑋)) ∈ ℂ)
4645sqcld 13790 . . . 4 (𝜑 → ((abs‘((1 / 2) − 𝑋))↑2) ∈ ℂ)
4713sqcld 13790 . . . 4 (𝜑 → ((abs‘(𝐵𝐴))↑2) ∈ ℂ)
4840, 46, 47subdird 11362 . . 3 (𝜑 → ((((1 / 2)↑2) − ((abs‘((1 / 2) − 𝑋))↑2)) · ((abs‘(𝐵𝐴))↑2)) = ((((1 / 2)↑2) · ((abs‘(𝐵𝐴))↑2)) − (((abs‘((1 / 2) − 𝑋))↑2) · ((abs‘(𝐵𝐴))↑2))))
49 subsq 13854 . . . . . . 7 (((1 / 2) ∈ ℂ ∧ ((1 / 2) − 𝑋) ∈ ℂ) → (((1 / 2)↑2) − (((1 / 2) − 𝑋)↑2)) = (((1 / 2) + ((1 / 2) − 𝑋)) · ((1 / 2) − ((1 / 2) − 𝑋))))
5039, 43, 49syl2anc 583 . . . . . 6 (𝜑 → (((1 / 2)↑2) − (((1 / 2) − 𝑋)↑2)) = (((1 / 2) + ((1 / 2) − 𝑋)) · ((1 / 2) − ((1 / 2) − 𝑋))))
5139, 39, 14addsubassd 11282 . . . . . . . 8 (𝜑 → (((1 / 2) + (1 / 2)) − 𝑋) = ((1 / 2) + ((1 / 2) − 𝑋)))
52382halvesd 12149 . . . . . . . . 9 (𝜑 → ((1 / 2) + (1 / 2)) = 1)
5352oveq1d 7270 . . . . . . . 8 (𝜑 → (((1 / 2) + (1 / 2)) − 𝑋) = (1 − 𝑋))
5451, 53eqtr3d 2780 . . . . . . 7 (𝜑 → ((1 / 2) + ((1 / 2) − 𝑋)) = (1 − 𝑋))
5539, 14nncand 11267 . . . . . . 7 (𝜑 → ((1 / 2) − ((1 / 2) − 𝑋)) = 𝑋)
5654, 55oveq12d 7273 . . . . . 6 (𝜑 → (((1 / 2) + ((1 / 2) − 𝑋)) · ((1 / 2) − ((1 / 2) − 𝑋))) = ((1 − 𝑋) · 𝑋))
5750, 56eqtr2d 2779 . . . . 5 (𝜑 → ((1 − 𝑋) · 𝑋) = (((1 / 2)↑2) − (((1 / 2) − 𝑋)↑2)))
58 elicc01 13127 . . . . . . . . 9 (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1))
593, 58sylib 217 . . . . . . . 8 (𝜑 → (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1))
6059simp3d 1142 . . . . . . 7 (𝜑𝑋 ≤ 1)
614, 1, 60abssubge0d 15071 . . . . . 6 (𝜑 → (abs‘(1 − 𝑋)) = (1 − 𝑋))
6259simp2d 1141 . . . . . . 7 (𝜑 → 0 ≤ 𝑋)
634, 62absidd 15062 . . . . . 6 (𝜑 → (abs‘𝑋) = 𝑋)
6461, 63oveq12d 7273 . . . . 5 (𝜑 → ((abs‘(1 − 𝑋)) · (abs‘𝑋)) = ((1 − 𝑋) · 𝑋))
65 absresq 14942 . . . . . . 7 (((1 / 2) − 𝑋) ∈ ℝ → ((abs‘((1 / 2) − 𝑋))↑2) = (((1 / 2) − 𝑋)↑2))
6642, 65syl 17 . . . . . 6 (𝜑 → ((abs‘((1 / 2) − 𝑋))↑2) = (((1 / 2) − 𝑋)↑2))
6766oveq2d 7271 . . . . 5 (𝜑 → (((1 / 2)↑2) − ((abs‘((1 / 2) − 𝑋))↑2)) = (((1 / 2)↑2) − (((1 / 2) − 𝑋)↑2)))
6857, 64, 673eqtr4d 2788 . . . 4 (𝜑 → ((abs‘(1 − 𝑋)) · (abs‘𝑋)) = (((1 / 2)↑2) − ((abs‘((1 / 2) − 𝑋))↑2)))
6968oveq1d 7270 . . 3 (𝜑 → (((abs‘(1 − 𝑋)) · (abs‘𝑋)) · ((abs‘(𝐵𝐴))↑2)) = ((((1 / 2)↑2) − ((abs‘((1 / 2) − 𝑋))↑2)) · ((abs‘(𝐵𝐴))↑2)))
70 2cnd 11981 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℂ)
71 2ne0 12007 . . . . . . . . . . . . . 14 2 ≠ 0
7271a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ≠ 0)
739, 70, 72divcan4d 11687 . . . . . . . . . . . 12 (𝜑 → ((𝐵 · 2) / 2) = 𝐵)
749times2d 12147 . . . . . . . . . . . . 13 (𝜑 → (𝐵 · 2) = (𝐵 + 𝐵))
7574oveq1d 7270 . . . . . . . . . . . 12 (𝜑 → ((𝐵 · 2) / 2) = ((𝐵 + 𝐵) / 2))
7673, 75eqtr3d 2780 . . . . . . . . . . 11 (𝜑𝐵 = ((𝐵 + 𝐵) / 2))
77 chordthmlem4.M . . . . . . . . . . 11 (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
7876, 77oveq12d 7273 . . . . . . . . . 10 (𝜑 → (𝐵𝑀) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2)))
799, 9addcld 10925 . . . . . . . . . . 11 (𝜑 → (𝐵 + 𝐵) ∈ ℂ)
8010, 9addcld 10925 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
8179, 80, 70, 72divsubdird 11720 . . . . . . . . . 10 (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2)))
829, 10, 9pnpcan2d 11300 . . . . . . . . . . 11 (𝜑 → ((𝐵 + 𝐵) − (𝐴 + 𝐵)) = (𝐵𝐴))
8382oveq1d 7270 . . . . . . . . . 10 (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = ((𝐵𝐴) / 2))
8478, 81, 833eqtr2d 2784 . . . . . . . . 9 (𝜑 → (𝐵𝑀) = ((𝐵𝐴) / 2))
8511, 70, 72divrec2d 11685 . . . . . . . . 9 (𝜑 → ((𝐵𝐴) / 2) = ((1 / 2) · (𝐵𝐴)))
8684, 85eqtrd 2778 . . . . . . . 8 (𝜑 → (𝐵𝑀) = ((1 / 2) · (𝐵𝐴)))
8786fveq2d 6760 . . . . . . 7 (𝜑 → (abs‘(𝐵𝑀)) = (abs‘((1 / 2) · (𝐵𝐴))))
8839, 11absmuld 15094 . . . . . . 7 (𝜑 → (abs‘((1 / 2) · (𝐵𝐴))) = ((abs‘(1 / 2)) · (abs‘(𝐵𝐴))))
89 0red 10909 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
90 halfgt0 12119 . . . . . . . . . . 11 0 < (1 / 2)
9190a1i 11 . . . . . . . . . 10 (𝜑 → 0 < (1 / 2))
9289, 41, 91ltled 11053 . . . . . . . . 9 (𝜑 → 0 ≤ (1 / 2))
9341, 92absidd 15062 . . . . . . . 8 (𝜑 → (abs‘(1 / 2)) = (1 / 2))
9493oveq1d 7270 . . . . . . 7 (𝜑 → ((abs‘(1 / 2)) · (abs‘(𝐵𝐴))) = ((1 / 2) · (abs‘(𝐵𝐴))))
9587, 88, 943eqtrd 2782 . . . . . 6 (𝜑 → (abs‘(𝐵𝑀)) = ((1 / 2) · (abs‘(𝐵𝐴))))
9695oveq1d 7270 . . . . 5 (𝜑 → ((abs‘(𝐵𝑀))↑2) = (((1 / 2) · (abs‘(𝐵𝐴)))↑2))
9739, 13sqmuld 13804 . . . . 5 (𝜑 → (((1 / 2) · (abs‘(𝐵𝐴)))↑2) = (((1 / 2)↑2) · ((abs‘(𝐵𝐴))↑2)))
9896, 97eqtrd 2778 . . . 4 (𝜑 → ((abs‘(𝐵𝑀))↑2) = (((1 / 2)↑2) · ((abs‘(𝐵𝐴))↑2)))
9939, 14, 11subdird 11362 . . . . . . . . 9 (𝜑 → (((1 / 2) − 𝑋) · (𝐵𝐴)) = (((1 / 2) · (𝐵𝐴)) − (𝑋 · (𝐵𝐴))))
10086, 30oveq12d 7273 . . . . . . . . 9 (𝜑 → ((𝐵𝑀) − (𝐵𝑃)) = (((1 / 2) · (𝐵𝐴)) − (𝑋 · (𝐵𝐴))))
10180halfcld 12148 . . . . . . . . . . 11 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ)
10277, 101eqeltrd 2839 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
1039, 102, 22nnncan1d 11296 . . . . . . . . 9 (𝜑 → ((𝐵𝑀) − (𝐵𝑃)) = (𝑃𝑀))
10499, 100, 1033eqtr2rd 2785 . . . . . . . 8 (𝜑 → (𝑃𝑀) = (((1 / 2) − 𝑋) · (𝐵𝐴)))
105104fveq2d 6760 . . . . . . 7 (𝜑 → (abs‘(𝑃𝑀)) = (abs‘(((1 / 2) − 𝑋) · (𝐵𝐴))))
10643, 11absmuld 15094 . . . . . . 7 (𝜑 → (abs‘(((1 / 2) − 𝑋) · (𝐵𝐴))) = ((abs‘((1 / 2) − 𝑋)) · (abs‘(𝐵𝐴))))
107105, 106eqtrd 2778 . . . . . 6 (𝜑 → (abs‘(𝑃𝑀)) = ((abs‘((1 / 2) − 𝑋)) · (abs‘(𝐵𝐴))))
108107oveq1d 7270 . . . . 5 (𝜑 → ((abs‘(𝑃𝑀))↑2) = (((abs‘((1 / 2) − 𝑋)) · (abs‘(𝐵𝐴)))↑2))
10945, 13sqmuld 13804 . . . . 5 (𝜑 → (((abs‘((1 / 2) − 𝑋)) · (abs‘(𝐵𝐴)))↑2) = (((abs‘((1 / 2) − 𝑋))↑2) · ((abs‘(𝐵𝐴))↑2)))
110108, 109eqtrd 2778 . . . 4 (𝜑 → ((abs‘(𝑃𝑀))↑2) = (((abs‘((1 / 2) − 𝑋))↑2) · ((abs‘(𝐵𝐴))↑2)))
11198, 110oveq12d 7273 . . 3 (𝜑 → (((abs‘(𝐵𝑀))↑2) − ((abs‘(𝑃𝑀))↑2)) = ((((1 / 2)↑2) · ((abs‘(𝐵𝐴))↑2)) − (((abs‘((1 / 2) − 𝑋))↑2) · ((abs‘(𝐵𝐴))↑2))))
11248, 69, 1113eqtr4rd 2789 . 2 (𝜑 → (((abs‘(𝐵𝑀))↑2) − ((abs‘(𝑃𝑀))↑2)) = (((abs‘(1 − 𝑋)) · (abs‘𝑋)) · ((abs‘(𝐵𝐴))↑2)))
11337, 112eqtr4d 2781 1 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑀))↑2) − ((abs‘(𝑃𝑀))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  [,]cicc 13011  cexp 13710  abscabs 14873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-icc 13015  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875
This theorem is referenced by:  chordthmlem5  25891
  Copyright terms: Public domain W3C validator