MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chordthmlem4 Structured version   Visualization version   GIF version

Theorem chordthmlem4 25130
Description: If P is on the segment AB and M is the midpoint of AB, then PA · PB = BM 2 PM 2 . If all lengths are reexpressed as fractions of AB, this reduces to the identity 𝑋 · (1 − 𝑋) = (1 / 2) 2 − ((1 / 2) − 𝑋) 2 . (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
chordthmlem4.A (𝜑𝐴 ∈ ℂ)
chordthmlem4.B (𝜑𝐵 ∈ ℂ)
chordthmlem4.X (𝜑𝑋 ∈ (0[,]1))
chordthmlem4.M (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
chordthmlem4.P (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
Assertion
Ref Expression
chordthmlem4 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑀))↑2) − ((abs‘(𝑃𝑀))↑2)))

Proof of Theorem chordthmlem4
StepHypRef Expression
1 1red 10439 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
2 unitssre 12700 . . . . . . . . 9 (0[,]1) ⊆ ℝ
3 chordthmlem4.X . . . . . . . . 9 (𝜑𝑋 ∈ (0[,]1))
42, 3sseldi 3851 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
51, 4resubcld 10868 . . . . . . 7 (𝜑 → (1 − 𝑋) ∈ ℝ)
65recnd 10467 . . . . . 6 (𝜑 → (1 − 𝑋) ∈ ℂ)
76abscld 14656 . . . . 5 (𝜑 → (abs‘(1 − 𝑋)) ∈ ℝ)
87recnd 10467 . . . 4 (𝜑 → (abs‘(1 − 𝑋)) ∈ ℂ)
9 chordthmlem4.B . . . . . . 7 (𝜑𝐵 ∈ ℂ)
10 chordthmlem4.A . . . . . . 7 (𝜑𝐴 ∈ ℂ)
119, 10subcld 10797 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℂ)
1211abscld 14656 . . . . 5 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℝ)
1312recnd 10467 . . . 4 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℂ)
144recnd 10467 . . . . . 6 (𝜑𝑋 ∈ ℂ)
1514abscld 14656 . . . . 5 (𝜑 → (abs‘𝑋) ∈ ℝ)
1615recnd 10467 . . . 4 (𝜑 → (abs‘𝑋) ∈ ℂ)
178, 13, 16, 13mul4d 10651 . . 3 (𝜑 → (((abs‘(1 − 𝑋)) · (abs‘(𝐵𝐴))) · ((abs‘𝑋) · (abs‘(𝐵𝐴)))) = (((abs‘(1 − 𝑋)) · (abs‘𝑋)) · ((abs‘(𝐵𝐴)) · (abs‘(𝐵𝐴)))))
18 chordthmlem4.P . . . . . . 7 (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
1914, 10mulcld 10459 . . . . . . . . . 10 (𝜑 → (𝑋 · 𝐴) ∈ ℂ)
206, 9mulcld 10459 . . . . . . . . . 10 (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ)
2119, 20addcld 10458 . . . . . . . . 9 (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ)
2218, 21eqeltrd 2861 . . . . . . . 8 (𝜑𝑃 ∈ ℂ)
2310, 22, 9, 14affineequiv2 25119 . . . . . . 7 (𝜑 → (𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ↔ (𝑃𝐴) = ((1 − 𝑋) · (𝐵𝐴))))
2418, 23mpbid 224 . . . . . 6 (𝜑 → (𝑃𝐴) = ((1 − 𝑋) · (𝐵𝐴)))
2524fveq2d 6501 . . . . 5 (𝜑 → (abs‘(𝑃𝐴)) = (abs‘((1 − 𝑋) · (𝐵𝐴))))
266, 11absmuld 14674 . . . . 5 (𝜑 → (abs‘((1 − 𝑋) · (𝐵𝐴))) = ((abs‘(1 − 𝑋)) · (abs‘(𝐵𝐴))))
2725, 26eqtrd 2809 . . . 4 (𝜑 → (abs‘(𝑃𝐴)) = ((abs‘(1 − 𝑋)) · (abs‘(𝐵𝐴))))
2822, 9abssubd 14673 . . . . 5 (𝜑 → (abs‘(𝑃𝐵)) = (abs‘(𝐵𝑃)))
2910, 22, 9, 14affineequiv 25118 . . . . . . 7 (𝜑 → (𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ↔ (𝐵𝑃) = (𝑋 · (𝐵𝐴))))
3018, 29mpbid 224 . . . . . 6 (𝜑 → (𝐵𝑃) = (𝑋 · (𝐵𝐴)))
3130fveq2d 6501 . . . . 5 (𝜑 → (abs‘(𝐵𝑃)) = (abs‘(𝑋 · (𝐵𝐴))))
3214, 11absmuld 14674 . . . . 5 (𝜑 → (abs‘(𝑋 · (𝐵𝐴))) = ((abs‘𝑋) · (abs‘(𝐵𝐴))))
3328, 31, 323eqtrd 2813 . . . 4 (𝜑 → (abs‘(𝑃𝐵)) = ((abs‘𝑋) · (abs‘(𝐵𝐴))))
3427, 33oveq12d 6993 . . 3 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(1 − 𝑋)) · (abs‘(𝐵𝐴))) · ((abs‘𝑋) · (abs‘(𝐵𝐴)))))
3513sqvald 13321 . . . 4 (𝜑 → ((abs‘(𝐵𝐴))↑2) = ((abs‘(𝐵𝐴)) · (abs‘(𝐵𝐴))))
3635oveq2d 6991 . . 3 (𝜑 → (((abs‘(1 − 𝑋)) · (abs‘𝑋)) · ((abs‘(𝐵𝐴))↑2)) = (((abs‘(1 − 𝑋)) · (abs‘𝑋)) · ((abs‘(𝐵𝐴)) · (abs‘(𝐵𝐴)))))
3717, 34, 363eqtr4d 2819 . 2 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(1 − 𝑋)) · (abs‘𝑋)) · ((abs‘(𝐵𝐴))↑2)))
381recnd 10467 . . . . . 6 (𝜑 → 1 ∈ ℂ)
3938halfcld 11691 . . . . 5 (𝜑 → (1 / 2) ∈ ℂ)
4039sqcld 13322 . . . 4 (𝜑 → ((1 / 2)↑2) ∈ ℂ)
411rehalfcld 11693 . . . . . . . . 9 (𝜑 → (1 / 2) ∈ ℝ)
4241, 4resubcld 10868 . . . . . . . 8 (𝜑 → ((1 / 2) − 𝑋) ∈ ℝ)
4342recnd 10467 . . . . . . 7 (𝜑 → ((1 / 2) − 𝑋) ∈ ℂ)
4443abscld 14656 . . . . . 6 (𝜑 → (abs‘((1 / 2) − 𝑋)) ∈ ℝ)
4544recnd 10467 . . . . 5 (𝜑 → (abs‘((1 / 2) − 𝑋)) ∈ ℂ)
4645sqcld 13322 . . . 4 (𝜑 → ((abs‘((1 / 2) − 𝑋))↑2) ∈ ℂ)
4713sqcld 13322 . . . 4 (𝜑 → ((abs‘(𝐵𝐴))↑2) ∈ ℂ)
4840, 46, 47subdird 10897 . . 3 (𝜑 → ((((1 / 2)↑2) − ((abs‘((1 / 2) − 𝑋))↑2)) · ((abs‘(𝐵𝐴))↑2)) = ((((1 / 2)↑2) · ((abs‘(𝐵𝐴))↑2)) − (((abs‘((1 / 2) − 𝑋))↑2) · ((abs‘(𝐵𝐴))↑2))))
49 subsq 13386 . . . . . . 7 (((1 / 2) ∈ ℂ ∧ ((1 / 2) − 𝑋) ∈ ℂ) → (((1 / 2)↑2) − (((1 / 2) − 𝑋)↑2)) = (((1 / 2) + ((1 / 2) − 𝑋)) · ((1 / 2) − ((1 / 2) − 𝑋))))
5039, 43, 49syl2anc 576 . . . . . 6 (𝜑 → (((1 / 2)↑2) − (((1 / 2) − 𝑋)↑2)) = (((1 / 2) + ((1 / 2) − 𝑋)) · ((1 / 2) − ((1 / 2) − 𝑋))))
5139, 39, 14addsubassd 10817 . . . . . . . 8 (𝜑 → (((1 / 2) + (1 / 2)) − 𝑋) = ((1 / 2) + ((1 / 2) − 𝑋)))
52382halvesd 11692 . . . . . . . . 9 (𝜑 → ((1 / 2) + (1 / 2)) = 1)
5352oveq1d 6990 . . . . . . . 8 (𝜑 → (((1 / 2) + (1 / 2)) − 𝑋) = (1 − 𝑋))
5451, 53eqtr3d 2811 . . . . . . 7 (𝜑 → ((1 / 2) + ((1 / 2) − 𝑋)) = (1 − 𝑋))
5539, 14nncand 10802 . . . . . . 7 (𝜑 → ((1 / 2) − ((1 / 2) − 𝑋)) = 𝑋)
5654, 55oveq12d 6993 . . . . . 6 (𝜑 → (((1 / 2) + ((1 / 2) − 𝑋)) · ((1 / 2) − ((1 / 2) − 𝑋))) = ((1 − 𝑋) · 𝑋))
5750, 56eqtr2d 2810 . . . . 5 (𝜑 → ((1 − 𝑋) · 𝑋) = (((1 / 2)↑2) − (((1 / 2) − 𝑋)↑2)))
58 elicc01 12669 . . . . . . . . 9 (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1))
593, 58sylib 210 . . . . . . . 8 (𝜑 → (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1))
6059simp3d 1125 . . . . . . 7 (𝜑𝑋 ≤ 1)
614, 1, 60abssubge0d 14651 . . . . . 6 (𝜑 → (abs‘(1 − 𝑋)) = (1 − 𝑋))
6259simp2d 1124 . . . . . . 7 (𝜑 → 0 ≤ 𝑋)
634, 62absidd 14642 . . . . . 6 (𝜑 → (abs‘𝑋) = 𝑋)
6461, 63oveq12d 6993 . . . . 5 (𝜑 → ((abs‘(1 − 𝑋)) · (abs‘𝑋)) = ((1 − 𝑋) · 𝑋))
65 absresq 14522 . . . . . . 7 (((1 / 2) − 𝑋) ∈ ℝ → ((abs‘((1 / 2) − 𝑋))↑2) = (((1 / 2) − 𝑋)↑2))
6642, 65syl 17 . . . . . 6 (𝜑 → ((abs‘((1 / 2) − 𝑋))↑2) = (((1 / 2) − 𝑋)↑2))
6766oveq2d 6991 . . . . 5 (𝜑 → (((1 / 2)↑2) − ((abs‘((1 / 2) − 𝑋))↑2)) = (((1 / 2)↑2) − (((1 / 2) − 𝑋)↑2)))
6857, 64, 673eqtr4d 2819 . . . 4 (𝜑 → ((abs‘(1 − 𝑋)) · (abs‘𝑋)) = (((1 / 2)↑2) − ((abs‘((1 / 2) − 𝑋))↑2)))
6968oveq1d 6990 . . 3 (𝜑 → (((abs‘(1 − 𝑋)) · (abs‘𝑋)) · ((abs‘(𝐵𝐴))↑2)) = ((((1 / 2)↑2) − ((abs‘((1 / 2) − 𝑋))↑2)) · ((abs‘(𝐵𝐴))↑2)))
70 2cnd 11517 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℂ)
71 2ne0 11550 . . . . . . . . . . . . . 14 2 ≠ 0
7271a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ≠ 0)
739, 70, 72divcan4d 11222 . . . . . . . . . . . 12 (𝜑 → ((𝐵 · 2) / 2) = 𝐵)
749times2d 11690 . . . . . . . . . . . . 13 (𝜑 → (𝐵 · 2) = (𝐵 + 𝐵))
7574oveq1d 6990 . . . . . . . . . . . 12 (𝜑 → ((𝐵 · 2) / 2) = ((𝐵 + 𝐵) / 2))
7673, 75eqtr3d 2811 . . . . . . . . . . 11 (𝜑𝐵 = ((𝐵 + 𝐵) / 2))
77 chordthmlem4.M . . . . . . . . . . 11 (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
7876, 77oveq12d 6993 . . . . . . . . . 10 (𝜑 → (𝐵𝑀) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2)))
799, 9addcld 10458 . . . . . . . . . . 11 (𝜑 → (𝐵 + 𝐵) ∈ ℂ)
8010, 9addcld 10458 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
8179, 80, 70, 72divsubdird 11255 . . . . . . . . . 10 (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2)))
829, 10, 9pnpcan2d 10835 . . . . . . . . . . 11 (𝜑 → ((𝐵 + 𝐵) − (𝐴 + 𝐵)) = (𝐵𝐴))
8382oveq1d 6990 . . . . . . . . . 10 (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = ((𝐵𝐴) / 2))
8478, 81, 833eqtr2d 2815 . . . . . . . . 9 (𝜑 → (𝐵𝑀) = ((𝐵𝐴) / 2))
8511, 70, 72divrec2d 11220 . . . . . . . . 9 (𝜑 → ((𝐵𝐴) / 2) = ((1 / 2) · (𝐵𝐴)))
8684, 85eqtrd 2809 . . . . . . . 8 (𝜑 → (𝐵𝑀) = ((1 / 2) · (𝐵𝐴)))
8786fveq2d 6501 . . . . . . 7 (𝜑 → (abs‘(𝐵𝑀)) = (abs‘((1 / 2) · (𝐵𝐴))))
8839, 11absmuld 14674 . . . . . . 7 (𝜑 → (abs‘((1 / 2) · (𝐵𝐴))) = ((abs‘(1 / 2)) · (abs‘(𝐵𝐴))))
89 0red 10442 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
90 halfgt0 11662 . . . . . . . . . . 11 0 < (1 / 2)
9190a1i 11 . . . . . . . . . 10 (𝜑 → 0 < (1 / 2))
9289, 41, 91ltled 10587 . . . . . . . . 9 (𝜑 → 0 ≤ (1 / 2))
9341, 92absidd 14642 . . . . . . . 8 (𝜑 → (abs‘(1 / 2)) = (1 / 2))
9493oveq1d 6990 . . . . . . 7 (𝜑 → ((abs‘(1 / 2)) · (abs‘(𝐵𝐴))) = ((1 / 2) · (abs‘(𝐵𝐴))))
9587, 88, 943eqtrd 2813 . . . . . 6 (𝜑 → (abs‘(𝐵𝑀)) = ((1 / 2) · (abs‘(𝐵𝐴))))
9695oveq1d 6990 . . . . 5 (𝜑 → ((abs‘(𝐵𝑀))↑2) = (((1 / 2) · (abs‘(𝐵𝐴)))↑2))
9739, 13sqmuld 13336 . . . . 5 (𝜑 → (((1 / 2) · (abs‘(𝐵𝐴)))↑2) = (((1 / 2)↑2) · ((abs‘(𝐵𝐴))↑2)))
9896, 97eqtrd 2809 . . . 4 (𝜑 → ((abs‘(𝐵𝑀))↑2) = (((1 / 2)↑2) · ((abs‘(𝐵𝐴))↑2)))
9939, 14, 11subdird 10897 . . . . . . . . 9 (𝜑 → (((1 / 2) − 𝑋) · (𝐵𝐴)) = (((1 / 2) · (𝐵𝐴)) − (𝑋 · (𝐵𝐴))))
10086, 30oveq12d 6993 . . . . . . . . 9 (𝜑 → ((𝐵𝑀) − (𝐵𝑃)) = (((1 / 2) · (𝐵𝐴)) − (𝑋 · (𝐵𝐴))))
10180halfcld 11691 . . . . . . . . . . 11 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ)
10277, 101eqeltrd 2861 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
1039, 102, 22nnncan1d 10831 . . . . . . . . 9 (𝜑 → ((𝐵𝑀) − (𝐵𝑃)) = (𝑃𝑀))
10499, 100, 1033eqtr2rd 2816 . . . . . . . 8 (𝜑 → (𝑃𝑀) = (((1 / 2) − 𝑋) · (𝐵𝐴)))
105104fveq2d 6501 . . . . . . 7 (𝜑 → (abs‘(𝑃𝑀)) = (abs‘(((1 / 2) − 𝑋) · (𝐵𝐴))))
10643, 11absmuld 14674 . . . . . . 7 (𝜑 → (abs‘(((1 / 2) − 𝑋) · (𝐵𝐴))) = ((abs‘((1 / 2) − 𝑋)) · (abs‘(𝐵𝐴))))
107105, 106eqtrd 2809 . . . . . 6 (𝜑 → (abs‘(𝑃𝑀)) = ((abs‘((1 / 2) − 𝑋)) · (abs‘(𝐵𝐴))))
108107oveq1d 6990 . . . . 5 (𝜑 → ((abs‘(𝑃𝑀))↑2) = (((abs‘((1 / 2) − 𝑋)) · (abs‘(𝐵𝐴)))↑2))
10945, 13sqmuld 13336 . . . . 5 (𝜑 → (((abs‘((1 / 2) − 𝑋)) · (abs‘(𝐵𝐴)))↑2) = (((abs‘((1 / 2) − 𝑋))↑2) · ((abs‘(𝐵𝐴))↑2)))
110108, 109eqtrd 2809 . . . 4 (𝜑 → ((abs‘(𝑃𝑀))↑2) = (((abs‘((1 / 2) − 𝑋))↑2) · ((abs‘(𝐵𝐴))↑2)))
11198, 110oveq12d 6993 . . 3 (𝜑 → (((abs‘(𝐵𝑀))↑2) − ((abs‘(𝑃𝑀))↑2)) = ((((1 / 2)↑2) · ((abs‘(𝐵𝐴))↑2)) − (((abs‘((1 / 2) − 𝑋))↑2) · ((abs‘(𝐵𝐴))↑2))))
11248, 69, 1113eqtr4rd 2820 . 2 (𝜑 → (((abs‘(𝐵𝑀))↑2) − ((abs‘(𝑃𝑀))↑2)) = (((abs‘(1 − 𝑋)) · (abs‘𝑋)) · ((abs‘(𝐵𝐴))↑2)))
11337, 112eqtr4d 2812 1 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑀))↑2) − ((abs‘(𝑃𝑀))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1069   = wceq 1508  wcel 2051  wne 2962   class class class wbr 4926  cfv 6186  (class class class)co 6975  cc 10332  cr 10333  0cc0 10334  1c1 10335   + caddc 10337   · cmul 10339   < clt 10473  cle 10474  cmin 10669   / cdiv 11097  2c2 11494  [,]cicc 12556  cexp 13243  abscabs 14453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411  ax-pre-sup 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-2nd 7501  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-er 8088  df-en 8306  df-dom 8307  df-sdom 8308  df-sup 8700  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-div 11098  df-nn 11439  df-2 11502  df-3 11503  df-n0 11707  df-z 11793  df-uz 12058  df-rp 12204  df-icc 12560  df-seq 13184  df-exp 13244  df-cj 14318  df-re 14319  df-im 14320  df-sqrt 14454  df-abs 14455
This theorem is referenced by:  chordthmlem5  25131
  Copyright terms: Public domain W3C validator