MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chordthmlem4 Structured version   Visualization version   GIF version

Theorem chordthmlem4 25985
Description: If P is on the segment AB and M is the midpoint of AB, then PA · PB = BM 2 PM 2 . If all lengths are reexpressed as fractions of AB, this reduces to the identity 𝑋 · (1 − 𝑋) = (1 / 2) 2 − ((1 / 2) − 𝑋) 2 . (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
chordthmlem4.A (𝜑𝐴 ∈ ℂ)
chordthmlem4.B (𝜑𝐵 ∈ ℂ)
chordthmlem4.X (𝜑𝑋 ∈ (0[,]1))
chordthmlem4.M (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
chordthmlem4.P (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
Assertion
Ref Expression
chordthmlem4 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑀))↑2) − ((abs‘(𝑃𝑀))↑2)))

Proof of Theorem chordthmlem4
StepHypRef Expression
1 1red 10976 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
2 unitssre 13231 . . . . . . . . 9 (0[,]1) ⊆ ℝ
3 chordthmlem4.X . . . . . . . . 9 (𝜑𝑋 ∈ (0[,]1))
42, 3sselid 3919 . . . . . . . 8 (𝜑𝑋 ∈ ℝ)
51, 4resubcld 11403 . . . . . . 7 (𝜑 → (1 − 𝑋) ∈ ℝ)
65recnd 11003 . . . . . 6 (𝜑 → (1 − 𝑋) ∈ ℂ)
76abscld 15148 . . . . 5 (𝜑 → (abs‘(1 − 𝑋)) ∈ ℝ)
87recnd 11003 . . . 4 (𝜑 → (abs‘(1 − 𝑋)) ∈ ℂ)
9 chordthmlem4.B . . . . . . 7 (𝜑𝐵 ∈ ℂ)
10 chordthmlem4.A . . . . . . 7 (𝜑𝐴 ∈ ℂ)
119, 10subcld 11332 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℂ)
1211abscld 15148 . . . . 5 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℝ)
1312recnd 11003 . . . 4 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℂ)
144recnd 11003 . . . . . 6 (𝜑𝑋 ∈ ℂ)
1514abscld 15148 . . . . 5 (𝜑 → (abs‘𝑋) ∈ ℝ)
1615recnd 11003 . . . 4 (𝜑 → (abs‘𝑋) ∈ ℂ)
178, 13, 16, 13mul4d 11187 . . 3 (𝜑 → (((abs‘(1 − 𝑋)) · (abs‘(𝐵𝐴))) · ((abs‘𝑋) · (abs‘(𝐵𝐴)))) = (((abs‘(1 − 𝑋)) · (abs‘𝑋)) · ((abs‘(𝐵𝐴)) · (abs‘(𝐵𝐴)))))
18 chordthmlem4.P . . . . . . 7 (𝜑𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)))
1914, 10mulcld 10995 . . . . . . . . . 10 (𝜑 → (𝑋 · 𝐴) ∈ ℂ)
206, 9mulcld 10995 . . . . . . . . . 10 (𝜑 → ((1 − 𝑋) · 𝐵) ∈ ℂ)
2119, 20addcld 10994 . . . . . . . . 9 (𝜑 → ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ∈ ℂ)
2218, 21eqeltrd 2839 . . . . . . . 8 (𝜑𝑃 ∈ ℂ)
2310, 22, 9, 14affineequiv2 25974 . . . . . . 7 (𝜑 → (𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ↔ (𝑃𝐴) = ((1 − 𝑋) · (𝐵𝐴))))
2418, 23mpbid 231 . . . . . 6 (𝜑 → (𝑃𝐴) = ((1 − 𝑋) · (𝐵𝐴)))
2524fveq2d 6778 . . . . 5 (𝜑 → (abs‘(𝑃𝐴)) = (abs‘((1 − 𝑋) · (𝐵𝐴))))
266, 11absmuld 15166 . . . . 5 (𝜑 → (abs‘((1 − 𝑋) · (𝐵𝐴))) = ((abs‘(1 − 𝑋)) · (abs‘(𝐵𝐴))))
2725, 26eqtrd 2778 . . . 4 (𝜑 → (abs‘(𝑃𝐴)) = ((abs‘(1 − 𝑋)) · (abs‘(𝐵𝐴))))
2822, 9abssubd 15165 . . . . 5 (𝜑 → (abs‘(𝑃𝐵)) = (abs‘(𝐵𝑃)))
2910, 22, 9, 14affineequiv 25973 . . . . . . 7 (𝜑 → (𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵)) ↔ (𝐵𝑃) = (𝑋 · (𝐵𝐴))))
3018, 29mpbid 231 . . . . . 6 (𝜑 → (𝐵𝑃) = (𝑋 · (𝐵𝐴)))
3130fveq2d 6778 . . . . 5 (𝜑 → (abs‘(𝐵𝑃)) = (abs‘(𝑋 · (𝐵𝐴))))
3214, 11absmuld 15166 . . . . 5 (𝜑 → (abs‘(𝑋 · (𝐵𝐴))) = ((abs‘𝑋) · (abs‘(𝐵𝐴))))
3328, 31, 323eqtrd 2782 . . . 4 (𝜑 → (abs‘(𝑃𝐵)) = ((abs‘𝑋) · (abs‘(𝐵𝐴))))
3427, 33oveq12d 7293 . . 3 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(1 − 𝑋)) · (abs‘(𝐵𝐴))) · ((abs‘𝑋) · (abs‘(𝐵𝐴)))))
3513sqvald 13861 . . . 4 (𝜑 → ((abs‘(𝐵𝐴))↑2) = ((abs‘(𝐵𝐴)) · (abs‘(𝐵𝐴))))
3635oveq2d 7291 . . 3 (𝜑 → (((abs‘(1 − 𝑋)) · (abs‘𝑋)) · ((abs‘(𝐵𝐴))↑2)) = (((abs‘(1 − 𝑋)) · (abs‘𝑋)) · ((abs‘(𝐵𝐴)) · (abs‘(𝐵𝐴)))))
3717, 34, 363eqtr4d 2788 . 2 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(1 − 𝑋)) · (abs‘𝑋)) · ((abs‘(𝐵𝐴))↑2)))
381recnd 11003 . . . . . 6 (𝜑 → 1 ∈ ℂ)
3938halfcld 12218 . . . . 5 (𝜑 → (1 / 2) ∈ ℂ)
4039sqcld 13862 . . . 4 (𝜑 → ((1 / 2)↑2) ∈ ℂ)
411rehalfcld 12220 . . . . . . . . 9 (𝜑 → (1 / 2) ∈ ℝ)
4241, 4resubcld 11403 . . . . . . . 8 (𝜑 → ((1 / 2) − 𝑋) ∈ ℝ)
4342recnd 11003 . . . . . . 7 (𝜑 → ((1 / 2) − 𝑋) ∈ ℂ)
4443abscld 15148 . . . . . 6 (𝜑 → (abs‘((1 / 2) − 𝑋)) ∈ ℝ)
4544recnd 11003 . . . . 5 (𝜑 → (abs‘((1 / 2) − 𝑋)) ∈ ℂ)
4645sqcld 13862 . . . 4 (𝜑 → ((abs‘((1 / 2) − 𝑋))↑2) ∈ ℂ)
4713sqcld 13862 . . . 4 (𝜑 → ((abs‘(𝐵𝐴))↑2) ∈ ℂ)
4840, 46, 47subdird 11432 . . 3 (𝜑 → ((((1 / 2)↑2) − ((abs‘((1 / 2) − 𝑋))↑2)) · ((abs‘(𝐵𝐴))↑2)) = ((((1 / 2)↑2) · ((abs‘(𝐵𝐴))↑2)) − (((abs‘((1 / 2) − 𝑋))↑2) · ((abs‘(𝐵𝐴))↑2))))
49 subsq 13926 . . . . . . 7 (((1 / 2) ∈ ℂ ∧ ((1 / 2) − 𝑋) ∈ ℂ) → (((1 / 2)↑2) − (((1 / 2) − 𝑋)↑2)) = (((1 / 2) + ((1 / 2) − 𝑋)) · ((1 / 2) − ((1 / 2) − 𝑋))))
5039, 43, 49syl2anc 584 . . . . . 6 (𝜑 → (((1 / 2)↑2) − (((1 / 2) − 𝑋)↑2)) = (((1 / 2) + ((1 / 2) − 𝑋)) · ((1 / 2) − ((1 / 2) − 𝑋))))
5139, 39, 14addsubassd 11352 . . . . . . . 8 (𝜑 → (((1 / 2) + (1 / 2)) − 𝑋) = ((1 / 2) + ((1 / 2) − 𝑋)))
52382halvesd 12219 . . . . . . . . 9 (𝜑 → ((1 / 2) + (1 / 2)) = 1)
5352oveq1d 7290 . . . . . . . 8 (𝜑 → (((1 / 2) + (1 / 2)) − 𝑋) = (1 − 𝑋))
5451, 53eqtr3d 2780 . . . . . . 7 (𝜑 → ((1 / 2) + ((1 / 2) − 𝑋)) = (1 − 𝑋))
5539, 14nncand 11337 . . . . . . 7 (𝜑 → ((1 / 2) − ((1 / 2) − 𝑋)) = 𝑋)
5654, 55oveq12d 7293 . . . . . 6 (𝜑 → (((1 / 2) + ((1 / 2) − 𝑋)) · ((1 / 2) − ((1 / 2) − 𝑋))) = ((1 − 𝑋) · 𝑋))
5750, 56eqtr2d 2779 . . . . 5 (𝜑 → ((1 − 𝑋) · 𝑋) = (((1 / 2)↑2) − (((1 / 2) − 𝑋)↑2)))
58 elicc01 13198 . . . . . . . . 9 (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1))
593, 58sylib 217 . . . . . . . 8 (𝜑 → (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1))
6059simp3d 1143 . . . . . . 7 (𝜑𝑋 ≤ 1)
614, 1, 60abssubge0d 15143 . . . . . 6 (𝜑 → (abs‘(1 − 𝑋)) = (1 − 𝑋))
6259simp2d 1142 . . . . . . 7 (𝜑 → 0 ≤ 𝑋)
634, 62absidd 15134 . . . . . 6 (𝜑 → (abs‘𝑋) = 𝑋)
6461, 63oveq12d 7293 . . . . 5 (𝜑 → ((abs‘(1 − 𝑋)) · (abs‘𝑋)) = ((1 − 𝑋) · 𝑋))
65 absresq 15014 . . . . . . 7 (((1 / 2) − 𝑋) ∈ ℝ → ((abs‘((1 / 2) − 𝑋))↑2) = (((1 / 2) − 𝑋)↑2))
6642, 65syl 17 . . . . . 6 (𝜑 → ((abs‘((1 / 2) − 𝑋))↑2) = (((1 / 2) − 𝑋)↑2))
6766oveq2d 7291 . . . . 5 (𝜑 → (((1 / 2)↑2) − ((abs‘((1 / 2) − 𝑋))↑2)) = (((1 / 2)↑2) − (((1 / 2) − 𝑋)↑2)))
6857, 64, 673eqtr4d 2788 . . . 4 (𝜑 → ((abs‘(1 − 𝑋)) · (abs‘𝑋)) = (((1 / 2)↑2) − ((abs‘((1 / 2) − 𝑋))↑2)))
6968oveq1d 7290 . . 3 (𝜑 → (((abs‘(1 − 𝑋)) · (abs‘𝑋)) · ((abs‘(𝐵𝐴))↑2)) = ((((1 / 2)↑2) − ((abs‘((1 / 2) − 𝑋))↑2)) · ((abs‘(𝐵𝐴))↑2)))
70 2cnd 12051 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℂ)
71 2ne0 12077 . . . . . . . . . . . . . 14 2 ≠ 0
7271a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ≠ 0)
739, 70, 72divcan4d 11757 . . . . . . . . . . . 12 (𝜑 → ((𝐵 · 2) / 2) = 𝐵)
749times2d 12217 . . . . . . . . . . . . 13 (𝜑 → (𝐵 · 2) = (𝐵 + 𝐵))
7574oveq1d 7290 . . . . . . . . . . . 12 (𝜑 → ((𝐵 · 2) / 2) = ((𝐵 + 𝐵) / 2))
7673, 75eqtr3d 2780 . . . . . . . . . . 11 (𝜑𝐵 = ((𝐵 + 𝐵) / 2))
77 chordthmlem4.M . . . . . . . . . . 11 (𝜑𝑀 = ((𝐴 + 𝐵) / 2))
7876, 77oveq12d 7293 . . . . . . . . . 10 (𝜑 → (𝐵𝑀) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2)))
799, 9addcld 10994 . . . . . . . . . . 11 (𝜑 → (𝐵 + 𝐵) ∈ ℂ)
8010, 9addcld 10994 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
8179, 80, 70, 72divsubdird 11790 . . . . . . . . . 10 (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = (((𝐵 + 𝐵) / 2) − ((𝐴 + 𝐵) / 2)))
829, 10, 9pnpcan2d 11370 . . . . . . . . . . 11 (𝜑 → ((𝐵 + 𝐵) − (𝐴 + 𝐵)) = (𝐵𝐴))
8382oveq1d 7290 . . . . . . . . . 10 (𝜑 → (((𝐵 + 𝐵) − (𝐴 + 𝐵)) / 2) = ((𝐵𝐴) / 2))
8478, 81, 833eqtr2d 2784 . . . . . . . . 9 (𝜑 → (𝐵𝑀) = ((𝐵𝐴) / 2))
8511, 70, 72divrec2d 11755 . . . . . . . . 9 (𝜑 → ((𝐵𝐴) / 2) = ((1 / 2) · (𝐵𝐴)))
8684, 85eqtrd 2778 . . . . . . . 8 (𝜑 → (𝐵𝑀) = ((1 / 2) · (𝐵𝐴)))
8786fveq2d 6778 . . . . . . 7 (𝜑 → (abs‘(𝐵𝑀)) = (abs‘((1 / 2) · (𝐵𝐴))))
8839, 11absmuld 15166 . . . . . . 7 (𝜑 → (abs‘((1 / 2) · (𝐵𝐴))) = ((abs‘(1 / 2)) · (abs‘(𝐵𝐴))))
89 0red 10978 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
90 halfgt0 12189 . . . . . . . . . . 11 0 < (1 / 2)
9190a1i 11 . . . . . . . . . 10 (𝜑 → 0 < (1 / 2))
9289, 41, 91ltled 11123 . . . . . . . . 9 (𝜑 → 0 ≤ (1 / 2))
9341, 92absidd 15134 . . . . . . . 8 (𝜑 → (abs‘(1 / 2)) = (1 / 2))
9493oveq1d 7290 . . . . . . 7 (𝜑 → ((abs‘(1 / 2)) · (abs‘(𝐵𝐴))) = ((1 / 2) · (abs‘(𝐵𝐴))))
9587, 88, 943eqtrd 2782 . . . . . 6 (𝜑 → (abs‘(𝐵𝑀)) = ((1 / 2) · (abs‘(𝐵𝐴))))
9695oveq1d 7290 . . . . 5 (𝜑 → ((abs‘(𝐵𝑀))↑2) = (((1 / 2) · (abs‘(𝐵𝐴)))↑2))
9739, 13sqmuld 13876 . . . . 5 (𝜑 → (((1 / 2) · (abs‘(𝐵𝐴)))↑2) = (((1 / 2)↑2) · ((abs‘(𝐵𝐴))↑2)))
9896, 97eqtrd 2778 . . . 4 (𝜑 → ((abs‘(𝐵𝑀))↑2) = (((1 / 2)↑2) · ((abs‘(𝐵𝐴))↑2)))
9939, 14, 11subdird 11432 . . . . . . . . 9 (𝜑 → (((1 / 2) − 𝑋) · (𝐵𝐴)) = (((1 / 2) · (𝐵𝐴)) − (𝑋 · (𝐵𝐴))))
10086, 30oveq12d 7293 . . . . . . . . 9 (𝜑 → ((𝐵𝑀) − (𝐵𝑃)) = (((1 / 2) · (𝐵𝐴)) − (𝑋 · (𝐵𝐴))))
10180halfcld 12218 . . . . . . . . . . 11 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℂ)
10277, 101eqeltrd 2839 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
1039, 102, 22nnncan1d 11366 . . . . . . . . 9 (𝜑 → ((𝐵𝑀) − (𝐵𝑃)) = (𝑃𝑀))
10499, 100, 1033eqtr2rd 2785 . . . . . . . 8 (𝜑 → (𝑃𝑀) = (((1 / 2) − 𝑋) · (𝐵𝐴)))
105104fveq2d 6778 . . . . . . 7 (𝜑 → (abs‘(𝑃𝑀)) = (abs‘(((1 / 2) − 𝑋) · (𝐵𝐴))))
10643, 11absmuld 15166 . . . . . . 7 (𝜑 → (abs‘(((1 / 2) − 𝑋) · (𝐵𝐴))) = ((abs‘((1 / 2) − 𝑋)) · (abs‘(𝐵𝐴))))
107105, 106eqtrd 2778 . . . . . 6 (𝜑 → (abs‘(𝑃𝑀)) = ((abs‘((1 / 2) − 𝑋)) · (abs‘(𝐵𝐴))))
108107oveq1d 7290 . . . . 5 (𝜑 → ((abs‘(𝑃𝑀))↑2) = (((abs‘((1 / 2) − 𝑋)) · (abs‘(𝐵𝐴)))↑2))
10945, 13sqmuld 13876 . . . . 5 (𝜑 → (((abs‘((1 / 2) − 𝑋)) · (abs‘(𝐵𝐴)))↑2) = (((abs‘((1 / 2) − 𝑋))↑2) · ((abs‘(𝐵𝐴))↑2)))
110108, 109eqtrd 2778 . . . 4 (𝜑 → ((abs‘(𝑃𝑀))↑2) = (((abs‘((1 / 2) − 𝑋))↑2) · ((abs‘(𝐵𝐴))↑2)))
11198, 110oveq12d 7293 . . 3 (𝜑 → (((abs‘(𝐵𝑀))↑2) − ((abs‘(𝑃𝑀))↑2)) = ((((1 / 2)↑2) · ((abs‘(𝐵𝐴))↑2)) − (((abs‘((1 / 2) − 𝑋))↑2) · ((abs‘(𝐵𝐴))↑2))))
11248, 69, 1113eqtr4rd 2789 . 2 (𝜑 → (((abs‘(𝐵𝑀))↑2) − ((abs‘(𝑃𝑀))↑2)) = (((abs‘(1 − 𝑋)) · (abs‘𝑋)) · ((abs‘(𝐵𝐴))↑2)))
11337, 112eqtr4d 2781 1 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑀))↑2) − ((abs‘(𝑃𝑀))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  2c2 12028  [,]cicc 13082  cexp 13782  abscabs 14945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-icc 13086  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947
This theorem is referenced by:  chordthmlem5  25986
  Copyright terms: Public domain W3C validator