MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcndslem2 Structured version   Visualization version   GIF version

Theorem climcndslem2 15757
Description: Lemma for climcnds 15758: bound the condensed series by the original series. (Contributed by Mario Carneiro, 18-Jul-2014.) (Proof shortened by AV, 10-Jul-2022.)
Hypotheses
Ref Expression
climcnds.1 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
climcnds.2 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
climcnds.3 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climcnds.4 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
Assertion
Ref Expression
climcndslem2 ((𝜑𝑁 ∈ ℕ) → (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁))))
Distinct variable groups:   𝑘,𝑛,𝐹   𝑘,𝐺,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝑁(𝑘,𝑛)

Proof of Theorem climcndslem2
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . . 5 (𝑥 = 1 → (seq1( + , 𝐺)‘𝑥) = (seq1( + , 𝐺)‘1))
2 oveq2 7354 . . . . . . . 8 (𝑥 = 1 → (2↑𝑥) = (2↑1))
3 2cn 12200 . . . . . . . . 9 2 ∈ ℂ
4 exp1 13974 . . . . . . . . 9 (2 ∈ ℂ → (2↑1) = 2)
53, 4ax-mp 5 . . . . . . . 8 (2↑1) = 2
62, 5eqtrdi 2782 . . . . . . 7 (𝑥 = 1 → (2↑𝑥) = 2)
76fveq2d 6826 . . . . . 6 (𝑥 = 1 → (seq1( + , 𝐹)‘(2↑𝑥)) = (seq1( + , 𝐹)‘2))
87oveq2d 7362 . . . . 5 (𝑥 = 1 → (2 · (seq1( + , 𝐹)‘(2↑𝑥))) = (2 · (seq1( + , 𝐹)‘2)))
91, 8breq12d 5102 . . . 4 (𝑥 = 1 → ((seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥))) ↔ (seq1( + , 𝐺)‘1) ≤ (2 · (seq1( + , 𝐹)‘2))))
109imbi2d 340 . . 3 (𝑥 = 1 → ((𝜑 → (seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥)))) ↔ (𝜑 → (seq1( + , 𝐺)‘1) ≤ (2 · (seq1( + , 𝐹)‘2)))))
11 fveq2 6822 . . . . 5 (𝑥 = 𝑗 → (seq1( + , 𝐺)‘𝑥) = (seq1( + , 𝐺)‘𝑗))
12 oveq2 7354 . . . . . . 7 (𝑥 = 𝑗 → (2↑𝑥) = (2↑𝑗))
1312fveq2d 6826 . . . . . 6 (𝑥 = 𝑗 → (seq1( + , 𝐹)‘(2↑𝑥)) = (seq1( + , 𝐹)‘(2↑𝑗)))
1413oveq2d 7362 . . . . 5 (𝑥 = 𝑗 → (2 · (seq1( + , 𝐹)‘(2↑𝑥))) = (2 · (seq1( + , 𝐹)‘(2↑𝑗))))
1511, 14breq12d 5102 . . . 4 (𝑥 = 𝑗 → ((seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥))) ↔ (seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗)))))
1615imbi2d 340 . . 3 (𝑥 = 𝑗 → ((𝜑 → (seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥)))) ↔ (𝜑 → (seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))))))
17 fveq2 6822 . . . . 5 (𝑥 = (𝑗 + 1) → (seq1( + , 𝐺)‘𝑥) = (seq1( + , 𝐺)‘(𝑗 + 1)))
18 oveq2 7354 . . . . . . 7 (𝑥 = (𝑗 + 1) → (2↑𝑥) = (2↑(𝑗 + 1)))
1918fveq2d 6826 . . . . . 6 (𝑥 = (𝑗 + 1) → (seq1( + , 𝐹)‘(2↑𝑥)) = (seq1( + , 𝐹)‘(2↑(𝑗 + 1))))
2019oveq2d 7362 . . . . 5 (𝑥 = (𝑗 + 1) → (2 · (seq1( + , 𝐹)‘(2↑𝑥))) = (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))))
2117, 20breq12d 5102 . . . 4 (𝑥 = (𝑗 + 1) → ((seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥))) ↔ (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1))))))
2221imbi2d 340 . . 3 (𝑥 = (𝑗 + 1) → ((𝜑 → (seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥)))) ↔ (𝜑 → (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))))))
23 fveq2 6822 . . . . 5 (𝑥 = 𝑁 → (seq1( + , 𝐺)‘𝑥) = (seq1( + , 𝐺)‘𝑁))
24 oveq2 7354 . . . . . . 7 (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁))
2524fveq2d 6826 . . . . . 6 (𝑥 = 𝑁 → (seq1( + , 𝐹)‘(2↑𝑥)) = (seq1( + , 𝐹)‘(2↑𝑁)))
2625oveq2d 7362 . . . . 5 (𝑥 = 𝑁 → (2 · (seq1( + , 𝐹)‘(2↑𝑥))) = (2 · (seq1( + , 𝐹)‘(2↑𝑁))))
2723, 26breq12d 5102 . . . 4 (𝑥 = 𝑁 → ((seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥))) ↔ (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁)))))
2827imbi2d 340 . . 3 (𝑥 = 𝑁 → ((𝜑 → (seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥)))) ↔ (𝜑 → (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁))))))
29 fveq2 6822 . . . . . . . 8 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
3029breq2d 5101 . . . . . . 7 (𝑘 = 1 → (0 ≤ (𝐹𝑘) ↔ 0 ≤ (𝐹‘1)))
31 climcnds.2 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
3231ralrimiva 3124 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ 0 ≤ (𝐹𝑘))
33 1nn 12136 . . . . . . . 8 1 ∈ ℕ
3433a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
3530, 32, 34rspcdva 3573 . . . . . 6 (𝜑 → 0 ≤ (𝐹‘1))
36 fveq2 6822 . . . . . . . . 9 (𝑘 = 2 → (𝐹𝑘) = (𝐹‘2))
3736eleq1d 2816 . . . . . . . 8 (𝑘 = 2 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘2) ∈ ℝ))
38 climcnds.1 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
3938ralrimiva 3124 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
40 2nn 12198 . . . . . . . . 9 2 ∈ ℕ
4140a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℕ)
4237, 39, 41rspcdva 3573 . . . . . . 7 (𝜑 → (𝐹‘2) ∈ ℝ)
4329eleq1d 2816 . . . . . . . 8 (𝑘 = 1 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘1) ∈ ℝ))
4443, 39, 34rspcdva 3573 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ ℝ)
4542, 44addge02d 11706 . . . . . 6 (𝜑 → (0 ≤ (𝐹‘1) ↔ (𝐹‘2) ≤ ((𝐹‘1) + (𝐹‘2))))
4635, 45mpbid 232 . . . . 5 (𝜑 → (𝐹‘2) ≤ ((𝐹‘1) + (𝐹‘2)))
4744, 42readdcld 11141 . . . . . 6 (𝜑 → ((𝐹‘1) + (𝐹‘2)) ∈ ℝ)
4841nnrpd 12932 . . . . . 6 (𝜑 → 2 ∈ ℝ+)
4942, 47, 48lemul2d 12978 . . . . 5 (𝜑 → ((𝐹‘2) ≤ ((𝐹‘1) + (𝐹‘2)) ↔ (2 · (𝐹‘2)) ≤ (2 · ((𝐹‘1) + (𝐹‘2)))))
5046, 49mpbid 232 . . . 4 (𝜑 → (2 · (𝐹‘2)) ≤ (2 · ((𝐹‘1) + (𝐹‘2))))
51 1z 12502 . . . . 5 1 ∈ ℤ
52 fveq2 6822 . . . . . . 7 (𝑛 = 1 → (𝐺𝑛) = (𝐺‘1))
53 oveq2 7354 . . . . . . . . 9 (𝑛 = 1 → (2↑𝑛) = (2↑1))
5453, 5eqtrdi 2782 . . . . . . . 8 (𝑛 = 1 → (2↑𝑛) = 2)
5554fveq2d 6826 . . . . . . . 8 (𝑛 = 1 → (𝐹‘(2↑𝑛)) = (𝐹‘2))
5654, 55oveq12d 7364 . . . . . . 7 (𝑛 = 1 → ((2↑𝑛) · (𝐹‘(2↑𝑛))) = (2 · (𝐹‘2)))
5752, 56eqeq12d 2747 . . . . . 6 (𝑛 = 1 → ((𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) ↔ (𝐺‘1) = (2 · (𝐹‘2))))
58 climcnds.4 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
5958ralrimiva 3124 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ0 (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
60 1nn0 12397 . . . . . . 7 1 ∈ ℕ0
6160a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℕ0)
6257, 59, 61rspcdva 3573 . . . . 5 (𝜑 → (𝐺‘1) = (2 · (𝐹‘2)))
6351, 62seq1i 13922 . . . 4 (𝜑 → (seq1( + , 𝐺)‘1) = (2 · (𝐹‘2)))
64 nnuz 12775 . . . . . 6 ℕ = (ℤ‘1)
65 df-2 12188 . . . . . 6 2 = (1 + 1)
66 eqidd 2732 . . . . . . 7 (𝜑 → (𝐹‘1) = (𝐹‘1))
6751, 66seq1i 13922 . . . . . 6 (𝜑 → (seq1( + , 𝐹)‘1) = (𝐹‘1))
68 eqidd 2732 . . . . . 6 (𝜑 → (𝐹‘2) = (𝐹‘2))
6964, 34, 65, 67, 68seqp1d 13925 . . . . 5 (𝜑 → (seq1( + , 𝐹)‘2) = ((𝐹‘1) + (𝐹‘2)))
7069oveq2d 7362 . . . 4 (𝜑 → (2 · (seq1( + , 𝐹)‘2)) = (2 · ((𝐹‘1) + (𝐹‘2))))
7150, 63, 703brtr4d 5121 . . 3 (𝜑 → (seq1( + , 𝐺)‘1) ≤ (2 · (seq1( + , 𝐹)‘2)))
72 fveq2 6822 . . . . . . . . . . 11 (𝑛 = (𝑗 + 1) → (𝐺𝑛) = (𝐺‘(𝑗 + 1)))
73 oveq2 7354 . . . . . . . . . . . 12 (𝑛 = (𝑗 + 1) → (2↑𝑛) = (2↑(𝑗 + 1)))
7473fveq2d 6826 . . . . . . . . . . . 12 (𝑛 = (𝑗 + 1) → (𝐹‘(2↑𝑛)) = (𝐹‘(2↑(𝑗 + 1))))
7573, 74oveq12d 7364 . . . . . . . . . . 11 (𝑛 = (𝑗 + 1) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))))
7672, 75eqeq12d 2747 . . . . . . . . . 10 (𝑛 = (𝑗 + 1) → ((𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) ↔ (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1))))))
7759adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ∀𝑛 ∈ ℕ0 (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
78 peano2nn 12137 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
7978adantl 481 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ)
8079nnnn0d 12442 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ0)
8176, 77, 80rspcdva 3573 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))))
82 nnnn0 12388 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
8382adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
84 expp1 13975 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) = ((2↑𝑗) · 2))
853, 83, 84sylancr 587 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) = ((2↑𝑗) · 2))
86 nnexpcl 13981 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (2↑𝑗) ∈ ℕ)
8740, 82, 86sylancr 587 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (2↑𝑗) ∈ ℕ)
8887adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℕ)
8988nncnd 12141 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℂ)
90 mulcom 11092 . . . . . . . . . . . 12 (((2↑𝑗) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑𝑗) · 2) = (2 · (2↑𝑗)))
9189, 3, 90sylancl 586 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) · 2) = (2 · (2↑𝑗)))
9285, 91eqtrd 2766 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) = (2 · (2↑𝑗)))
9392oveq1d 7361 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))) = ((2 · (2↑𝑗)) · (𝐹‘(2↑(𝑗 + 1)))))
943a1i 11 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → 2 ∈ ℂ)
95 fveq2 6822 . . . . . . . . . . . . 13 (𝑘 = (2↑(𝑗 + 1)) → (𝐹𝑘) = (𝐹‘(2↑(𝑗 + 1))))
9695eleq1d 2816 . . . . . . . . . . . 12 (𝑘 = (2↑(𝑗 + 1)) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ))
9739adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
98 nnexpcl 13981 . . . . . . . . . . . . 13 ((2 ∈ ℕ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ)
9940, 80, 98sylancr 587 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ ℕ)
10096, 97, 99rspcdva 3573 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ)
101100recnd 11140 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℂ)
10294, 89, 101mulassd 11135 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((2 · (2↑𝑗)) · (𝐹‘(2↑(𝑗 + 1)))) = (2 · ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1))))))
10381, 93, 1023eqtrd 2770 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) = (2 · ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1))))))
10488nnnn0d 12442 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℕ0)
105 hashfz1 14253 . . . . . . . . . . . . . . 15 ((2↑𝑗) ∈ ℕ0 → (♯‘(1...(2↑𝑗))) = (2↑𝑗))
106104, 105syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (♯‘(1...(2↑𝑗))) = (2↑𝑗))
107106, 89eqeltrd 2831 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (♯‘(1...(2↑𝑗))) ∈ ℂ)
108 fzfid 13880 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) ∈ Fin)
109 hashcl 14263 . . . . . . . . . . . . . . 15 ((((2↑𝑗) + 1)...(2↑(𝑗 + 1))) ∈ Fin → (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∈ ℕ0)
110108, 109syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∈ ℕ0)
111110nn0cnd 12444 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∈ ℂ)
112 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
113112nnzd 12495 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
114 uzid 12747 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
115 peano2uz 12799 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (ℤ𝑗) → (𝑗 + 1) ∈ (ℤ𝑗))
116 2re 12199 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ
117 1le2 12329 . . . . . . . . . . . . . . . . . . 19 1 ≤ 2
118 leexp2a 14079 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℝ ∧ 1 ≤ 2 ∧ (𝑗 + 1) ∈ (ℤ𝑗)) → (2↑𝑗) ≤ (2↑(𝑗 + 1)))
119116, 117, 118mp3an12 1453 . . . . . . . . . . . . . . . . . 18 ((𝑗 + 1) ∈ (ℤ𝑗) → (2↑𝑗) ≤ (2↑(𝑗 + 1)))
120113, 114, 115, 1194syl 19 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ≤ (2↑(𝑗 + 1)))
12188, 64eleqtrdi 2841 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ∈ (ℤ‘1))
12299nnzd 12495 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ ℤ)
123 elfz5 13416 . . . . . . . . . . . . . . . . . 18 (((2↑𝑗) ∈ (ℤ‘1) ∧ (2↑(𝑗 + 1)) ∈ ℤ) → ((2↑𝑗) ∈ (1...(2↑(𝑗 + 1))) ↔ (2↑𝑗) ≤ (2↑(𝑗 + 1))))
124121, 122, 123syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) ∈ (1...(2↑(𝑗 + 1))) ↔ (2↑𝑗) ≤ (2↑(𝑗 + 1))))
125120, 124mpbird 257 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ∈ (1...(2↑(𝑗 + 1))))
126 fzsplit 13450 . . . . . . . . . . . . . . . 16 ((2↑𝑗) ∈ (1...(2↑(𝑗 + 1))) → (1...(2↑(𝑗 + 1))) = ((1...(2↑𝑗)) ∪ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))))
127125, 126syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (1...(2↑(𝑗 + 1))) = ((1...(2↑𝑗)) ∪ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))))
128127fveq2d 6826 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (♯‘(1...(2↑(𝑗 + 1)))) = (♯‘((1...(2↑𝑗)) ∪ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))))))
12989times2d 12365 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) · 2) = ((2↑𝑗) + (2↑𝑗)))
13085, 129eqtrd 2766 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) = ((2↑𝑗) + (2↑𝑗)))
13199nnnn0d 12442 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ ℕ0)
132 hashfz1 14253 . . . . . . . . . . . . . . . 16 ((2↑(𝑗 + 1)) ∈ ℕ0 → (♯‘(1...(2↑(𝑗 + 1)))) = (2↑(𝑗 + 1)))
133131, 132syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (♯‘(1...(2↑(𝑗 + 1)))) = (2↑(𝑗 + 1)))
134106oveq1d 7361 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → ((♯‘(1...(2↑𝑗))) + (2↑𝑗)) = ((2↑𝑗) + (2↑𝑗)))
135130, 133, 1343eqtr4d 2776 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (♯‘(1...(2↑(𝑗 + 1)))) = ((♯‘(1...(2↑𝑗))) + (2↑𝑗)))
136 fzfid 13880 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (1...(2↑𝑗)) ∈ Fin)
13788nnred 12140 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℝ)
138137ltp1d 12052 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) < ((2↑𝑗) + 1))
139 fzdisj 13451 . . . . . . . . . . . . . . . 16 ((2↑𝑗) < ((2↑𝑗) + 1) → ((1...(2↑𝑗)) ∩ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) = ∅)
140138, 139syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → ((1...(2↑𝑗)) ∩ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) = ∅)
141 hashun 14289 . . . . . . . . . . . . . . 15 (((1...(2↑𝑗)) ∈ Fin ∧ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) ∈ Fin ∧ ((1...(2↑𝑗)) ∩ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) = ∅) → (♯‘((1...(2↑𝑗)) ∪ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))))) = ((♯‘(1...(2↑𝑗))) + (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1))))))
142136, 108, 140, 141syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (♯‘((1...(2↑𝑗)) ∪ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))))) = ((♯‘(1...(2↑𝑗))) + (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1))))))
143128, 135, 1423eqtr3d 2774 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ((♯‘(1...(2↑𝑗))) + (2↑𝑗)) = ((♯‘(1...(2↑𝑗))) + (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1))))))
144107, 89, 111, 143addcanad 11318 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) = (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))))
145144oveq1d 7361 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) = ((♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) · (𝐹‘(2↑(𝑗 + 1)))))
146 fsumconst 15697 . . . . . . . . . . . 12 (((((2↑𝑗) + 1)...(2↑(𝑗 + 1))) ∈ Fin ∧ (𝐹‘(2↑(𝑗 + 1))) ∈ ℂ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))) = ((♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) · (𝐹‘(2↑(𝑗 + 1)))))
147108, 101, 146syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))) = ((♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) · (𝐹‘(2↑(𝑗 + 1)))))
148145, 147eqtr4d 2769 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) = Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))))
149100adantr 480 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ)
150 simpl 482 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝜑)
151 peano2nn 12137 . . . . . . . . . . . . . 14 ((2↑𝑗) ∈ ℕ → ((2↑𝑗) + 1) ∈ ℕ)
15288, 151syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) + 1) ∈ ℕ)
153 elfzuz 13420 . . . . . . . . . . . . 13 (𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) → 𝑘 ∈ (ℤ‘((2↑𝑗) + 1)))
154 eluznn 12816 . . . . . . . . . . . . 13 ((((2↑𝑗) + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘((2↑𝑗) + 1))) → 𝑘 ∈ ℕ)
155152, 153, 154syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → 𝑘 ∈ ℕ)
156150, 155, 38syl2an2r 685 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹𝑘) ∈ ℝ)
157 elfzuz3 13421 . . . . . . . . . . . . . . 15 (𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) → (2↑(𝑗 + 1)) ∈ (ℤ𝑛))
158157adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (2↑(𝑗 + 1)) ∈ (ℤ𝑛))
159 simplll 774 . . . . . . . . . . . . . . 15 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...(2↑(𝑗 + 1)))) → 𝜑)
160 elfzuz 13420 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) → 𝑛 ∈ (ℤ‘((2↑𝑗) + 1)))
161 eluznn 12816 . . . . . . . . . . . . . . . . 17 ((((2↑𝑗) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((2↑𝑗) + 1))) → 𝑛 ∈ ℕ)
162152, 160, 161syl2an 596 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → 𝑛 ∈ ℕ)
163 elfzuz 13420 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝑛...(2↑(𝑗 + 1))) → 𝑘 ∈ (ℤ𝑛))
164 eluznn 12816 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
165162, 163, 164syl2an 596 . . . . . . . . . . . . . . 15 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...(2↑(𝑗 + 1)))) → 𝑘 ∈ ℕ)
166159, 165, 38syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...(2↑(𝑗 + 1)))) → (𝐹𝑘) ∈ ℝ)
167 simplll 774 . . . . . . . . . . . . . . 15 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...((2↑(𝑗 + 1)) − 1))) → 𝜑)
168 elfzuz 13420 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝑛...((2↑(𝑗 + 1)) − 1)) → 𝑘 ∈ (ℤ𝑛))
169162, 168, 164syl2an 596 . . . . . . . . . . . . . . 15 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...((2↑(𝑗 + 1)) − 1))) → 𝑘 ∈ ℕ)
170 climcnds.3 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
171167, 169, 170syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...((2↑(𝑗 + 1)) − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
172158, 166, 171monoord2 13940 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑛))
173172ralrimiva 3124 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ∀𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑛))
174 fveq2 6822 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
175174breq2d 5101 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑛) ↔ (𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑘)))
176175rspccva 3571 . . . . . . . . . . . 12 ((∀𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑛) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑘))
177173, 176sylan 580 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑘))
178108, 149, 156, 177fsumle 15706 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))) ≤ Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))
179148, 178eqbrtrd 5111 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) ≤ Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))
180137, 100remulcld 11142 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) ∈ ℝ)
181108, 156fsumrecl 15641 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘) ∈ ℝ)
182 2rp 12895 . . . . . . . . . . 11 2 ∈ ℝ+
183182a1i 11 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → 2 ∈ ℝ+)
184180, 181, 183lemul2d 12978 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) ≤ Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘) ↔ (2 · ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1))))) ≤ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))))
185179, 184mpbid 232 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1))))) ≤ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))
186103, 185eqbrtrd 5111 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) ≤ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))
187 1zzd 12503 . . . . . . . . . 10 (𝜑 → 1 ∈ ℤ)
188 nnnn0 12388 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
189 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
190 nnexpcl 13981 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
19140, 189, 190sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
192191nnred 12140 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℝ)
193 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑘 = (2↑𝑛) → (𝐹𝑘) = (𝐹‘(2↑𝑛)))
194193eleq1d 2816 . . . . . . . . . . . . . 14 (𝑘 = (2↑𝑛) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(2↑𝑛)) ∈ ℝ))
19539adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
196194, 195, 191rspcdva 3573 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (𝐹‘(2↑𝑛)) ∈ ℝ)
197192, 196remulcld 11142 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) ∈ ℝ)
19858, 197eqeltrd 2831 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℝ)
199188, 198sylan2 593 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℝ)
20064, 187, 199serfre 13938 . . . . . . . . 9 (𝜑 → seq1( + , 𝐺):ℕ⟶ℝ)
201200ffvelcdmda 7017 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ∈ ℝ)
20272eleq1d 2816 . . . . . . . . 9 (𝑛 = (𝑗 + 1) → ((𝐺𝑛) ∈ ℝ ↔ (𝐺‘(𝑗 + 1)) ∈ ℝ))
203199ralrimiva 3124 . . . . . . . . . 10 (𝜑 → ∀𝑛 ∈ ℕ (𝐺𝑛) ∈ ℝ)
204203adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐺𝑛) ∈ ℝ)
205202, 204, 79rspcdva 3573 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) ∈ ℝ)
20664, 187, 38serfre 13938 . . . . . . . . . 10 (𝜑 → seq1( + , 𝐹):ℕ⟶ℝ)
207 ffvelcdm 7014 . . . . . . . . . 10 ((seq1( + , 𝐹):ℕ⟶ℝ ∧ (2↑𝑗) ∈ ℕ) → (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℝ)
208206, 87, 207syl2an 596 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℝ)
209 remulcl 11091 . . . . . . . . 9 ((2 ∈ ℝ ∧ (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℝ) → (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∈ ℝ)
210116, 208, 209sylancr 587 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∈ ℝ)
211 remulcl 11091 . . . . . . . . 9 ((2 ∈ ℝ ∧ Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘) ∈ ℝ) → (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)) ∈ ℝ)
212116, 181, 211sylancr 587 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)) ∈ ℝ)
213 le2add 11599 . . . . . . . 8 ((((seq1( + , 𝐺)‘𝑗) ∈ ℝ ∧ (𝐺‘(𝑗 + 1)) ∈ ℝ) ∧ ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∈ ℝ ∧ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)) ∈ ℝ)) → (((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∧ (𝐺‘(𝑗 + 1)) ≤ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))) → ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))) ≤ ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))))
214201, 205, 210, 212, 213syl22anc 838 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∧ (𝐺‘(𝑗 + 1)) ≤ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))) → ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))) ≤ ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))))
215186, 214mpan2d 694 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) → ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))) ≤ ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))))
216112, 64eleqtrdi 2841 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
217 seqp1 13923 . . . . . . . 8 (𝑗 ∈ (ℤ‘1) → (seq1( + , 𝐺)‘(𝑗 + 1)) = ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))
218216, 217syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘(𝑗 + 1)) = ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))
219 fzfid 13880 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (1...(2↑(𝑗 + 1))) ∈ Fin)
220 elfznn 13453 . . . . . . . . . . . 12 (𝑘 ∈ (1...(2↑(𝑗 + 1))) → 𝑘 ∈ ℕ)
22138recnd 11140 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
222150, 220, 221syl2an 596 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑(𝑗 + 1)))) → (𝐹𝑘) ∈ ℂ)
223140, 127, 219, 222fsumsplit 15648 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...(2↑(𝑗 + 1)))(𝐹𝑘) = (Σ𝑘 ∈ (1...(2↑𝑗))(𝐹𝑘) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))
224 eqidd 2732 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑(𝑗 + 1)))) → (𝐹𝑘) = (𝐹𝑘))
22599, 64eleqtrdi 2841 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ (ℤ‘1))
226224, 225, 222fsumser 15637 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...(2↑(𝑗 + 1)))(𝐹𝑘) = (seq1( + , 𝐹)‘(2↑(𝑗 + 1))))
227 eqidd 2732 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑𝑗))) → (𝐹𝑘) = (𝐹𝑘))
228 elfznn 13453 . . . . . . . . . . . . 13 (𝑘 ∈ (1...(2↑𝑗)) → 𝑘 ∈ ℕ)
229150, 228, 221syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑𝑗))) → (𝐹𝑘) ∈ ℂ)
230227, 121, 229fsumser 15637 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...(2↑𝑗))(𝐹𝑘) = (seq1( + , 𝐹)‘(2↑𝑗)))
231230oveq1d 7361 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (Σ𝑘 ∈ (1...(2↑𝑗))(𝐹𝑘) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)) = ((seq1( + , 𝐹)‘(2↑𝑗)) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))
232223, 226, 2313eqtr3d 2774 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘(2↑(𝑗 + 1))) = ((seq1( + , 𝐹)‘(2↑𝑗)) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))
233232oveq2d 7362 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))) = (2 · ((seq1( + , 𝐹)‘(2↑𝑗)) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))))
234208recnd 11140 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℂ)
235181recnd 11140 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘) ∈ ℂ)
23694, 234, 235adddid 11136 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · ((seq1( + , 𝐹)‘(2↑𝑗)) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))) = ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))))
237233, 236eqtrd 2766 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))) = ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))))
238218, 237breq12d 5102 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))) ↔ ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))) ≤ ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))))
239215, 238sylibrd 259 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) → (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1))))))
240239expcom 413 . . . 4 (𝑗 ∈ ℕ → (𝜑 → ((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) → (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))))))
241240a2d 29 . . 3 (𝑗 ∈ ℕ → ((𝜑 → (seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗)))) → (𝜑 → (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))))))
24210, 16, 22, 28, 71, 241nnind 12143 . 2 (𝑁 ∈ ℕ → (𝜑 → (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁)))))
243242impcom 407 1 ((𝜑𝑁 ∈ ℕ) → (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  cun 3895  cin 3896  c0 4280   class class class wbr 5089  wf 6477  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344  cn 12125  2c2 12180  0cn0 12381  cz 12468  cuz 12732  +crp 12890  ...cfz 13407  seqcseq 13908  cexp 13968  chash 14237  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ico 13251  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594
This theorem is referenced by:  climcnds  15758
  Copyright terms: Public domain W3C validator