MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcndslem2 Structured version   Visualization version   GIF version

Theorem climcndslem2 15199
Description: Lemma for climcnds 15200: bound the condensed series by the original series. (Contributed by Mario Carneiro, 18-Jul-2014.) (Proof shortened by AV, 10-Jul-2022.)
Hypotheses
Ref Expression
climcnds.1 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
climcnds.2 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
climcnds.3 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climcnds.4 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
Assertion
Ref Expression
climcndslem2 ((𝜑𝑁 ∈ ℕ) → (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁))))
Distinct variable groups:   𝑘,𝑛,𝐹   𝑘,𝐺,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝑁(𝑘,𝑛)

Proof of Theorem climcndslem2
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6664 . . . . 5 (𝑥 = 1 → (seq1( + , 𝐺)‘𝑥) = (seq1( + , 𝐺)‘1))
2 oveq2 7158 . . . . . . . 8 (𝑥 = 1 → (2↑𝑥) = (2↑1))
3 2cn 11706 . . . . . . . . 9 2 ∈ ℂ
4 exp1 13429 . . . . . . . . 9 (2 ∈ ℂ → (2↑1) = 2)
53, 4ax-mp 5 . . . . . . . 8 (2↑1) = 2
62, 5syl6eq 2872 . . . . . . 7 (𝑥 = 1 → (2↑𝑥) = 2)
76fveq2d 6668 . . . . . 6 (𝑥 = 1 → (seq1( + , 𝐹)‘(2↑𝑥)) = (seq1( + , 𝐹)‘2))
87oveq2d 7166 . . . . 5 (𝑥 = 1 → (2 · (seq1( + , 𝐹)‘(2↑𝑥))) = (2 · (seq1( + , 𝐹)‘2)))
91, 8breq12d 5071 . . . 4 (𝑥 = 1 → ((seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥))) ↔ (seq1( + , 𝐺)‘1) ≤ (2 · (seq1( + , 𝐹)‘2))))
109imbi2d 343 . . 3 (𝑥 = 1 → ((𝜑 → (seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥)))) ↔ (𝜑 → (seq1( + , 𝐺)‘1) ≤ (2 · (seq1( + , 𝐹)‘2)))))
11 fveq2 6664 . . . . 5 (𝑥 = 𝑗 → (seq1( + , 𝐺)‘𝑥) = (seq1( + , 𝐺)‘𝑗))
12 oveq2 7158 . . . . . . 7 (𝑥 = 𝑗 → (2↑𝑥) = (2↑𝑗))
1312fveq2d 6668 . . . . . 6 (𝑥 = 𝑗 → (seq1( + , 𝐹)‘(2↑𝑥)) = (seq1( + , 𝐹)‘(2↑𝑗)))
1413oveq2d 7166 . . . . 5 (𝑥 = 𝑗 → (2 · (seq1( + , 𝐹)‘(2↑𝑥))) = (2 · (seq1( + , 𝐹)‘(2↑𝑗))))
1511, 14breq12d 5071 . . . 4 (𝑥 = 𝑗 → ((seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥))) ↔ (seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗)))))
1615imbi2d 343 . . 3 (𝑥 = 𝑗 → ((𝜑 → (seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥)))) ↔ (𝜑 → (seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))))))
17 fveq2 6664 . . . . 5 (𝑥 = (𝑗 + 1) → (seq1( + , 𝐺)‘𝑥) = (seq1( + , 𝐺)‘(𝑗 + 1)))
18 oveq2 7158 . . . . . . 7 (𝑥 = (𝑗 + 1) → (2↑𝑥) = (2↑(𝑗 + 1)))
1918fveq2d 6668 . . . . . 6 (𝑥 = (𝑗 + 1) → (seq1( + , 𝐹)‘(2↑𝑥)) = (seq1( + , 𝐹)‘(2↑(𝑗 + 1))))
2019oveq2d 7166 . . . . 5 (𝑥 = (𝑗 + 1) → (2 · (seq1( + , 𝐹)‘(2↑𝑥))) = (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))))
2117, 20breq12d 5071 . . . 4 (𝑥 = (𝑗 + 1) → ((seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥))) ↔ (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1))))))
2221imbi2d 343 . . 3 (𝑥 = (𝑗 + 1) → ((𝜑 → (seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥)))) ↔ (𝜑 → (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))))))
23 fveq2 6664 . . . . 5 (𝑥 = 𝑁 → (seq1( + , 𝐺)‘𝑥) = (seq1( + , 𝐺)‘𝑁))
24 oveq2 7158 . . . . . . 7 (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁))
2524fveq2d 6668 . . . . . 6 (𝑥 = 𝑁 → (seq1( + , 𝐹)‘(2↑𝑥)) = (seq1( + , 𝐹)‘(2↑𝑁)))
2625oveq2d 7166 . . . . 5 (𝑥 = 𝑁 → (2 · (seq1( + , 𝐹)‘(2↑𝑥))) = (2 · (seq1( + , 𝐹)‘(2↑𝑁))))
2723, 26breq12d 5071 . . . 4 (𝑥 = 𝑁 → ((seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥))) ↔ (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁)))))
2827imbi2d 343 . . 3 (𝑥 = 𝑁 → ((𝜑 → (seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥)))) ↔ (𝜑 → (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁))))))
29 fveq2 6664 . . . . . . . 8 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
3029breq2d 5070 . . . . . . 7 (𝑘 = 1 → (0 ≤ (𝐹𝑘) ↔ 0 ≤ (𝐹‘1)))
31 climcnds.2 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
3231ralrimiva 3182 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ 0 ≤ (𝐹𝑘))
33 1nn 11643 . . . . . . . 8 1 ∈ ℕ
3433a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
3530, 32, 34rspcdva 3624 . . . . . 6 (𝜑 → 0 ≤ (𝐹‘1))
36 fveq2 6664 . . . . . . . . 9 (𝑘 = 2 → (𝐹𝑘) = (𝐹‘2))
3736eleq1d 2897 . . . . . . . 8 (𝑘 = 2 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘2) ∈ ℝ))
38 climcnds.1 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
3938ralrimiva 3182 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
40 2nn 11704 . . . . . . . . 9 2 ∈ ℕ
4140a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℕ)
4237, 39, 41rspcdva 3624 . . . . . . 7 (𝜑 → (𝐹‘2) ∈ ℝ)
4329eleq1d 2897 . . . . . . . 8 (𝑘 = 1 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘1) ∈ ℝ))
4443, 39, 34rspcdva 3624 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ ℝ)
4542, 44addge02d 11223 . . . . . 6 (𝜑 → (0 ≤ (𝐹‘1) ↔ (𝐹‘2) ≤ ((𝐹‘1) + (𝐹‘2))))
4635, 45mpbid 234 . . . . 5 (𝜑 → (𝐹‘2) ≤ ((𝐹‘1) + (𝐹‘2)))
4744, 42readdcld 10664 . . . . . 6 (𝜑 → ((𝐹‘1) + (𝐹‘2)) ∈ ℝ)
4841nnrpd 12423 . . . . . 6 (𝜑 → 2 ∈ ℝ+)
4942, 47, 48lemul2d 12469 . . . . 5 (𝜑 → ((𝐹‘2) ≤ ((𝐹‘1) + (𝐹‘2)) ↔ (2 · (𝐹‘2)) ≤ (2 · ((𝐹‘1) + (𝐹‘2)))))
5046, 49mpbid 234 . . . 4 (𝜑 → (2 · (𝐹‘2)) ≤ (2 · ((𝐹‘1) + (𝐹‘2))))
51 1z 12006 . . . . 5 1 ∈ ℤ
52 fveq2 6664 . . . . . . 7 (𝑛 = 1 → (𝐺𝑛) = (𝐺‘1))
53 oveq2 7158 . . . . . . . . 9 (𝑛 = 1 → (2↑𝑛) = (2↑1))
5453, 5syl6eq 2872 . . . . . . . 8 (𝑛 = 1 → (2↑𝑛) = 2)
5554fveq2d 6668 . . . . . . . 8 (𝑛 = 1 → (𝐹‘(2↑𝑛)) = (𝐹‘2))
5654, 55oveq12d 7168 . . . . . . 7 (𝑛 = 1 → ((2↑𝑛) · (𝐹‘(2↑𝑛))) = (2 · (𝐹‘2)))
5752, 56eqeq12d 2837 . . . . . 6 (𝑛 = 1 → ((𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) ↔ (𝐺‘1) = (2 · (𝐹‘2))))
58 climcnds.4 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
5958ralrimiva 3182 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ0 (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
60 1nn0 11907 . . . . . . 7 1 ∈ ℕ0
6160a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℕ0)
6257, 59, 61rspcdva 3624 . . . . 5 (𝜑 → (𝐺‘1) = (2 · (𝐹‘2)))
6351, 62seq1i 13377 . . . 4 (𝜑 → (seq1( + , 𝐺)‘1) = (2 · (𝐹‘2)))
64 nnuz 12275 . . . . . 6 ℕ = (ℤ‘1)
65 df-2 11694 . . . . . 6 2 = (1 + 1)
66 eqidd 2822 . . . . . . 7 (𝜑 → (𝐹‘1) = (𝐹‘1))
6751, 66seq1i 13377 . . . . . 6 (𝜑 → (seq1( + , 𝐹)‘1) = (𝐹‘1))
68 eqidd 2822 . . . . . 6 (𝜑 → (𝐹‘2) = (𝐹‘2))
6964, 33, 65, 67, 68seqp1i 13380 . . . . 5 (𝜑 → (seq1( + , 𝐹)‘2) = ((𝐹‘1) + (𝐹‘2)))
7069oveq2d 7166 . . . 4 (𝜑 → (2 · (seq1( + , 𝐹)‘2)) = (2 · ((𝐹‘1) + (𝐹‘2))))
7150, 63, 703brtr4d 5090 . . 3 (𝜑 → (seq1( + , 𝐺)‘1) ≤ (2 · (seq1( + , 𝐹)‘2)))
72 fveq2 6664 . . . . . . . . . . 11 (𝑛 = (𝑗 + 1) → (𝐺𝑛) = (𝐺‘(𝑗 + 1)))
73 oveq2 7158 . . . . . . . . . . . 12 (𝑛 = (𝑗 + 1) → (2↑𝑛) = (2↑(𝑗 + 1)))
7473fveq2d 6668 . . . . . . . . . . . 12 (𝑛 = (𝑗 + 1) → (𝐹‘(2↑𝑛)) = (𝐹‘(2↑(𝑗 + 1))))
7573, 74oveq12d 7168 . . . . . . . . . . 11 (𝑛 = (𝑗 + 1) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))))
7672, 75eqeq12d 2837 . . . . . . . . . 10 (𝑛 = (𝑗 + 1) → ((𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) ↔ (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1))))))
7759adantr 483 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ∀𝑛 ∈ ℕ0 (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
78 peano2nn 11644 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
7978adantl 484 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ)
8079nnnn0d 11949 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ0)
8176, 77, 80rspcdva 3624 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))))
82 nnnn0 11898 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
8382adantl 484 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
84 expp1 13430 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) = ((2↑𝑗) · 2))
853, 83, 84sylancr 589 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) = ((2↑𝑗) · 2))
86 nnexpcl 13436 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (2↑𝑗) ∈ ℕ)
8740, 82, 86sylancr 589 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (2↑𝑗) ∈ ℕ)
8887adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℕ)
8988nncnd 11648 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℂ)
90 mulcom 10617 . . . . . . . . . . . 12 (((2↑𝑗) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑𝑗) · 2) = (2 · (2↑𝑗)))
9189, 3, 90sylancl 588 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) · 2) = (2 · (2↑𝑗)))
9285, 91eqtrd 2856 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) = (2 · (2↑𝑗)))
9392oveq1d 7165 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))) = ((2 · (2↑𝑗)) · (𝐹‘(2↑(𝑗 + 1)))))
943a1i 11 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → 2 ∈ ℂ)
95 fveq2 6664 . . . . . . . . . . . . 13 (𝑘 = (2↑(𝑗 + 1)) → (𝐹𝑘) = (𝐹‘(2↑(𝑗 + 1))))
9695eleq1d 2897 . . . . . . . . . . . 12 (𝑘 = (2↑(𝑗 + 1)) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ))
9739adantr 483 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
98 nnexpcl 13436 . . . . . . . . . . . . 13 ((2 ∈ ℕ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ)
9940, 80, 98sylancr 589 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ ℕ)
10096, 97, 99rspcdva 3624 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ)
101100recnd 10663 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℂ)
10294, 89, 101mulassd 10658 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((2 · (2↑𝑗)) · (𝐹‘(2↑(𝑗 + 1)))) = (2 · ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1))))))
10381, 93, 1023eqtrd 2860 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) = (2 · ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1))))))
10488nnnn0d 11949 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℕ0)
105 hashfz1 13700 . . . . . . . . . . . . . . 15 ((2↑𝑗) ∈ ℕ0 → (♯‘(1...(2↑𝑗))) = (2↑𝑗))
106104, 105syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (♯‘(1...(2↑𝑗))) = (2↑𝑗))
107106, 89eqeltrd 2913 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (♯‘(1...(2↑𝑗))) ∈ ℂ)
108 fzfid 13335 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) ∈ Fin)
109 hashcl 13711 . . . . . . . . . . . . . . 15 ((((2↑𝑗) + 1)...(2↑(𝑗 + 1))) ∈ Fin → (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∈ ℕ0)
110108, 109syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∈ ℕ0)
111110nn0cnd 11951 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∈ ℂ)
112 simpr 487 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
113112nnzd 12080 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
114 uzid 12252 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
115 peano2uz 12295 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (ℤ𝑗) → (𝑗 + 1) ∈ (ℤ𝑗))
116 2re 11705 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ
117 1le2 11840 . . . . . . . . . . . . . . . . . . 19 1 ≤ 2
118 leexp2a 13530 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℝ ∧ 1 ≤ 2 ∧ (𝑗 + 1) ∈ (ℤ𝑗)) → (2↑𝑗) ≤ (2↑(𝑗 + 1)))
119116, 117, 118mp3an12 1447 . . . . . . . . . . . . . . . . . 18 ((𝑗 + 1) ∈ (ℤ𝑗) → (2↑𝑗) ≤ (2↑(𝑗 + 1)))
120113, 114, 115, 1194syl 19 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ≤ (2↑(𝑗 + 1)))
12188, 64eleqtrdi 2923 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ∈ (ℤ‘1))
12299nnzd 12080 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ ℤ)
123 elfz5 12894 . . . . . . . . . . . . . . . . . 18 (((2↑𝑗) ∈ (ℤ‘1) ∧ (2↑(𝑗 + 1)) ∈ ℤ) → ((2↑𝑗) ∈ (1...(2↑(𝑗 + 1))) ↔ (2↑𝑗) ≤ (2↑(𝑗 + 1))))
124121, 122, 123syl2anc 586 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) ∈ (1...(2↑(𝑗 + 1))) ↔ (2↑𝑗) ≤ (2↑(𝑗 + 1))))
125120, 124mpbird 259 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ∈ (1...(2↑(𝑗 + 1))))
126 fzsplit 12927 . . . . . . . . . . . . . . . 16 ((2↑𝑗) ∈ (1...(2↑(𝑗 + 1))) → (1...(2↑(𝑗 + 1))) = ((1...(2↑𝑗)) ∪ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))))
127125, 126syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (1...(2↑(𝑗 + 1))) = ((1...(2↑𝑗)) ∪ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))))
128127fveq2d 6668 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (♯‘(1...(2↑(𝑗 + 1)))) = (♯‘((1...(2↑𝑗)) ∪ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))))))
12989times2d 11875 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) · 2) = ((2↑𝑗) + (2↑𝑗)))
13085, 129eqtrd 2856 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) = ((2↑𝑗) + (2↑𝑗)))
13199nnnn0d 11949 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ ℕ0)
132 hashfz1 13700 . . . . . . . . . . . . . . . 16 ((2↑(𝑗 + 1)) ∈ ℕ0 → (♯‘(1...(2↑(𝑗 + 1)))) = (2↑(𝑗 + 1)))
133131, 132syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (♯‘(1...(2↑(𝑗 + 1)))) = (2↑(𝑗 + 1)))
134106oveq1d 7165 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → ((♯‘(1...(2↑𝑗))) + (2↑𝑗)) = ((2↑𝑗) + (2↑𝑗)))
135130, 133, 1343eqtr4d 2866 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (♯‘(1...(2↑(𝑗 + 1)))) = ((♯‘(1...(2↑𝑗))) + (2↑𝑗)))
136 fzfid 13335 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (1...(2↑𝑗)) ∈ Fin)
13788nnred 11647 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℝ)
138137ltp1d 11564 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) < ((2↑𝑗) + 1))
139 fzdisj 12928 . . . . . . . . . . . . . . . 16 ((2↑𝑗) < ((2↑𝑗) + 1) → ((1...(2↑𝑗)) ∩ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) = ∅)
140138, 139syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → ((1...(2↑𝑗)) ∩ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) = ∅)
141 hashun 13737 . . . . . . . . . . . . . . 15 (((1...(2↑𝑗)) ∈ Fin ∧ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) ∈ Fin ∧ ((1...(2↑𝑗)) ∩ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) = ∅) → (♯‘((1...(2↑𝑗)) ∪ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))))) = ((♯‘(1...(2↑𝑗))) + (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1))))))
142136, 108, 140, 141syl3anc 1367 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (♯‘((1...(2↑𝑗)) ∪ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))))) = ((♯‘(1...(2↑𝑗))) + (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1))))))
143128, 135, 1423eqtr3d 2864 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ((♯‘(1...(2↑𝑗))) + (2↑𝑗)) = ((♯‘(1...(2↑𝑗))) + (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1))))))
144107, 89, 111, 143addcanad 10839 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) = (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))))
145144oveq1d 7165 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) = ((♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) · (𝐹‘(2↑(𝑗 + 1)))))
146 fsumconst 15139 . . . . . . . . . . . 12 (((((2↑𝑗) + 1)...(2↑(𝑗 + 1))) ∈ Fin ∧ (𝐹‘(2↑(𝑗 + 1))) ∈ ℂ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))) = ((♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) · (𝐹‘(2↑(𝑗 + 1)))))
147108, 101, 146syl2anc 586 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))) = ((♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) · (𝐹‘(2↑(𝑗 + 1)))))
148145, 147eqtr4d 2859 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) = Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))))
149100adantr 483 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ)
150 simpl 485 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝜑)
151 peano2nn 11644 . . . . . . . . . . . . . 14 ((2↑𝑗) ∈ ℕ → ((2↑𝑗) + 1) ∈ ℕ)
15288, 151syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) + 1) ∈ ℕ)
153 elfzuz 12898 . . . . . . . . . . . . 13 (𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) → 𝑘 ∈ (ℤ‘((2↑𝑗) + 1)))
154 eluznn 12312 . . . . . . . . . . . . 13 ((((2↑𝑗) + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘((2↑𝑗) + 1))) → 𝑘 ∈ ℕ)
155152, 153, 154syl2an 597 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → 𝑘 ∈ ℕ)
156150, 155, 38syl2an2r 683 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹𝑘) ∈ ℝ)
157 elfzuz3 12899 . . . . . . . . . . . . . . 15 (𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) → (2↑(𝑗 + 1)) ∈ (ℤ𝑛))
158157adantl 484 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (2↑(𝑗 + 1)) ∈ (ℤ𝑛))
159 simplll 773 . . . . . . . . . . . . . . 15 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...(2↑(𝑗 + 1)))) → 𝜑)
160 elfzuz 12898 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) → 𝑛 ∈ (ℤ‘((2↑𝑗) + 1)))
161 eluznn 12312 . . . . . . . . . . . . . . . . 17 ((((2↑𝑗) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((2↑𝑗) + 1))) → 𝑛 ∈ ℕ)
162152, 160, 161syl2an 597 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → 𝑛 ∈ ℕ)
163 elfzuz 12898 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝑛...(2↑(𝑗 + 1))) → 𝑘 ∈ (ℤ𝑛))
164 eluznn 12312 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
165162, 163, 164syl2an 597 . . . . . . . . . . . . . . 15 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...(2↑(𝑗 + 1)))) → 𝑘 ∈ ℕ)
166159, 165, 38syl2anc 586 . . . . . . . . . . . . . 14 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...(2↑(𝑗 + 1)))) → (𝐹𝑘) ∈ ℝ)
167 simplll 773 . . . . . . . . . . . . . . 15 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...((2↑(𝑗 + 1)) − 1))) → 𝜑)
168 elfzuz 12898 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝑛...((2↑(𝑗 + 1)) − 1)) → 𝑘 ∈ (ℤ𝑛))
169162, 168, 164syl2an 597 . . . . . . . . . . . . . . 15 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...((2↑(𝑗 + 1)) − 1))) → 𝑘 ∈ ℕ)
170 climcnds.3 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
171167, 169, 170syl2anc 586 . . . . . . . . . . . . . 14 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...((2↑(𝑗 + 1)) − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
172158, 166, 171monoord2 13395 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑛))
173172ralrimiva 3182 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ∀𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑛))
174 fveq2 6664 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
175174breq2d 5070 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑛) ↔ (𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑘)))
176175rspccva 3621 . . . . . . . . . . . 12 ((∀𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑛) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑘))
177173, 176sylan 582 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑘))
178108, 149, 156, 177fsumle 15148 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))) ≤ Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))
179148, 178eqbrtrd 5080 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) ≤ Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))
180137, 100remulcld 10665 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) ∈ ℝ)
181108, 156fsumrecl 15085 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘) ∈ ℝ)
182 2rp 12388 . . . . . . . . . . 11 2 ∈ ℝ+
183182a1i 11 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → 2 ∈ ℝ+)
184180, 181, 183lemul2d 12469 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) ≤ Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘) ↔ (2 · ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1))))) ≤ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))))
185179, 184mpbid 234 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1))))) ≤ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))
186103, 185eqbrtrd 5080 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) ≤ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))
187 1zzd 12007 . . . . . . . . . 10 (𝜑 → 1 ∈ ℤ)
188 nnnn0 11898 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
189 simpr 487 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
190 nnexpcl 13436 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
19140, 189, 190sylancr 589 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
192191nnred 11647 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℝ)
193 fveq2 6664 . . . . . . . . . . . . . . 15 (𝑘 = (2↑𝑛) → (𝐹𝑘) = (𝐹‘(2↑𝑛)))
194193eleq1d 2897 . . . . . . . . . . . . . 14 (𝑘 = (2↑𝑛) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(2↑𝑛)) ∈ ℝ))
19539adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
196194, 195, 191rspcdva 3624 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (𝐹‘(2↑𝑛)) ∈ ℝ)
197192, 196remulcld 10665 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) ∈ ℝ)
19858, 197eqeltrd 2913 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℝ)
199188, 198sylan2 594 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℝ)
20064, 187, 199serfre 13393 . . . . . . . . 9 (𝜑 → seq1( + , 𝐺):ℕ⟶ℝ)
201200ffvelrnda 6845 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ∈ ℝ)
20272eleq1d 2897 . . . . . . . . 9 (𝑛 = (𝑗 + 1) → ((𝐺𝑛) ∈ ℝ ↔ (𝐺‘(𝑗 + 1)) ∈ ℝ))
203199ralrimiva 3182 . . . . . . . . . 10 (𝜑 → ∀𝑛 ∈ ℕ (𝐺𝑛) ∈ ℝ)
204203adantr 483 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐺𝑛) ∈ ℝ)
205202, 204, 79rspcdva 3624 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) ∈ ℝ)
20664, 187, 38serfre 13393 . . . . . . . . . 10 (𝜑 → seq1( + , 𝐹):ℕ⟶ℝ)
207 ffvelrn 6843 . . . . . . . . . 10 ((seq1( + , 𝐹):ℕ⟶ℝ ∧ (2↑𝑗) ∈ ℕ) → (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℝ)
208206, 87, 207syl2an 597 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℝ)
209 remulcl 10616 . . . . . . . . 9 ((2 ∈ ℝ ∧ (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℝ) → (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∈ ℝ)
210116, 208, 209sylancr 589 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∈ ℝ)
211 remulcl 10616 . . . . . . . . 9 ((2 ∈ ℝ ∧ Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘) ∈ ℝ) → (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)) ∈ ℝ)
212116, 181, 211sylancr 589 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)) ∈ ℝ)
213 le2add 11116 . . . . . . . 8 ((((seq1( + , 𝐺)‘𝑗) ∈ ℝ ∧ (𝐺‘(𝑗 + 1)) ∈ ℝ) ∧ ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∈ ℝ ∧ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)) ∈ ℝ)) → (((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∧ (𝐺‘(𝑗 + 1)) ≤ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))) → ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))) ≤ ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))))
214201, 205, 210, 212, 213syl22anc 836 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∧ (𝐺‘(𝑗 + 1)) ≤ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))) → ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))) ≤ ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))))
215186, 214mpan2d 692 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) → ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))) ≤ ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))))
216112, 64eleqtrdi 2923 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
217 seqp1 13378 . . . . . . . 8 (𝑗 ∈ (ℤ‘1) → (seq1( + , 𝐺)‘(𝑗 + 1)) = ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))
218216, 217syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘(𝑗 + 1)) = ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))
219 fzfid 13335 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (1...(2↑(𝑗 + 1))) ∈ Fin)
220 elfznn 12930 . . . . . . . . . . . 12 (𝑘 ∈ (1...(2↑(𝑗 + 1))) → 𝑘 ∈ ℕ)
22138recnd 10663 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
222150, 220, 221syl2an 597 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑(𝑗 + 1)))) → (𝐹𝑘) ∈ ℂ)
223140, 127, 219, 222fsumsplit 15091 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...(2↑(𝑗 + 1)))(𝐹𝑘) = (Σ𝑘 ∈ (1...(2↑𝑗))(𝐹𝑘) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))
224 eqidd 2822 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑(𝑗 + 1)))) → (𝐹𝑘) = (𝐹𝑘))
22599, 64eleqtrdi 2923 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ (ℤ‘1))
226224, 225, 222fsumser 15081 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...(2↑(𝑗 + 1)))(𝐹𝑘) = (seq1( + , 𝐹)‘(2↑(𝑗 + 1))))
227 eqidd 2822 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑𝑗))) → (𝐹𝑘) = (𝐹𝑘))
228 elfznn 12930 . . . . . . . . . . . . 13 (𝑘 ∈ (1...(2↑𝑗)) → 𝑘 ∈ ℕ)
229150, 228, 221syl2an 597 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑𝑗))) → (𝐹𝑘) ∈ ℂ)
230227, 121, 229fsumser 15081 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...(2↑𝑗))(𝐹𝑘) = (seq1( + , 𝐹)‘(2↑𝑗)))
231230oveq1d 7165 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (Σ𝑘 ∈ (1...(2↑𝑗))(𝐹𝑘) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)) = ((seq1( + , 𝐹)‘(2↑𝑗)) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))
232223, 226, 2313eqtr3d 2864 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘(2↑(𝑗 + 1))) = ((seq1( + , 𝐹)‘(2↑𝑗)) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))
233232oveq2d 7166 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))) = (2 · ((seq1( + , 𝐹)‘(2↑𝑗)) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))))
234208recnd 10663 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℂ)
235181recnd 10663 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘) ∈ ℂ)
23694, 234, 235adddid 10659 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · ((seq1( + , 𝐹)‘(2↑𝑗)) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))) = ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))))
237233, 236eqtrd 2856 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))) = ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))))
238218, 237breq12d 5071 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))) ↔ ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))) ≤ ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))))
239215, 238sylibrd 261 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) → (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1))))))
240239expcom 416 . . . 4 (𝑗 ∈ ℕ → (𝜑 → ((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) → (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))))))
241240a2d 29 . . 3 (𝑗 ∈ ℕ → ((𝜑 → (seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗)))) → (𝜑 → (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))))))
24210, 16, 22, 28, 71, 241nnind 11650 . 2 (𝑁 ∈ ℕ → (𝜑 → (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁)))))
243242impcom 410 1 ((𝜑𝑁 ∈ ℕ) → (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  cun 3933  cin 3934  c0 4290   class class class wbr 5058  wf 6345  cfv 6349  (class class class)co 7150  Fincfn 8503  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cle 10670  cmin 10864  cn 11632  2c2 11686  0cn0 11891  cz 11975  cuz 12237  +crp 12383  ...cfz 12886  seqcseq 13363  cexp 13423  chash 13684  Σcsu 15036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-ico 12738  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037
This theorem is referenced by:  climcnds  15200
  Copyright terms: Public domain W3C validator