MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcndslem2 Structured version   Visualization version   GIF version

Theorem climcndslem2 15735
Description: Lemma for climcnds 15736: bound the condensed series by the original series. (Contributed by Mario Carneiro, 18-Jul-2014.) (Proof shortened by AV, 10-Jul-2022.)
Hypotheses
Ref Expression
climcnds.1 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
climcnds.2 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
climcnds.3 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climcnds.4 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
Assertion
Ref Expression
climcndslem2 ((𝜑𝑁 ∈ ℕ) → (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁))))
Distinct variable groups:   𝑘,𝑛,𝐹   𝑘,𝐺,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝑁(𝑘,𝑛)

Proof of Theorem climcndslem2
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6842 . . . . 5 (𝑥 = 1 → (seq1( + , 𝐺)‘𝑥) = (seq1( + , 𝐺)‘1))
2 oveq2 7365 . . . . . . . 8 (𝑥 = 1 → (2↑𝑥) = (2↑1))
3 2cn 12228 . . . . . . . . 9 2 ∈ ℂ
4 exp1 13973 . . . . . . . . 9 (2 ∈ ℂ → (2↑1) = 2)
53, 4ax-mp 5 . . . . . . . 8 (2↑1) = 2
62, 5eqtrdi 2792 . . . . . . 7 (𝑥 = 1 → (2↑𝑥) = 2)
76fveq2d 6846 . . . . . 6 (𝑥 = 1 → (seq1( + , 𝐹)‘(2↑𝑥)) = (seq1( + , 𝐹)‘2))
87oveq2d 7373 . . . . 5 (𝑥 = 1 → (2 · (seq1( + , 𝐹)‘(2↑𝑥))) = (2 · (seq1( + , 𝐹)‘2)))
91, 8breq12d 5118 . . . 4 (𝑥 = 1 → ((seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥))) ↔ (seq1( + , 𝐺)‘1) ≤ (2 · (seq1( + , 𝐹)‘2))))
109imbi2d 340 . . 3 (𝑥 = 1 → ((𝜑 → (seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥)))) ↔ (𝜑 → (seq1( + , 𝐺)‘1) ≤ (2 · (seq1( + , 𝐹)‘2)))))
11 fveq2 6842 . . . . 5 (𝑥 = 𝑗 → (seq1( + , 𝐺)‘𝑥) = (seq1( + , 𝐺)‘𝑗))
12 oveq2 7365 . . . . . . 7 (𝑥 = 𝑗 → (2↑𝑥) = (2↑𝑗))
1312fveq2d 6846 . . . . . 6 (𝑥 = 𝑗 → (seq1( + , 𝐹)‘(2↑𝑥)) = (seq1( + , 𝐹)‘(2↑𝑗)))
1413oveq2d 7373 . . . . 5 (𝑥 = 𝑗 → (2 · (seq1( + , 𝐹)‘(2↑𝑥))) = (2 · (seq1( + , 𝐹)‘(2↑𝑗))))
1511, 14breq12d 5118 . . . 4 (𝑥 = 𝑗 → ((seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥))) ↔ (seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗)))))
1615imbi2d 340 . . 3 (𝑥 = 𝑗 → ((𝜑 → (seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥)))) ↔ (𝜑 → (seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))))))
17 fveq2 6842 . . . . 5 (𝑥 = (𝑗 + 1) → (seq1( + , 𝐺)‘𝑥) = (seq1( + , 𝐺)‘(𝑗 + 1)))
18 oveq2 7365 . . . . . . 7 (𝑥 = (𝑗 + 1) → (2↑𝑥) = (2↑(𝑗 + 1)))
1918fveq2d 6846 . . . . . 6 (𝑥 = (𝑗 + 1) → (seq1( + , 𝐹)‘(2↑𝑥)) = (seq1( + , 𝐹)‘(2↑(𝑗 + 1))))
2019oveq2d 7373 . . . . 5 (𝑥 = (𝑗 + 1) → (2 · (seq1( + , 𝐹)‘(2↑𝑥))) = (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))))
2117, 20breq12d 5118 . . . 4 (𝑥 = (𝑗 + 1) → ((seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥))) ↔ (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1))))))
2221imbi2d 340 . . 3 (𝑥 = (𝑗 + 1) → ((𝜑 → (seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥)))) ↔ (𝜑 → (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))))))
23 fveq2 6842 . . . . 5 (𝑥 = 𝑁 → (seq1( + , 𝐺)‘𝑥) = (seq1( + , 𝐺)‘𝑁))
24 oveq2 7365 . . . . . . 7 (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁))
2524fveq2d 6846 . . . . . 6 (𝑥 = 𝑁 → (seq1( + , 𝐹)‘(2↑𝑥)) = (seq1( + , 𝐹)‘(2↑𝑁)))
2625oveq2d 7373 . . . . 5 (𝑥 = 𝑁 → (2 · (seq1( + , 𝐹)‘(2↑𝑥))) = (2 · (seq1( + , 𝐹)‘(2↑𝑁))))
2723, 26breq12d 5118 . . . 4 (𝑥 = 𝑁 → ((seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥))) ↔ (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁)))))
2827imbi2d 340 . . 3 (𝑥 = 𝑁 → ((𝜑 → (seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥)))) ↔ (𝜑 → (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁))))))
29 fveq2 6842 . . . . . . . 8 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
3029breq2d 5117 . . . . . . 7 (𝑘 = 1 → (0 ≤ (𝐹𝑘) ↔ 0 ≤ (𝐹‘1)))
31 climcnds.2 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
3231ralrimiva 3143 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ 0 ≤ (𝐹𝑘))
33 1nn 12164 . . . . . . . 8 1 ∈ ℕ
3433a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
3530, 32, 34rspcdva 3582 . . . . . 6 (𝜑 → 0 ≤ (𝐹‘1))
36 fveq2 6842 . . . . . . . . 9 (𝑘 = 2 → (𝐹𝑘) = (𝐹‘2))
3736eleq1d 2822 . . . . . . . 8 (𝑘 = 2 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘2) ∈ ℝ))
38 climcnds.1 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
3938ralrimiva 3143 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
40 2nn 12226 . . . . . . . . 9 2 ∈ ℕ
4140a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℕ)
4237, 39, 41rspcdva 3582 . . . . . . 7 (𝜑 → (𝐹‘2) ∈ ℝ)
4329eleq1d 2822 . . . . . . . 8 (𝑘 = 1 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘1) ∈ ℝ))
4443, 39, 34rspcdva 3582 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ ℝ)
4542, 44addge02d 11744 . . . . . 6 (𝜑 → (0 ≤ (𝐹‘1) ↔ (𝐹‘2) ≤ ((𝐹‘1) + (𝐹‘2))))
4635, 45mpbid 231 . . . . 5 (𝜑 → (𝐹‘2) ≤ ((𝐹‘1) + (𝐹‘2)))
4744, 42readdcld 11184 . . . . . 6 (𝜑 → ((𝐹‘1) + (𝐹‘2)) ∈ ℝ)
4841nnrpd 12955 . . . . . 6 (𝜑 → 2 ∈ ℝ+)
4942, 47, 48lemul2d 13001 . . . . 5 (𝜑 → ((𝐹‘2) ≤ ((𝐹‘1) + (𝐹‘2)) ↔ (2 · (𝐹‘2)) ≤ (2 · ((𝐹‘1) + (𝐹‘2)))))
5046, 49mpbid 231 . . . 4 (𝜑 → (2 · (𝐹‘2)) ≤ (2 · ((𝐹‘1) + (𝐹‘2))))
51 1z 12533 . . . . 5 1 ∈ ℤ
52 fveq2 6842 . . . . . . 7 (𝑛 = 1 → (𝐺𝑛) = (𝐺‘1))
53 oveq2 7365 . . . . . . . . 9 (𝑛 = 1 → (2↑𝑛) = (2↑1))
5453, 5eqtrdi 2792 . . . . . . . 8 (𝑛 = 1 → (2↑𝑛) = 2)
5554fveq2d 6846 . . . . . . . 8 (𝑛 = 1 → (𝐹‘(2↑𝑛)) = (𝐹‘2))
5654, 55oveq12d 7375 . . . . . . 7 (𝑛 = 1 → ((2↑𝑛) · (𝐹‘(2↑𝑛))) = (2 · (𝐹‘2)))
5752, 56eqeq12d 2752 . . . . . 6 (𝑛 = 1 → ((𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) ↔ (𝐺‘1) = (2 · (𝐹‘2))))
58 climcnds.4 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
5958ralrimiva 3143 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ0 (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
60 1nn0 12429 . . . . . . 7 1 ∈ ℕ0
6160a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℕ0)
6257, 59, 61rspcdva 3582 . . . . 5 (𝜑 → (𝐺‘1) = (2 · (𝐹‘2)))
6351, 62seq1i 13920 . . . 4 (𝜑 → (seq1( + , 𝐺)‘1) = (2 · (𝐹‘2)))
64 nnuz 12806 . . . . . 6 ℕ = (ℤ‘1)
65 df-2 12216 . . . . . 6 2 = (1 + 1)
66 eqidd 2737 . . . . . . 7 (𝜑 → (𝐹‘1) = (𝐹‘1))
6751, 66seq1i 13920 . . . . . 6 (𝜑 → (seq1( + , 𝐹)‘1) = (𝐹‘1))
68 eqidd 2737 . . . . . 6 (𝜑 → (𝐹‘2) = (𝐹‘2))
6964, 34, 65, 67, 68seqp1d 13923 . . . . 5 (𝜑 → (seq1( + , 𝐹)‘2) = ((𝐹‘1) + (𝐹‘2)))
7069oveq2d 7373 . . . 4 (𝜑 → (2 · (seq1( + , 𝐹)‘2)) = (2 · ((𝐹‘1) + (𝐹‘2))))
7150, 63, 703brtr4d 5137 . . 3 (𝜑 → (seq1( + , 𝐺)‘1) ≤ (2 · (seq1( + , 𝐹)‘2)))
72 fveq2 6842 . . . . . . . . . . 11 (𝑛 = (𝑗 + 1) → (𝐺𝑛) = (𝐺‘(𝑗 + 1)))
73 oveq2 7365 . . . . . . . . . . . 12 (𝑛 = (𝑗 + 1) → (2↑𝑛) = (2↑(𝑗 + 1)))
7473fveq2d 6846 . . . . . . . . . . . 12 (𝑛 = (𝑗 + 1) → (𝐹‘(2↑𝑛)) = (𝐹‘(2↑(𝑗 + 1))))
7573, 74oveq12d 7375 . . . . . . . . . . 11 (𝑛 = (𝑗 + 1) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))))
7672, 75eqeq12d 2752 . . . . . . . . . 10 (𝑛 = (𝑗 + 1) → ((𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) ↔ (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1))))))
7759adantr 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ∀𝑛 ∈ ℕ0 (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
78 peano2nn 12165 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
7978adantl 482 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ)
8079nnnn0d 12473 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ0)
8176, 77, 80rspcdva 3582 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))))
82 nnnn0 12420 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
8382adantl 482 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
84 expp1 13974 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) = ((2↑𝑗) · 2))
853, 83, 84sylancr 587 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) = ((2↑𝑗) · 2))
86 nnexpcl 13980 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (2↑𝑗) ∈ ℕ)
8740, 82, 86sylancr 587 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (2↑𝑗) ∈ ℕ)
8887adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℕ)
8988nncnd 12169 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℂ)
90 mulcom 11137 . . . . . . . . . . . 12 (((2↑𝑗) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑𝑗) · 2) = (2 · (2↑𝑗)))
9189, 3, 90sylancl 586 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) · 2) = (2 · (2↑𝑗)))
9285, 91eqtrd 2776 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) = (2 · (2↑𝑗)))
9392oveq1d 7372 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))) = ((2 · (2↑𝑗)) · (𝐹‘(2↑(𝑗 + 1)))))
943a1i 11 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → 2 ∈ ℂ)
95 fveq2 6842 . . . . . . . . . . . . 13 (𝑘 = (2↑(𝑗 + 1)) → (𝐹𝑘) = (𝐹‘(2↑(𝑗 + 1))))
9695eleq1d 2822 . . . . . . . . . . . 12 (𝑘 = (2↑(𝑗 + 1)) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ))
9739adantr 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
98 nnexpcl 13980 . . . . . . . . . . . . 13 ((2 ∈ ℕ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ)
9940, 80, 98sylancr 587 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ ℕ)
10096, 97, 99rspcdva 3582 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ)
101100recnd 11183 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℂ)
10294, 89, 101mulassd 11178 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((2 · (2↑𝑗)) · (𝐹‘(2↑(𝑗 + 1)))) = (2 · ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1))))))
10381, 93, 1023eqtrd 2780 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) = (2 · ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1))))))
10488nnnn0d 12473 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℕ0)
105 hashfz1 14246 . . . . . . . . . . . . . . 15 ((2↑𝑗) ∈ ℕ0 → (♯‘(1...(2↑𝑗))) = (2↑𝑗))
106104, 105syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (♯‘(1...(2↑𝑗))) = (2↑𝑗))
107106, 89eqeltrd 2838 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (♯‘(1...(2↑𝑗))) ∈ ℂ)
108 fzfid 13878 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) ∈ Fin)
109 hashcl 14256 . . . . . . . . . . . . . . 15 ((((2↑𝑗) + 1)...(2↑(𝑗 + 1))) ∈ Fin → (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∈ ℕ0)
110108, 109syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∈ ℕ0)
111110nn0cnd 12475 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∈ ℂ)
112 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
113112nnzd 12526 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
114 uzid 12778 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
115 peano2uz 12826 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (ℤ𝑗) → (𝑗 + 1) ∈ (ℤ𝑗))
116 2re 12227 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ
117 1le2 12362 . . . . . . . . . . . . . . . . . . 19 1 ≤ 2
118 leexp2a 14077 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℝ ∧ 1 ≤ 2 ∧ (𝑗 + 1) ∈ (ℤ𝑗)) → (2↑𝑗) ≤ (2↑(𝑗 + 1)))
119116, 117, 118mp3an12 1451 . . . . . . . . . . . . . . . . . 18 ((𝑗 + 1) ∈ (ℤ𝑗) → (2↑𝑗) ≤ (2↑(𝑗 + 1)))
120113, 114, 115, 1194syl 19 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ≤ (2↑(𝑗 + 1)))
12188, 64eleqtrdi 2848 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ∈ (ℤ‘1))
12299nnzd 12526 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ ℤ)
123 elfz5 13433 . . . . . . . . . . . . . . . . . 18 (((2↑𝑗) ∈ (ℤ‘1) ∧ (2↑(𝑗 + 1)) ∈ ℤ) → ((2↑𝑗) ∈ (1...(2↑(𝑗 + 1))) ↔ (2↑𝑗) ≤ (2↑(𝑗 + 1))))
124121, 122, 123syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) ∈ (1...(2↑(𝑗 + 1))) ↔ (2↑𝑗) ≤ (2↑(𝑗 + 1))))
125120, 124mpbird 256 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ∈ (1...(2↑(𝑗 + 1))))
126 fzsplit 13467 . . . . . . . . . . . . . . . 16 ((2↑𝑗) ∈ (1...(2↑(𝑗 + 1))) → (1...(2↑(𝑗 + 1))) = ((1...(2↑𝑗)) ∪ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))))
127125, 126syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (1...(2↑(𝑗 + 1))) = ((1...(2↑𝑗)) ∪ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))))
128127fveq2d 6846 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (♯‘(1...(2↑(𝑗 + 1)))) = (♯‘((1...(2↑𝑗)) ∪ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))))))
12989times2d 12397 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) · 2) = ((2↑𝑗) + (2↑𝑗)))
13085, 129eqtrd 2776 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) = ((2↑𝑗) + (2↑𝑗)))
13199nnnn0d 12473 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ ℕ0)
132 hashfz1 14246 . . . . . . . . . . . . . . . 16 ((2↑(𝑗 + 1)) ∈ ℕ0 → (♯‘(1...(2↑(𝑗 + 1)))) = (2↑(𝑗 + 1)))
133131, 132syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (♯‘(1...(2↑(𝑗 + 1)))) = (2↑(𝑗 + 1)))
134106oveq1d 7372 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → ((♯‘(1...(2↑𝑗))) + (2↑𝑗)) = ((2↑𝑗) + (2↑𝑗)))
135130, 133, 1343eqtr4d 2786 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (♯‘(1...(2↑(𝑗 + 1)))) = ((♯‘(1...(2↑𝑗))) + (2↑𝑗)))
136 fzfid 13878 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (1...(2↑𝑗)) ∈ Fin)
13788nnred 12168 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℝ)
138137ltp1d 12085 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) < ((2↑𝑗) + 1))
139 fzdisj 13468 . . . . . . . . . . . . . . . 16 ((2↑𝑗) < ((2↑𝑗) + 1) → ((1...(2↑𝑗)) ∩ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) = ∅)
140138, 139syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → ((1...(2↑𝑗)) ∩ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) = ∅)
141 hashun 14282 . . . . . . . . . . . . . . 15 (((1...(2↑𝑗)) ∈ Fin ∧ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) ∈ Fin ∧ ((1...(2↑𝑗)) ∩ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) = ∅) → (♯‘((1...(2↑𝑗)) ∪ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))))) = ((♯‘(1...(2↑𝑗))) + (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1))))))
142136, 108, 140, 141syl3anc 1371 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (♯‘((1...(2↑𝑗)) ∪ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))))) = ((♯‘(1...(2↑𝑗))) + (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1))))))
143128, 135, 1423eqtr3d 2784 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ((♯‘(1...(2↑𝑗))) + (2↑𝑗)) = ((♯‘(1...(2↑𝑗))) + (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1))))))
144107, 89, 111, 143addcanad 11360 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) = (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))))
145144oveq1d 7372 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) = ((♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) · (𝐹‘(2↑(𝑗 + 1)))))
146 fsumconst 15675 . . . . . . . . . . . 12 (((((2↑𝑗) + 1)...(2↑(𝑗 + 1))) ∈ Fin ∧ (𝐹‘(2↑(𝑗 + 1))) ∈ ℂ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))) = ((♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) · (𝐹‘(2↑(𝑗 + 1)))))
147108, 101, 146syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))) = ((♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) · (𝐹‘(2↑(𝑗 + 1)))))
148145, 147eqtr4d 2779 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) = Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))))
149100adantr 481 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ)
150 simpl 483 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝜑)
151 peano2nn 12165 . . . . . . . . . . . . . 14 ((2↑𝑗) ∈ ℕ → ((2↑𝑗) + 1) ∈ ℕ)
15288, 151syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) + 1) ∈ ℕ)
153 elfzuz 13437 . . . . . . . . . . . . 13 (𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) → 𝑘 ∈ (ℤ‘((2↑𝑗) + 1)))
154 eluznn 12843 . . . . . . . . . . . . 13 ((((2↑𝑗) + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘((2↑𝑗) + 1))) → 𝑘 ∈ ℕ)
155152, 153, 154syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → 𝑘 ∈ ℕ)
156150, 155, 38syl2an2r 683 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹𝑘) ∈ ℝ)
157 elfzuz3 13438 . . . . . . . . . . . . . . 15 (𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) → (2↑(𝑗 + 1)) ∈ (ℤ𝑛))
158157adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (2↑(𝑗 + 1)) ∈ (ℤ𝑛))
159 simplll 773 . . . . . . . . . . . . . . 15 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...(2↑(𝑗 + 1)))) → 𝜑)
160 elfzuz 13437 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) → 𝑛 ∈ (ℤ‘((2↑𝑗) + 1)))
161 eluznn 12843 . . . . . . . . . . . . . . . . 17 ((((2↑𝑗) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((2↑𝑗) + 1))) → 𝑛 ∈ ℕ)
162152, 160, 161syl2an 596 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → 𝑛 ∈ ℕ)
163 elfzuz 13437 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝑛...(2↑(𝑗 + 1))) → 𝑘 ∈ (ℤ𝑛))
164 eluznn 12843 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
165162, 163, 164syl2an 596 . . . . . . . . . . . . . . 15 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...(2↑(𝑗 + 1)))) → 𝑘 ∈ ℕ)
166159, 165, 38syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...(2↑(𝑗 + 1)))) → (𝐹𝑘) ∈ ℝ)
167 simplll 773 . . . . . . . . . . . . . . 15 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...((2↑(𝑗 + 1)) − 1))) → 𝜑)
168 elfzuz 13437 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝑛...((2↑(𝑗 + 1)) − 1)) → 𝑘 ∈ (ℤ𝑛))
169162, 168, 164syl2an 596 . . . . . . . . . . . . . . 15 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...((2↑(𝑗 + 1)) − 1))) → 𝑘 ∈ ℕ)
170 climcnds.3 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
171167, 169, 170syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...((2↑(𝑗 + 1)) − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
172158, 166, 171monoord2 13939 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑛))
173172ralrimiva 3143 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ∀𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑛))
174 fveq2 6842 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
175174breq2d 5117 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑛) ↔ (𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑘)))
176175rspccva 3580 . . . . . . . . . . . 12 ((∀𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑛) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑘))
177173, 176sylan 580 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑘))
178108, 149, 156, 177fsumle 15684 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))) ≤ Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))
179148, 178eqbrtrd 5127 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) ≤ Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))
180137, 100remulcld 11185 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) ∈ ℝ)
181108, 156fsumrecl 15619 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘) ∈ ℝ)
182 2rp 12920 . . . . . . . . . . 11 2 ∈ ℝ+
183182a1i 11 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → 2 ∈ ℝ+)
184180, 181, 183lemul2d 13001 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) ≤ Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘) ↔ (2 · ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1))))) ≤ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))))
185179, 184mpbid 231 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1))))) ≤ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))
186103, 185eqbrtrd 5127 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) ≤ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))
187 1zzd 12534 . . . . . . . . . 10 (𝜑 → 1 ∈ ℤ)
188 nnnn0 12420 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
189 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
190 nnexpcl 13980 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
19140, 189, 190sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
192191nnred 12168 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℝ)
193 fveq2 6842 . . . . . . . . . . . . . . 15 (𝑘 = (2↑𝑛) → (𝐹𝑘) = (𝐹‘(2↑𝑛)))
194193eleq1d 2822 . . . . . . . . . . . . . 14 (𝑘 = (2↑𝑛) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(2↑𝑛)) ∈ ℝ))
19539adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
196194, 195, 191rspcdva 3582 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (𝐹‘(2↑𝑛)) ∈ ℝ)
197192, 196remulcld 11185 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) ∈ ℝ)
19858, 197eqeltrd 2838 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℝ)
199188, 198sylan2 593 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℝ)
20064, 187, 199serfre 13937 . . . . . . . . 9 (𝜑 → seq1( + , 𝐺):ℕ⟶ℝ)
201200ffvelcdmda 7035 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ∈ ℝ)
20272eleq1d 2822 . . . . . . . . 9 (𝑛 = (𝑗 + 1) → ((𝐺𝑛) ∈ ℝ ↔ (𝐺‘(𝑗 + 1)) ∈ ℝ))
203199ralrimiva 3143 . . . . . . . . . 10 (𝜑 → ∀𝑛 ∈ ℕ (𝐺𝑛) ∈ ℝ)
204203adantr 481 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐺𝑛) ∈ ℝ)
205202, 204, 79rspcdva 3582 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) ∈ ℝ)
20664, 187, 38serfre 13937 . . . . . . . . . 10 (𝜑 → seq1( + , 𝐹):ℕ⟶ℝ)
207 ffvelcdm 7032 . . . . . . . . . 10 ((seq1( + , 𝐹):ℕ⟶ℝ ∧ (2↑𝑗) ∈ ℕ) → (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℝ)
208206, 87, 207syl2an 596 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℝ)
209 remulcl 11136 . . . . . . . . 9 ((2 ∈ ℝ ∧ (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℝ) → (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∈ ℝ)
210116, 208, 209sylancr 587 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∈ ℝ)
211 remulcl 11136 . . . . . . . . 9 ((2 ∈ ℝ ∧ Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘) ∈ ℝ) → (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)) ∈ ℝ)
212116, 181, 211sylancr 587 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)) ∈ ℝ)
213 le2add 11637 . . . . . . . 8 ((((seq1( + , 𝐺)‘𝑗) ∈ ℝ ∧ (𝐺‘(𝑗 + 1)) ∈ ℝ) ∧ ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∈ ℝ ∧ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)) ∈ ℝ)) → (((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∧ (𝐺‘(𝑗 + 1)) ≤ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))) → ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))) ≤ ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))))
214201, 205, 210, 212, 213syl22anc 837 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∧ (𝐺‘(𝑗 + 1)) ≤ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))) → ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))) ≤ ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))))
215186, 214mpan2d 692 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) → ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))) ≤ ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))))
216112, 64eleqtrdi 2848 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
217 seqp1 13921 . . . . . . . 8 (𝑗 ∈ (ℤ‘1) → (seq1( + , 𝐺)‘(𝑗 + 1)) = ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))
218216, 217syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘(𝑗 + 1)) = ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))
219 fzfid 13878 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (1...(2↑(𝑗 + 1))) ∈ Fin)
220 elfznn 13470 . . . . . . . . . . . 12 (𝑘 ∈ (1...(2↑(𝑗 + 1))) → 𝑘 ∈ ℕ)
22138recnd 11183 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
222150, 220, 221syl2an 596 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑(𝑗 + 1)))) → (𝐹𝑘) ∈ ℂ)
223140, 127, 219, 222fsumsplit 15626 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...(2↑(𝑗 + 1)))(𝐹𝑘) = (Σ𝑘 ∈ (1...(2↑𝑗))(𝐹𝑘) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))
224 eqidd 2737 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑(𝑗 + 1)))) → (𝐹𝑘) = (𝐹𝑘))
22599, 64eleqtrdi 2848 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ (ℤ‘1))
226224, 225, 222fsumser 15615 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...(2↑(𝑗 + 1)))(𝐹𝑘) = (seq1( + , 𝐹)‘(2↑(𝑗 + 1))))
227 eqidd 2737 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑𝑗))) → (𝐹𝑘) = (𝐹𝑘))
228 elfznn 13470 . . . . . . . . . . . . 13 (𝑘 ∈ (1...(2↑𝑗)) → 𝑘 ∈ ℕ)
229150, 228, 221syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑𝑗))) → (𝐹𝑘) ∈ ℂ)
230227, 121, 229fsumser 15615 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...(2↑𝑗))(𝐹𝑘) = (seq1( + , 𝐹)‘(2↑𝑗)))
231230oveq1d 7372 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (Σ𝑘 ∈ (1...(2↑𝑗))(𝐹𝑘) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)) = ((seq1( + , 𝐹)‘(2↑𝑗)) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))
232223, 226, 2313eqtr3d 2784 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘(2↑(𝑗 + 1))) = ((seq1( + , 𝐹)‘(2↑𝑗)) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))
233232oveq2d 7373 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))) = (2 · ((seq1( + , 𝐹)‘(2↑𝑗)) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))))
234208recnd 11183 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℂ)
235181recnd 11183 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘) ∈ ℂ)
23694, 234, 235adddid 11179 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · ((seq1( + , 𝐹)‘(2↑𝑗)) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))) = ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))))
237233, 236eqtrd 2776 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))) = ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))))
238218, 237breq12d 5118 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))) ↔ ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))) ≤ ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))))
239215, 238sylibrd 258 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) → (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1))))))
240239expcom 414 . . . 4 (𝑗 ∈ ℕ → (𝜑 → ((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) → (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))))))
241240a2d 29 . . 3 (𝑗 ∈ ℕ → ((𝜑 → (seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗)))) → (𝜑 → (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))))))
24210, 16, 22, 28, 71, 241nnind 12171 . 2 (𝑁 ∈ ℕ → (𝜑 → (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁)))))
243242impcom 408 1 ((𝜑𝑁 ∈ ℕ) → (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  cun 3908  cin 3909  c0 4282   class class class wbr 5105  wf 6492  cfv 6496  (class class class)co 7357  Fincfn 8883  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763  +crp 12915  ...cfz 13424  seqcseq 13906  cexp 13967  chash 14230  Σcsu 15570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571
This theorem is referenced by:  climcnds  15736
  Copyright terms: Public domain W3C validator