Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . . . 5
⊢ (𝑥 = 1 → (seq1( + , 𝐺)‘𝑥) = (seq1( + , 𝐺)‘1)) |
2 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑥 = 1 → (2↑𝑥) = (2↑1)) |
3 | | 2cn 11978 |
. . . . . . . . 9
⊢ 2 ∈
ℂ |
4 | | exp1 13716 |
. . . . . . . . 9
⊢ (2 ∈
ℂ → (2↑1) = 2) |
5 | 3, 4 | ax-mp 5 |
. . . . . . . 8
⊢
(2↑1) = 2 |
6 | 2, 5 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝑥 = 1 → (2↑𝑥) = 2) |
7 | 6 | fveq2d 6760 |
. . . . . 6
⊢ (𝑥 = 1 → (seq1( + , 𝐹)‘(2↑𝑥)) = (seq1( + , 𝐹)‘2)) |
8 | 7 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = 1 → (2 · (seq1( +
, 𝐹)‘(2↑𝑥))) = (2 · (seq1( + ,
𝐹)‘2))) |
9 | 1, 8 | breq12d 5083 |
. . . 4
⊢ (𝑥 = 1 → ((seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥))) ↔ (seq1( + , 𝐺)‘1) ≤ (2 ·
(seq1( + , 𝐹)‘2)))) |
10 | 9 | imbi2d 340 |
. . 3
⊢ (𝑥 = 1 → ((𝜑 → (seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥)))) ↔ (𝜑 → (seq1( + , 𝐺)‘1) ≤ (2 · (seq1( + , 𝐹)‘2))))) |
11 | | fveq2 6756 |
. . . . 5
⊢ (𝑥 = 𝑗 → (seq1( + , 𝐺)‘𝑥) = (seq1( + , 𝐺)‘𝑗)) |
12 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑥 = 𝑗 → (2↑𝑥) = (2↑𝑗)) |
13 | 12 | fveq2d 6760 |
. . . . . 6
⊢ (𝑥 = 𝑗 → (seq1( + , 𝐹)‘(2↑𝑥)) = (seq1( + , 𝐹)‘(2↑𝑗))) |
14 | 13 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = 𝑗 → (2 · (seq1( + , 𝐹)‘(2↑𝑥))) = (2 · (seq1( + ,
𝐹)‘(2↑𝑗)))) |
15 | 11, 14 | breq12d 5083 |
. . . 4
⊢ (𝑥 = 𝑗 → ((seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥))) ↔ (seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))))) |
16 | 15 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝑗 → ((𝜑 → (seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥)))) ↔ (𝜑 → (seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗)))))) |
17 | | fveq2 6756 |
. . . . 5
⊢ (𝑥 = (𝑗 + 1) → (seq1( + , 𝐺)‘𝑥) = (seq1( + , 𝐺)‘(𝑗 + 1))) |
18 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑥 = (𝑗 + 1) → (2↑𝑥) = (2↑(𝑗 + 1))) |
19 | 18 | fveq2d 6760 |
. . . . . 6
⊢ (𝑥 = (𝑗 + 1) → (seq1( + , 𝐹)‘(2↑𝑥)) = (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))) |
20 | 19 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = (𝑗 + 1) → (2 · (seq1( + , 𝐹)‘(2↑𝑥))) = (2 · (seq1( + ,
𝐹)‘(2↑(𝑗 + 1))))) |
21 | 17, 20 | breq12d 5083 |
. . . 4
⊢ (𝑥 = (𝑗 + 1) → ((seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥))) ↔ (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))))) |
22 | 21 | imbi2d 340 |
. . 3
⊢ (𝑥 = (𝑗 + 1) → ((𝜑 → (seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥)))) ↔ (𝜑 → (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1))))))) |
23 | | fveq2 6756 |
. . . . 5
⊢ (𝑥 = 𝑁 → (seq1( + , 𝐺)‘𝑥) = (seq1( + , 𝐺)‘𝑁)) |
24 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁)) |
25 | 24 | fveq2d 6760 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (seq1( + , 𝐹)‘(2↑𝑥)) = (seq1( + , 𝐹)‘(2↑𝑁))) |
26 | 25 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = 𝑁 → (2 · (seq1( + , 𝐹)‘(2↑𝑥))) = (2 · (seq1( + ,
𝐹)‘(2↑𝑁)))) |
27 | 23, 26 | breq12d 5083 |
. . . 4
⊢ (𝑥 = 𝑁 → ((seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥))) ↔ (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁))))) |
28 | 27 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝑁 → ((𝜑 → (seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥)))) ↔ (𝜑 → (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁)))))) |
29 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑘 = 1 → (𝐹‘𝑘) = (𝐹‘1)) |
30 | 29 | breq2d 5082 |
. . . . . . 7
⊢ (𝑘 = 1 → (0 ≤ (𝐹‘𝑘) ↔ 0 ≤ (𝐹‘1))) |
31 | | climcnds.2 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐹‘𝑘)) |
32 | 31 | ralrimiva 3107 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ ℕ 0 ≤ (𝐹‘𝑘)) |
33 | | 1nn 11914 |
. . . . . . . 8
⊢ 1 ∈
ℕ |
34 | 33 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℕ) |
35 | 30, 32, 34 | rspcdva 3554 |
. . . . . 6
⊢ (𝜑 → 0 ≤ (𝐹‘1)) |
36 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑘 = 2 → (𝐹‘𝑘) = (𝐹‘2)) |
37 | 36 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑘 = 2 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘2) ∈ ℝ)) |
38 | | climcnds.1 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) |
39 | 38 | ralrimiva 3107 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝐹‘𝑘) ∈ ℝ) |
40 | | 2nn 11976 |
. . . . . . . . 9
⊢ 2 ∈
ℕ |
41 | 40 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 2 ∈
ℕ) |
42 | 37, 39, 41 | rspcdva 3554 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘2) ∈ ℝ) |
43 | 29 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑘 = 1 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘1) ∈ ℝ)) |
44 | 43, 39, 34 | rspcdva 3554 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘1) ∈ ℝ) |
45 | 42, 44 | addge02d 11494 |
. . . . . 6
⊢ (𝜑 → (0 ≤ (𝐹‘1) ↔ (𝐹‘2) ≤ ((𝐹‘1) + (𝐹‘2)))) |
46 | 35, 45 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (𝐹‘2) ≤ ((𝐹‘1) + (𝐹‘2))) |
47 | 44, 42 | readdcld 10935 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘1) + (𝐹‘2)) ∈ ℝ) |
48 | 41 | nnrpd 12699 |
. . . . . 6
⊢ (𝜑 → 2 ∈
ℝ+) |
49 | 42, 47, 48 | lemul2d 12745 |
. . . . 5
⊢ (𝜑 → ((𝐹‘2) ≤ ((𝐹‘1) + (𝐹‘2)) ↔ (2 · (𝐹‘2)) ≤ (2 ·
((𝐹‘1) + (𝐹‘2))))) |
50 | 46, 49 | mpbid 231 |
. . . 4
⊢ (𝜑 → (2 · (𝐹‘2)) ≤ (2 ·
((𝐹‘1) + (𝐹‘2)))) |
51 | | 1z 12280 |
. . . . 5
⊢ 1 ∈
ℤ |
52 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑛 = 1 → (𝐺‘𝑛) = (𝐺‘1)) |
53 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑛 = 1 → (2↑𝑛) = (2↑1)) |
54 | 53, 5 | eqtrdi 2795 |
. . . . . . . 8
⊢ (𝑛 = 1 → (2↑𝑛) = 2) |
55 | 54 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑛 = 1 → (𝐹‘(2↑𝑛)) = (𝐹‘2)) |
56 | 54, 55 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑛 = 1 → ((2↑𝑛) · (𝐹‘(2↑𝑛))) = (2 · (𝐹‘2))) |
57 | 52, 56 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑛 = 1 → ((𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) ↔ (𝐺‘1) = (2 · (𝐹‘2)))) |
58 | | climcnds.4 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛)))) |
59 | 58 | ralrimiva 3107 |
. . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ ℕ0 (𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛)))) |
60 | | 1nn0 12179 |
. . . . . . 7
⊢ 1 ∈
ℕ0 |
61 | 60 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℕ0) |
62 | 57, 59, 61 | rspcdva 3554 |
. . . . 5
⊢ (𝜑 → (𝐺‘1) = (2 · (𝐹‘2))) |
63 | 51, 62 | seq1i 13663 |
. . . 4
⊢ (𝜑 → (seq1( + , 𝐺)‘1) = (2 · (𝐹‘2))) |
64 | | nnuz 12550 |
. . . . . 6
⊢ ℕ =
(ℤ≥‘1) |
65 | | df-2 11966 |
. . . . . 6
⊢ 2 = (1 +
1) |
66 | | eqidd 2739 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘1) = (𝐹‘1)) |
67 | 51, 66 | seq1i 13663 |
. . . . . 6
⊢ (𝜑 → (seq1( + , 𝐹)‘1) = (𝐹‘1)) |
68 | | eqidd 2739 |
. . . . . 6
⊢ (𝜑 → (𝐹‘2) = (𝐹‘2)) |
69 | 64, 34, 65, 67, 68 | seqp1d 13666 |
. . . . 5
⊢ (𝜑 → (seq1( + , 𝐹)‘2) = ((𝐹‘1) + (𝐹‘2))) |
70 | 69 | oveq2d 7271 |
. . . 4
⊢ (𝜑 → (2 · (seq1( + ,
𝐹)‘2)) = (2 ·
((𝐹‘1) + (𝐹‘2)))) |
71 | 50, 63, 70 | 3brtr4d 5102 |
. . 3
⊢ (𝜑 → (seq1( + , 𝐺)‘1) ≤ (2 ·
(seq1( + , 𝐹)‘2))) |
72 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑗 + 1) → (𝐺‘𝑛) = (𝐺‘(𝑗 + 1))) |
73 | | oveq2 7263 |
. . . . . . . . . . . 12
⊢ (𝑛 = (𝑗 + 1) → (2↑𝑛) = (2↑(𝑗 + 1))) |
74 | 73 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (𝑛 = (𝑗 + 1) → (𝐹‘(2↑𝑛)) = (𝐹‘(2↑(𝑗 + 1)))) |
75 | 73, 74 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑗 + 1) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1))))) |
76 | 72, 75 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑗 + 1) → ((𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) ↔ (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))))) |
77 | 59 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∀𝑛 ∈ ℕ0
(𝐺‘𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛)))) |
78 | | peano2nn 11915 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → (𝑗 + 1) ∈
ℕ) |
79 | 78 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ) |
80 | 79 | nnnn0d 12223 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈
ℕ0) |
81 | 76, 77, 80 | rspcdva 3554 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1))))) |
82 | | nnnn0 12170 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℕ0) |
83 | 82 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0) |
84 | | expp1 13717 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℂ ∧ 𝑗
∈ ℕ0) → (2↑(𝑗 + 1)) = ((2↑𝑗) · 2)) |
85 | 3, 83, 84 | sylancr 586 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) = ((2↑𝑗) · 2)) |
86 | | nnexpcl 13723 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℕ ∧ 𝑗
∈ ℕ0) → (2↑𝑗) ∈ ℕ) |
87 | 40, 82, 86 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ →
(2↑𝑗) ∈
ℕ) |
88 | 87 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈
ℕ) |
89 | 88 | nncnd 11919 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈
ℂ) |
90 | | mulcom 10888 |
. . . . . . . . . . . 12
⊢
(((2↑𝑗) ∈
ℂ ∧ 2 ∈ ℂ) → ((2↑𝑗) · 2) = (2 · (2↑𝑗))) |
91 | 89, 3, 90 | sylancl 585 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((2↑𝑗) · 2) = (2 ·
(2↑𝑗))) |
92 | 85, 91 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) = (2 ·
(2↑𝑗))) |
93 | 92 | oveq1d 7270 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))) = ((2 ·
(2↑𝑗)) · (𝐹‘(2↑(𝑗 + 1))))) |
94 | 3 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 2 ∈
ℂ) |
95 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (2↑(𝑗 + 1)) → (𝐹‘𝑘) = (𝐹‘(2↑(𝑗 + 1)))) |
96 | 95 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑘 = (2↑(𝑗 + 1)) → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ)) |
97 | 39 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∀𝑘 ∈ ℕ (𝐹‘𝑘) ∈ ℝ) |
98 | | nnexpcl 13723 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℕ ∧ (𝑗 +
1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ) |
99 | 40, 80, 98 | sylancr 586 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈
ℕ) |
100 | 96, 97, 99 | rspcdva 3554 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ) |
101 | 100 | recnd 10934 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℂ) |
102 | 94, 89, 101 | mulassd 10929 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((2 ·
(2↑𝑗)) · (𝐹‘(2↑(𝑗 + 1)))) = (2 ·
((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))))) |
103 | 81, 93, 102 | 3eqtrd 2782 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) = (2 · ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))))) |
104 | 88 | nnnn0d 12223 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈
ℕ0) |
105 | | hashfz1 13988 |
. . . . . . . . . . . . . . 15
⊢
((2↑𝑗) ∈
ℕ0 → (♯‘(1...(2↑𝑗))) = (2↑𝑗)) |
106 | 104, 105 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
(♯‘(1...(2↑𝑗))) = (2↑𝑗)) |
107 | 106, 89 | eqeltrd 2839 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
(♯‘(1...(2↑𝑗))) ∈ ℂ) |
108 | | fzfid 13621 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) ∈
Fin) |
109 | | hashcl 13999 |
. . . . . . . . . . . . . . 15
⊢
((((2↑𝑗) +
1)...(2↑(𝑗 + 1)))
∈ Fin → (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∈
ℕ0) |
110 | 108, 109 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
(♯‘(((2↑𝑗)
+ 1)...(2↑(𝑗 + 1))))
∈ ℕ0) |
111 | 110 | nn0cnd 12225 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
(♯‘(((2↑𝑗)
+ 1)...(2↑(𝑗 + 1))))
∈ ℂ) |
112 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) |
113 | 112 | nnzd 12354 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ) |
114 | | uzid 12526 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
(ℤ≥‘𝑗)) |
115 | | peano2uz 12570 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → (𝑗 + 1) ∈
(ℤ≥‘𝑗)) |
116 | | 2re 11977 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℝ |
117 | | 1le2 12112 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ≤
2 |
118 | | leexp2a 13818 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((2
∈ ℝ ∧ 1 ≤ 2 ∧ (𝑗 + 1) ∈
(ℤ≥‘𝑗)) → (2↑𝑗) ≤ (2↑(𝑗 + 1))) |
119 | 116, 117,
118 | mp3an12 1449 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 + 1) ∈
(ℤ≥‘𝑗) → (2↑𝑗) ≤ (2↑(𝑗 + 1))) |
120 | 113, 114,
115, 119 | 4syl 19 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ≤ (2↑(𝑗 + 1))) |
121 | 88, 64 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈
(ℤ≥‘1)) |
122 | 99 | nnzd 12354 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈
ℤ) |
123 | | elfz5 13177 |
. . . . . . . . . . . . . . . . . 18
⊢
(((2↑𝑗) ∈
(ℤ≥‘1) ∧ (2↑(𝑗 + 1)) ∈ ℤ) → ((2↑𝑗) ∈ (1...(2↑(𝑗 + 1))) ↔ (2↑𝑗) ≤ (2↑(𝑗 + 1)))) |
124 | 121, 122,
123 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((2↑𝑗) ∈ (1...(2↑(𝑗 + 1))) ↔ (2↑𝑗) ≤ (2↑(𝑗 + 1)))) |
125 | 120, 124 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈ (1...(2↑(𝑗 + 1)))) |
126 | | fzsplit 13211 |
. . . . . . . . . . . . . . . 16
⊢
((2↑𝑗) ∈
(1...(2↑(𝑗 + 1)))
→ (1...(2↑(𝑗 +
1))) = ((1...(2↑𝑗))
∪ (((2↑𝑗) +
1)...(2↑(𝑗 +
1))))) |
127 | 125, 126 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (1...(2↑(𝑗 + 1))) = ((1...(2↑𝑗)) ∪ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))))) |
128 | 127 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
(♯‘(1...(2↑(𝑗 + 1)))) = (♯‘((1...(2↑𝑗)) ∪ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))))) |
129 | 89 | times2d 12147 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((2↑𝑗) · 2) = ((2↑𝑗) + (2↑𝑗))) |
130 | 85, 129 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) = ((2↑𝑗) + (2↑𝑗))) |
131 | 99 | nnnn0d 12223 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈
ℕ0) |
132 | | hashfz1 13988 |
. . . . . . . . . . . . . . . 16
⊢
((2↑(𝑗 + 1))
∈ ℕ0 → (♯‘(1...(2↑(𝑗 + 1)))) = (2↑(𝑗 + 1))) |
133 | 131, 132 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
(♯‘(1...(2↑(𝑗 + 1)))) = (2↑(𝑗 + 1))) |
134 | 106 | oveq1d 7270 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
((♯‘(1...(2↑𝑗))) + (2↑𝑗)) = ((2↑𝑗) + (2↑𝑗))) |
135 | 130, 133,
134 | 3eqtr4d 2788 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
(♯‘(1...(2↑(𝑗 + 1)))) = ((♯‘(1...(2↑𝑗))) + (2↑𝑗))) |
136 | | fzfid 13621 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (1...(2↑𝑗)) ∈ Fin) |
137 | 88 | nnred 11918 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2↑𝑗) ∈
ℝ) |
138 | 137 | ltp1d 11835 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2↑𝑗) < ((2↑𝑗) + 1)) |
139 | | fzdisj 13212 |
. . . . . . . . . . . . . . . 16
⊢
((2↑𝑗) <
((2↑𝑗) + 1) →
((1...(2↑𝑗)) ∩
(((2↑𝑗) +
1)...(2↑(𝑗 + 1)))) =
∅) |
140 | 138, 139 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((1...(2↑𝑗)) ∩ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) =
∅) |
141 | | hashun 14025 |
. . . . . . . . . . . . . . 15
⊢
(((1...(2↑𝑗))
∈ Fin ∧ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) ∈ Fin ∧ ((1...(2↑𝑗)) ∩ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) = ∅) →
(♯‘((1...(2↑𝑗)) ∪ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))))) =
((♯‘(1...(2↑𝑗))) + (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))))) |
142 | 136, 108,
140, 141 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
(♯‘((1...(2↑𝑗)) ∪ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))))) =
((♯‘(1...(2↑𝑗))) + (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))))) |
143 | 128, 135,
142 | 3eqtr3d 2786 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
((♯‘(1...(2↑𝑗))) + (2↑𝑗)) = ((♯‘(1...(2↑𝑗))) +
(♯‘(((2↑𝑗)
+ 1)...(2↑(𝑗 +
1)))))) |
144 | 107, 89, 111, 143 | addcanad 11110 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2↑𝑗) =
(♯‘(((2↑𝑗)
+ 1)...(2↑(𝑗 +
1))))) |
145 | 144 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) = ((♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) · (𝐹‘(2↑(𝑗 + 1))))) |
146 | | fsumconst 15430 |
. . . . . . . . . . . 12
⊢
(((((2↑𝑗) +
1)...(2↑(𝑗 + 1)))
∈ Fin ∧ (𝐹‘(2↑(𝑗 + 1))) ∈ ℂ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))) = ((♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) · (𝐹‘(2↑(𝑗 + 1))))) |
147 | 108, 101,
146 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))) = ((♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) · (𝐹‘(2↑(𝑗 + 1))))) |
148 | 145, 147 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) = Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1)))) |
149 | 100 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ) |
150 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝜑) |
151 | | peano2nn 11915 |
. . . . . . . . . . . . . 14
⊢
((2↑𝑗) ∈
ℕ → ((2↑𝑗)
+ 1) ∈ ℕ) |
152 | 88, 151 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((2↑𝑗) + 1) ∈
ℕ) |
153 | | elfzuz 13181 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) → 𝑘 ∈
(ℤ≥‘((2↑𝑗) + 1))) |
154 | | eluznn 12587 |
. . . . . . . . . . . . 13
⊢
((((2↑𝑗) + 1)
∈ ℕ ∧ 𝑘
∈ (ℤ≥‘((2↑𝑗) + 1))) → 𝑘 ∈ ℕ) |
155 | 152, 153,
154 | syl2an 595 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → 𝑘 ∈ ℕ) |
156 | 150, 155,
38 | syl2an2r 681 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹‘𝑘) ∈ ℝ) |
157 | | elfzuz3 13182 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) → (2↑(𝑗 + 1)) ∈
(ℤ≥‘𝑛)) |
158 | 157 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (2↑(𝑗 + 1)) ∈
(ℤ≥‘𝑛)) |
159 | | simplll 771 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...(2↑(𝑗 + 1)))) → 𝜑) |
160 | | elfzuz 13181 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) → 𝑛 ∈
(ℤ≥‘((2↑𝑗) + 1))) |
161 | | eluznn 12587 |
. . . . . . . . . . . . . . . . 17
⊢
((((2↑𝑗) + 1)
∈ ℕ ∧ 𝑛
∈ (ℤ≥‘((2↑𝑗) + 1))) → 𝑛 ∈ ℕ) |
162 | 152, 160,
161 | syl2an 595 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → 𝑛 ∈ ℕ) |
163 | | elfzuz 13181 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (𝑛...(2↑(𝑗 + 1))) → 𝑘 ∈ (ℤ≥‘𝑛)) |
164 | | eluznn 12587 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑛)) → 𝑘 ∈ ℕ) |
165 | 162, 163,
164 | syl2an 595 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...(2↑(𝑗 + 1)))) → 𝑘 ∈ ℕ) |
166 | 159, 165,
38 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...(2↑(𝑗 + 1)))) → (𝐹‘𝑘) ∈ ℝ) |
167 | | simplll 771 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...((2↑(𝑗 + 1)) − 1))) → 𝜑) |
168 | | elfzuz 13181 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (𝑛...((2↑(𝑗 + 1)) − 1)) → 𝑘 ∈ (ℤ≥‘𝑛)) |
169 | 162, 168,
164 | syl2an 595 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...((2↑(𝑗 + 1)) − 1))) → 𝑘 ∈ ℕ) |
170 | | climcnds.3 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
171 | 167, 169,
170 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...((2↑(𝑗 + 1)) − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
172 | 158, 166,
171 | monoord2 13682 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹‘𝑛)) |
173 | 172 | ralrimiva 3107 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∀𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹‘𝑛)) |
174 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) |
175 | 174 | breq2d 5082 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → ((𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹‘𝑛) ↔ (𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹‘𝑘))) |
176 | 175 | rspccva 3551 |
. . . . . . . . . . . 12
⊢
((∀𝑛 ∈
(((2↑𝑗) +
1)...(2↑(𝑗 +
1)))(𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹‘𝑛) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹‘𝑘)) |
177 | 173, 176 | sylan 579 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹‘𝑘)) |
178 | 108, 149,
156, 177 | fsumle 15439 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))) ≤ Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘𝑘)) |
179 | 148, 178 | eqbrtrd 5092 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) ≤ Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘𝑘)) |
180 | 137, 100 | remulcld 10936 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) ∈ ℝ) |
181 | 108, 156 | fsumrecl 15374 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘𝑘) ∈ ℝ) |
182 | | 2rp 12664 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ+ |
183 | 182 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 2 ∈
ℝ+) |
184 | 180, 181,
183 | lemul2d 12745 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) ≤ Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘𝑘) ↔ (2 · ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1))))) ≤ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘𝑘)))) |
185 | 179, 184 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2 ·
((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1))))) ≤ (2 ·
Σ𝑘 ∈
(((2↑𝑗) +
1)...(2↑(𝑗 +
1)))(𝐹‘𝑘))) |
186 | 103, 185 | eqbrtrd 5092 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) ≤ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘𝑘))) |
187 | | 1zzd 12281 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℤ) |
188 | | nnnn0 12170 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
189 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
190 | | nnexpcl 13723 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℕ ∧ 𝑛
∈ ℕ0) → (2↑𝑛) ∈ ℕ) |
191 | 40, 189, 190 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(2↑𝑛) ∈
ℕ) |
192 | 191 | nnred 11918 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(2↑𝑛) ∈
ℝ) |
193 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (2↑𝑛) → (𝐹‘𝑘) = (𝐹‘(2↑𝑛))) |
194 | 193 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (2↑𝑛) → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘(2↑𝑛)) ∈ ℝ)) |
195 | 39 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
∀𝑘 ∈ ℕ
(𝐹‘𝑘) ∈ ℝ) |
196 | 194, 195,
191 | rspcdva 3554 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐹‘(2↑𝑛)) ∈
ℝ) |
197 | 192, 196 | remulcld 10936 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
((2↑𝑛) · (𝐹‘(2↑𝑛))) ∈
ℝ) |
198 | 58, 197 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐺‘𝑛) ∈ ℝ) |
199 | 188, 198 | sylan2 592 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) ∈ ℝ) |
200 | 64, 187, 199 | serfre 13680 |
. . . . . . . . 9
⊢ (𝜑 → seq1( + , 𝐺):ℕ⟶ℝ) |
201 | 200 | ffvelrnda 6943 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ∈ ℝ) |
202 | 72 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑛 = (𝑗 + 1) → ((𝐺‘𝑛) ∈ ℝ ↔ (𝐺‘(𝑗 + 1)) ∈ ℝ)) |
203 | 199 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐺‘𝑛) ∈ ℝ) |
204 | 203 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐺‘𝑛) ∈ ℝ) |
205 | 202, 204,
79 | rspcdva 3554 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) ∈ ℝ) |
206 | 64, 187, 38 | serfre 13680 |
. . . . . . . . . 10
⊢ (𝜑 → seq1( + , 𝐹):ℕ⟶ℝ) |
207 | | ffvelrn 6941 |
. . . . . . . . . 10
⊢ ((seq1( +
, 𝐹):ℕ⟶ℝ
∧ (2↑𝑗) ∈
ℕ) → (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℝ) |
208 | 206, 87, 207 | syl2an 595 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘(2↑𝑗)) ∈
ℝ) |
209 | | remulcl 10887 |
. . . . . . . . 9
⊢ ((2
∈ ℝ ∧ (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℝ) → (2 · (seq1(
+ , 𝐹)‘(2↑𝑗))) ∈
ℝ) |
210 | 116, 208,
209 | sylancr 586 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2 · (seq1( +
, 𝐹)‘(2↑𝑗))) ∈
ℝ) |
211 | | remulcl 10887 |
. . . . . . . . 9
⊢ ((2
∈ ℝ ∧ Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘𝑘) ∈ ℝ) → (2 ·
Σ𝑘 ∈
(((2↑𝑗) +
1)...(2↑(𝑗 +
1)))(𝐹‘𝑘)) ∈
ℝ) |
212 | 116, 181,
211 | sylancr 586 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2 ·
Σ𝑘 ∈
(((2↑𝑗) +
1)...(2↑(𝑗 +
1)))(𝐹‘𝑘)) ∈
ℝ) |
213 | | le2add 11387 |
. . . . . . . 8
⊢ ((((seq1(
+ , 𝐺)‘𝑗) ∈ ℝ ∧ (𝐺‘(𝑗 + 1)) ∈ ℝ) ∧ ((2 ·
(seq1( + , 𝐹)‘(2↑𝑗))) ∈ ℝ ∧ (2 ·
Σ𝑘 ∈
(((2↑𝑗) +
1)...(2↑(𝑗 +
1)))(𝐹‘𝑘)) ∈ ℝ)) →
(((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + ,
𝐹)‘(2↑𝑗))) ∧ (𝐺‘(𝑗 + 1)) ≤ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘𝑘))) → ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))) ≤ ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘𝑘))))) |
214 | 201, 205,
210, 212, 213 | syl22anc 835 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∧ (𝐺‘(𝑗 + 1)) ≤ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘𝑘))) → ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))) ≤ ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘𝑘))))) |
215 | 186, 214 | mpan2d 690 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) → ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))) ≤ ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘𝑘))))) |
216 | 112, 64 | eleqtrdi 2849 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
(ℤ≥‘1)) |
217 | | seqp1 13664 |
. . . . . . . 8
⊢ (𝑗 ∈
(ℤ≥‘1) → (seq1( + , 𝐺)‘(𝑗 + 1)) = ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))) |
218 | 216, 217 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘(𝑗 + 1)) = ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))) |
219 | | fzfid 13621 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (1...(2↑(𝑗 + 1))) ∈
Fin) |
220 | | elfznn 13214 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (1...(2↑(𝑗 + 1))) → 𝑘 ∈
ℕ) |
221 | 38 | recnd 10934 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
222 | 150, 220,
221 | syl2an 595 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑(𝑗 + 1)))) → (𝐹‘𝑘) ∈ ℂ) |
223 | 140, 127,
219, 222 | fsumsplit 15381 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...(2↑(𝑗 + 1)))(𝐹‘𝑘) = (Σ𝑘 ∈ (1...(2↑𝑗))(𝐹‘𝑘) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘𝑘))) |
224 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑(𝑗 + 1)))) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
225 | 99, 64 | eleqtrdi 2849 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈
(ℤ≥‘1)) |
226 | 224, 225,
222 | fsumser 15370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...(2↑(𝑗 + 1)))(𝐹‘𝑘) = (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))) |
227 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑𝑗))) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
228 | | elfznn 13214 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (1...(2↑𝑗)) → 𝑘 ∈ ℕ) |
229 | 150, 228,
221 | syl2an 595 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑𝑗))) → (𝐹‘𝑘) ∈ ℂ) |
230 | 227, 121,
229 | fsumser 15370 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...(2↑𝑗))(𝐹‘𝑘) = (seq1( + , 𝐹)‘(2↑𝑗))) |
231 | 230 | oveq1d 7270 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (Σ𝑘 ∈ (1...(2↑𝑗))(𝐹‘𝑘) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘𝑘)) = ((seq1( + , 𝐹)‘(2↑𝑗)) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘𝑘))) |
232 | 223, 226,
231 | 3eqtr3d 2786 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘(2↑(𝑗 + 1))) = ((seq1( + , 𝐹)‘(2↑𝑗)) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘𝑘))) |
233 | 232 | oveq2d 7271 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2 · (seq1( +
, 𝐹)‘(2↑(𝑗 + 1)))) = (2 · ((seq1( +
, 𝐹)‘(2↑𝑗)) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘𝑘)))) |
234 | 208 | recnd 10934 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘(2↑𝑗)) ∈
ℂ) |
235 | 181 | recnd 10934 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘𝑘) ∈ ℂ) |
236 | 94, 234, 235 | adddid 10930 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2 · ((seq1( +
, 𝐹)‘(2↑𝑗)) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘𝑘))) = ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘𝑘)))) |
237 | 233, 236 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2 · (seq1( +
, 𝐹)‘(2↑(𝑗 + 1)))) = ((2 · (seq1( +
, 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘𝑘)))) |
238 | 218, 237 | breq12d 5083 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))) ↔ ((seq1( + ,
𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))) ≤ ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘𝑘))))) |
239 | 215, 238 | sylibrd 258 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) → (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))))) |
240 | 239 | expcom 413 |
. . . 4
⊢ (𝑗 ∈ ℕ → (𝜑 → ((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) → (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1))))))) |
241 | 240 | a2d 29 |
. . 3
⊢ (𝑗 ∈ ℕ → ((𝜑 → (seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗)))) → (𝜑 → (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1))))))) |
242 | 10, 16, 22, 28, 71, 241 | nnind 11921 |
. 2
⊢ (𝑁 ∈ ℕ → (𝜑 → (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁))))) |
243 | 242 | impcom 407 |
1
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁)))) |