MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcndslem2 Structured version   Visualization version   GIF version

Theorem climcndslem2 15823
Description: Lemma for climcnds 15824: bound the condensed series by the original series. (Contributed by Mario Carneiro, 18-Jul-2014.) (Proof shortened by AV, 10-Jul-2022.)
Hypotheses
Ref Expression
climcnds.1 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
climcnds.2 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
climcnds.3 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climcnds.4 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
Assertion
Ref Expression
climcndslem2 ((𝜑𝑁 ∈ ℕ) → (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁))))
Distinct variable groups:   𝑘,𝑛,𝐹   𝑘,𝐺,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝑁(𝑘,𝑛)

Proof of Theorem climcndslem2
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . . 5 (𝑥 = 1 → (seq1( + , 𝐺)‘𝑥) = (seq1( + , 𝐺)‘1))
2 oveq2 7398 . . . . . . . 8 (𝑥 = 1 → (2↑𝑥) = (2↑1))
3 2cn 12268 . . . . . . . . 9 2 ∈ ℂ
4 exp1 14039 . . . . . . . . 9 (2 ∈ ℂ → (2↑1) = 2)
53, 4ax-mp 5 . . . . . . . 8 (2↑1) = 2
62, 5eqtrdi 2781 . . . . . . 7 (𝑥 = 1 → (2↑𝑥) = 2)
76fveq2d 6865 . . . . . 6 (𝑥 = 1 → (seq1( + , 𝐹)‘(2↑𝑥)) = (seq1( + , 𝐹)‘2))
87oveq2d 7406 . . . . 5 (𝑥 = 1 → (2 · (seq1( + , 𝐹)‘(2↑𝑥))) = (2 · (seq1( + , 𝐹)‘2)))
91, 8breq12d 5123 . . . 4 (𝑥 = 1 → ((seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥))) ↔ (seq1( + , 𝐺)‘1) ≤ (2 · (seq1( + , 𝐹)‘2))))
109imbi2d 340 . . 3 (𝑥 = 1 → ((𝜑 → (seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥)))) ↔ (𝜑 → (seq1( + , 𝐺)‘1) ≤ (2 · (seq1( + , 𝐹)‘2)))))
11 fveq2 6861 . . . . 5 (𝑥 = 𝑗 → (seq1( + , 𝐺)‘𝑥) = (seq1( + , 𝐺)‘𝑗))
12 oveq2 7398 . . . . . . 7 (𝑥 = 𝑗 → (2↑𝑥) = (2↑𝑗))
1312fveq2d 6865 . . . . . 6 (𝑥 = 𝑗 → (seq1( + , 𝐹)‘(2↑𝑥)) = (seq1( + , 𝐹)‘(2↑𝑗)))
1413oveq2d 7406 . . . . 5 (𝑥 = 𝑗 → (2 · (seq1( + , 𝐹)‘(2↑𝑥))) = (2 · (seq1( + , 𝐹)‘(2↑𝑗))))
1511, 14breq12d 5123 . . . 4 (𝑥 = 𝑗 → ((seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥))) ↔ (seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗)))))
1615imbi2d 340 . . 3 (𝑥 = 𝑗 → ((𝜑 → (seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥)))) ↔ (𝜑 → (seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))))))
17 fveq2 6861 . . . . 5 (𝑥 = (𝑗 + 1) → (seq1( + , 𝐺)‘𝑥) = (seq1( + , 𝐺)‘(𝑗 + 1)))
18 oveq2 7398 . . . . . . 7 (𝑥 = (𝑗 + 1) → (2↑𝑥) = (2↑(𝑗 + 1)))
1918fveq2d 6865 . . . . . 6 (𝑥 = (𝑗 + 1) → (seq1( + , 𝐹)‘(2↑𝑥)) = (seq1( + , 𝐹)‘(2↑(𝑗 + 1))))
2019oveq2d 7406 . . . . 5 (𝑥 = (𝑗 + 1) → (2 · (seq1( + , 𝐹)‘(2↑𝑥))) = (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))))
2117, 20breq12d 5123 . . . 4 (𝑥 = (𝑗 + 1) → ((seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥))) ↔ (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1))))))
2221imbi2d 340 . . 3 (𝑥 = (𝑗 + 1) → ((𝜑 → (seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥)))) ↔ (𝜑 → (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))))))
23 fveq2 6861 . . . . 5 (𝑥 = 𝑁 → (seq1( + , 𝐺)‘𝑥) = (seq1( + , 𝐺)‘𝑁))
24 oveq2 7398 . . . . . . 7 (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁))
2524fveq2d 6865 . . . . . 6 (𝑥 = 𝑁 → (seq1( + , 𝐹)‘(2↑𝑥)) = (seq1( + , 𝐹)‘(2↑𝑁)))
2625oveq2d 7406 . . . . 5 (𝑥 = 𝑁 → (2 · (seq1( + , 𝐹)‘(2↑𝑥))) = (2 · (seq1( + , 𝐹)‘(2↑𝑁))))
2723, 26breq12d 5123 . . . 4 (𝑥 = 𝑁 → ((seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥))) ↔ (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁)))))
2827imbi2d 340 . . 3 (𝑥 = 𝑁 → ((𝜑 → (seq1( + , 𝐺)‘𝑥) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑥)))) ↔ (𝜑 → (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁))))))
29 fveq2 6861 . . . . . . . 8 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
3029breq2d 5122 . . . . . . 7 (𝑘 = 1 → (0 ≤ (𝐹𝑘) ↔ 0 ≤ (𝐹‘1)))
31 climcnds.2 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
3231ralrimiva 3126 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ 0 ≤ (𝐹𝑘))
33 1nn 12204 . . . . . . . 8 1 ∈ ℕ
3433a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
3530, 32, 34rspcdva 3592 . . . . . 6 (𝜑 → 0 ≤ (𝐹‘1))
36 fveq2 6861 . . . . . . . . 9 (𝑘 = 2 → (𝐹𝑘) = (𝐹‘2))
3736eleq1d 2814 . . . . . . . 8 (𝑘 = 2 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘2) ∈ ℝ))
38 climcnds.1 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
3938ralrimiva 3126 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
40 2nn 12266 . . . . . . . . 9 2 ∈ ℕ
4140a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℕ)
4237, 39, 41rspcdva 3592 . . . . . . 7 (𝜑 → (𝐹‘2) ∈ ℝ)
4329eleq1d 2814 . . . . . . . 8 (𝑘 = 1 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘1) ∈ ℝ))
4443, 39, 34rspcdva 3592 . . . . . . 7 (𝜑 → (𝐹‘1) ∈ ℝ)
4542, 44addge02d 11774 . . . . . 6 (𝜑 → (0 ≤ (𝐹‘1) ↔ (𝐹‘2) ≤ ((𝐹‘1) + (𝐹‘2))))
4635, 45mpbid 232 . . . . 5 (𝜑 → (𝐹‘2) ≤ ((𝐹‘1) + (𝐹‘2)))
4744, 42readdcld 11210 . . . . . 6 (𝜑 → ((𝐹‘1) + (𝐹‘2)) ∈ ℝ)
4841nnrpd 13000 . . . . . 6 (𝜑 → 2 ∈ ℝ+)
4942, 47, 48lemul2d 13046 . . . . 5 (𝜑 → ((𝐹‘2) ≤ ((𝐹‘1) + (𝐹‘2)) ↔ (2 · (𝐹‘2)) ≤ (2 · ((𝐹‘1) + (𝐹‘2)))))
5046, 49mpbid 232 . . . 4 (𝜑 → (2 · (𝐹‘2)) ≤ (2 · ((𝐹‘1) + (𝐹‘2))))
51 1z 12570 . . . . 5 1 ∈ ℤ
52 fveq2 6861 . . . . . . 7 (𝑛 = 1 → (𝐺𝑛) = (𝐺‘1))
53 oveq2 7398 . . . . . . . . 9 (𝑛 = 1 → (2↑𝑛) = (2↑1))
5453, 5eqtrdi 2781 . . . . . . . 8 (𝑛 = 1 → (2↑𝑛) = 2)
5554fveq2d 6865 . . . . . . . 8 (𝑛 = 1 → (𝐹‘(2↑𝑛)) = (𝐹‘2))
5654, 55oveq12d 7408 . . . . . . 7 (𝑛 = 1 → ((2↑𝑛) · (𝐹‘(2↑𝑛))) = (2 · (𝐹‘2)))
5752, 56eqeq12d 2746 . . . . . 6 (𝑛 = 1 → ((𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) ↔ (𝐺‘1) = (2 · (𝐹‘2))))
58 climcnds.4 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
5958ralrimiva 3126 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ0 (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
60 1nn0 12465 . . . . . . 7 1 ∈ ℕ0
6160a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℕ0)
6257, 59, 61rspcdva 3592 . . . . 5 (𝜑 → (𝐺‘1) = (2 · (𝐹‘2)))
6351, 62seq1i 13987 . . . 4 (𝜑 → (seq1( + , 𝐺)‘1) = (2 · (𝐹‘2)))
64 nnuz 12843 . . . . . 6 ℕ = (ℤ‘1)
65 df-2 12256 . . . . . 6 2 = (1 + 1)
66 eqidd 2731 . . . . . . 7 (𝜑 → (𝐹‘1) = (𝐹‘1))
6751, 66seq1i 13987 . . . . . 6 (𝜑 → (seq1( + , 𝐹)‘1) = (𝐹‘1))
68 eqidd 2731 . . . . . 6 (𝜑 → (𝐹‘2) = (𝐹‘2))
6964, 34, 65, 67, 68seqp1d 13990 . . . . 5 (𝜑 → (seq1( + , 𝐹)‘2) = ((𝐹‘1) + (𝐹‘2)))
7069oveq2d 7406 . . . 4 (𝜑 → (2 · (seq1( + , 𝐹)‘2)) = (2 · ((𝐹‘1) + (𝐹‘2))))
7150, 63, 703brtr4d 5142 . . 3 (𝜑 → (seq1( + , 𝐺)‘1) ≤ (2 · (seq1( + , 𝐹)‘2)))
72 fveq2 6861 . . . . . . . . . . 11 (𝑛 = (𝑗 + 1) → (𝐺𝑛) = (𝐺‘(𝑗 + 1)))
73 oveq2 7398 . . . . . . . . . . . 12 (𝑛 = (𝑗 + 1) → (2↑𝑛) = (2↑(𝑗 + 1)))
7473fveq2d 6865 . . . . . . . . . . . 12 (𝑛 = (𝑗 + 1) → (𝐹‘(2↑𝑛)) = (𝐹‘(2↑(𝑗 + 1))))
7573, 74oveq12d 7408 . . . . . . . . . . 11 (𝑛 = (𝑗 + 1) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))))
7672, 75eqeq12d 2746 . . . . . . . . . 10 (𝑛 = (𝑗 + 1) → ((𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) ↔ (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1))))))
7759adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ∀𝑛 ∈ ℕ0 (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
78 peano2nn 12205 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
7978adantl 481 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ)
8079nnnn0d 12510 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ0)
8176, 77, 80rspcdva 3592 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))))
82 nnnn0 12456 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
8382adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
84 expp1 14040 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) = ((2↑𝑗) · 2))
853, 83, 84sylancr 587 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) = ((2↑𝑗) · 2))
86 nnexpcl 14046 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑗 ∈ ℕ0) → (2↑𝑗) ∈ ℕ)
8740, 82, 86sylancr 587 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (2↑𝑗) ∈ ℕ)
8887adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℕ)
8988nncnd 12209 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℂ)
90 mulcom 11161 . . . . . . . . . . . 12 (((2↑𝑗) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑𝑗) · 2) = (2 · (2↑𝑗)))
9189, 3, 90sylancl 586 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) · 2) = (2 · (2↑𝑗)))
9285, 91eqtrd 2765 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) = (2 · (2↑𝑗)))
9392oveq1d 7405 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))) = ((2 · (2↑𝑗)) · (𝐹‘(2↑(𝑗 + 1)))))
943a1i 11 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → 2 ∈ ℂ)
95 fveq2 6861 . . . . . . . . . . . . 13 (𝑘 = (2↑(𝑗 + 1)) → (𝐹𝑘) = (𝐹‘(2↑(𝑗 + 1))))
9695eleq1d 2814 . . . . . . . . . . . 12 (𝑘 = (2↑(𝑗 + 1)) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ))
9739adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
98 nnexpcl 14046 . . . . . . . . . . . . 13 ((2 ∈ ℕ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ)
9940, 80, 98sylancr 587 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ ℕ)
10096, 97, 99rspcdva 3592 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ)
101100recnd 11209 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℂ)
10294, 89, 101mulassd 11204 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((2 · (2↑𝑗)) · (𝐹‘(2↑(𝑗 + 1)))) = (2 · ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1))))))
10381, 93, 1023eqtrd 2769 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) = (2 · ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1))))))
10488nnnn0d 12510 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℕ0)
105 hashfz1 14318 . . . . . . . . . . . . . . 15 ((2↑𝑗) ∈ ℕ0 → (♯‘(1...(2↑𝑗))) = (2↑𝑗))
106104, 105syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (♯‘(1...(2↑𝑗))) = (2↑𝑗))
107106, 89eqeltrd 2829 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (♯‘(1...(2↑𝑗))) ∈ ℂ)
108 fzfid 13945 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) ∈ Fin)
109 hashcl 14328 . . . . . . . . . . . . . . 15 ((((2↑𝑗) + 1)...(2↑(𝑗 + 1))) ∈ Fin → (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∈ ℕ0)
110108, 109syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∈ ℕ0)
111110nn0cnd 12512 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∈ ℂ)
112 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
113112nnzd 12563 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
114 uzid 12815 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
115 peano2uz 12867 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (ℤ𝑗) → (𝑗 + 1) ∈ (ℤ𝑗))
116 2re 12267 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ
117 1le2 12397 . . . . . . . . . . . . . . . . . . 19 1 ≤ 2
118 leexp2a 14144 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℝ ∧ 1 ≤ 2 ∧ (𝑗 + 1) ∈ (ℤ𝑗)) → (2↑𝑗) ≤ (2↑(𝑗 + 1)))
119116, 117, 118mp3an12 1453 . . . . . . . . . . . . . . . . . 18 ((𝑗 + 1) ∈ (ℤ𝑗) → (2↑𝑗) ≤ (2↑(𝑗 + 1)))
120113, 114, 115, 1194syl 19 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ≤ (2↑(𝑗 + 1)))
12188, 64eleqtrdi 2839 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ∈ (ℤ‘1))
12299nnzd 12563 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ ℤ)
123 elfz5 13484 . . . . . . . . . . . . . . . . . 18 (((2↑𝑗) ∈ (ℤ‘1) ∧ (2↑(𝑗 + 1)) ∈ ℤ) → ((2↑𝑗) ∈ (1...(2↑(𝑗 + 1))) ↔ (2↑𝑗) ≤ (2↑(𝑗 + 1))))
124121, 122, 123syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) ∈ (1...(2↑(𝑗 + 1))) ↔ (2↑𝑗) ≤ (2↑(𝑗 + 1))))
125120, 124mpbird 257 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ∈ (1...(2↑(𝑗 + 1))))
126 fzsplit 13518 . . . . . . . . . . . . . . . 16 ((2↑𝑗) ∈ (1...(2↑(𝑗 + 1))) → (1...(2↑(𝑗 + 1))) = ((1...(2↑𝑗)) ∪ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))))
127125, 126syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (1...(2↑(𝑗 + 1))) = ((1...(2↑𝑗)) ∪ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))))
128127fveq2d 6865 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (♯‘(1...(2↑(𝑗 + 1)))) = (♯‘((1...(2↑𝑗)) ∪ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))))))
12989times2d 12433 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) · 2) = ((2↑𝑗) + (2↑𝑗)))
13085, 129eqtrd 2765 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) = ((2↑𝑗) + (2↑𝑗)))
13199nnnn0d 12510 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ ℕ0)
132 hashfz1 14318 . . . . . . . . . . . . . . . 16 ((2↑(𝑗 + 1)) ∈ ℕ0 → (♯‘(1...(2↑(𝑗 + 1)))) = (2↑(𝑗 + 1)))
133131, 132syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (♯‘(1...(2↑(𝑗 + 1)))) = (2↑(𝑗 + 1)))
134106oveq1d 7405 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → ((♯‘(1...(2↑𝑗))) + (2↑𝑗)) = ((2↑𝑗) + (2↑𝑗)))
135130, 133, 1343eqtr4d 2775 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (♯‘(1...(2↑(𝑗 + 1)))) = ((♯‘(1...(2↑𝑗))) + (2↑𝑗)))
136 fzfid 13945 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (1...(2↑𝑗)) ∈ Fin)
13788nnred 12208 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) ∈ ℝ)
138137ltp1d 12120 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) < ((2↑𝑗) + 1))
139 fzdisj 13519 . . . . . . . . . . . . . . . 16 ((2↑𝑗) < ((2↑𝑗) + 1) → ((1...(2↑𝑗)) ∩ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) = ∅)
140138, 139syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → ((1...(2↑𝑗)) ∩ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) = ∅)
141 hashun 14354 . . . . . . . . . . . . . . 15 (((1...(2↑𝑗)) ∈ Fin ∧ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) ∈ Fin ∧ ((1...(2↑𝑗)) ∩ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) = ∅) → (♯‘((1...(2↑𝑗)) ∪ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))))) = ((♯‘(1...(2↑𝑗))) + (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1))))))
142136, 108, 140, 141syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (♯‘((1...(2↑𝑗)) ∪ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))))) = ((♯‘(1...(2↑𝑗))) + (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1))))))
143128, 135, 1423eqtr3d 2773 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ((♯‘(1...(2↑𝑗))) + (2↑𝑗)) = ((♯‘(1...(2↑𝑗))) + (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1))))))
144107, 89, 111, 143addcanad 11386 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (2↑𝑗) = (♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))))
145144oveq1d 7405 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) = ((♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) · (𝐹‘(2↑(𝑗 + 1)))))
146 fsumconst 15763 . . . . . . . . . . . 12 (((((2↑𝑗) + 1)...(2↑(𝑗 + 1))) ∈ Fin ∧ (𝐹‘(2↑(𝑗 + 1))) ∈ ℂ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))) = ((♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) · (𝐹‘(2↑(𝑗 + 1)))))
147108, 101, 146syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))) = ((♯‘(((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) · (𝐹‘(2↑(𝑗 + 1)))))
148145, 147eqtr4d 2768 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) = Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))))
149100adantr 480 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ)
150 simpl 482 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → 𝜑)
151 peano2nn 12205 . . . . . . . . . . . . . 14 ((2↑𝑗) ∈ ℕ → ((2↑𝑗) + 1) ∈ ℕ)
15288, 151syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) + 1) ∈ ℕ)
153 elfzuz 13488 . . . . . . . . . . . . 13 (𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) → 𝑘 ∈ (ℤ‘((2↑𝑗) + 1)))
154 eluznn 12884 . . . . . . . . . . . . 13 ((((2↑𝑗) + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘((2↑𝑗) + 1))) → 𝑘 ∈ ℕ)
155152, 153, 154syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → 𝑘 ∈ ℕ)
156150, 155, 38syl2an2r 685 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹𝑘) ∈ ℝ)
157 elfzuz3 13489 . . . . . . . . . . . . . . 15 (𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) → (2↑(𝑗 + 1)) ∈ (ℤ𝑛))
158157adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (2↑(𝑗 + 1)) ∈ (ℤ𝑛))
159 simplll 774 . . . . . . . . . . . . . . 15 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...(2↑(𝑗 + 1)))) → 𝜑)
160 elfzuz 13488 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1))) → 𝑛 ∈ (ℤ‘((2↑𝑗) + 1)))
161 eluznn 12884 . . . . . . . . . . . . . . . . 17 ((((2↑𝑗) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((2↑𝑗) + 1))) → 𝑛 ∈ ℕ)
162152, 160, 161syl2an 596 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → 𝑛 ∈ ℕ)
163 elfzuz 13488 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝑛...(2↑(𝑗 + 1))) → 𝑘 ∈ (ℤ𝑛))
164 eluznn 12884 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
165162, 163, 164syl2an 596 . . . . . . . . . . . . . . 15 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...(2↑(𝑗 + 1)))) → 𝑘 ∈ ℕ)
166159, 165, 38syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...(2↑(𝑗 + 1)))) → (𝐹𝑘) ∈ ℝ)
167 simplll 774 . . . . . . . . . . . . . . 15 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...((2↑(𝑗 + 1)) − 1))) → 𝜑)
168 elfzuz 13488 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝑛...((2↑(𝑗 + 1)) − 1)) → 𝑘 ∈ (ℤ𝑛))
169162, 168, 164syl2an 596 . . . . . . . . . . . . . . 15 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...((2↑(𝑗 + 1)) − 1))) → 𝑘 ∈ ℕ)
170 climcnds.3 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
171167, 169, 170syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ (𝑛...((2↑(𝑗 + 1)) − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
172158, 166, 171monoord2 14005 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℕ) ∧ 𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑛))
173172ralrimiva 3126 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ∀𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑛))
174 fveq2 6861 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
175174breq2d 5122 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑛) ↔ (𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑘)))
176175rspccva 3590 . . . . . . . . . . . 12 ((∀𝑛 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑛) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑘))
177173, 176sylan 580 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))) → (𝐹‘(2↑(𝑗 + 1))) ≤ (𝐹𝑘))
178108, 149, 156, 177fsumle 15772 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹‘(2↑(𝑗 + 1))) ≤ Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))
179148, 178eqbrtrd 5132 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) ≤ Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))
180137, 100remulcld 11211 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) ∈ ℝ)
181108, 156fsumrecl 15707 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘) ∈ ℝ)
182 2rp 12963 . . . . . . . . . . 11 2 ∈ ℝ+
183182a1i 11 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → 2 ∈ ℝ+)
184180, 181, 183lemul2d 13046 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1)))) ≤ Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘) ↔ (2 · ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1))))) ≤ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))))
185179, 184mpbid 232 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · ((2↑𝑗) · (𝐹‘(2↑(𝑗 + 1))))) ≤ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))
186103, 185eqbrtrd 5132 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) ≤ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))
187 1zzd 12571 . . . . . . . . . 10 (𝜑 → 1 ∈ ℤ)
188 nnnn0 12456 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
189 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
190 nnexpcl 14046 . . . . . . . . . . . . . . 15 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
19140, 189, 190sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
192191nnred 12208 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℝ)
193 fveq2 6861 . . . . . . . . . . . . . . 15 (𝑘 = (2↑𝑛) → (𝐹𝑘) = (𝐹‘(2↑𝑛)))
194193eleq1d 2814 . . . . . . . . . . . . . 14 (𝑘 = (2↑𝑛) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(2↑𝑛)) ∈ ℝ))
19539adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
196194, 195, 191rspcdva 3592 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (𝐹‘(2↑𝑛)) ∈ ℝ)
197192, 196remulcld 11211 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) ∈ ℝ)
19858, 197eqeltrd 2829 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℝ)
199188, 198sylan2 593 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ℝ)
20064, 187, 199serfre 14003 . . . . . . . . 9 (𝜑 → seq1( + , 𝐺):ℕ⟶ℝ)
201200ffvelcdmda 7059 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘𝑗) ∈ ℝ)
20272eleq1d 2814 . . . . . . . . 9 (𝑛 = (𝑗 + 1) → ((𝐺𝑛) ∈ ℝ ↔ (𝐺‘(𝑗 + 1)) ∈ ℝ))
203199ralrimiva 3126 . . . . . . . . . 10 (𝜑 → ∀𝑛 ∈ ℕ (𝐺𝑛) ∈ ℝ)
204203adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ∀𝑛 ∈ ℕ (𝐺𝑛) ∈ ℝ)
205202, 204, 79rspcdva 3592 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) ∈ ℝ)
20664, 187, 38serfre 14003 . . . . . . . . . 10 (𝜑 → seq1( + , 𝐹):ℕ⟶ℝ)
207 ffvelcdm 7056 . . . . . . . . . 10 ((seq1( + , 𝐹):ℕ⟶ℝ ∧ (2↑𝑗) ∈ ℕ) → (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℝ)
208206, 87, 207syl2an 596 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℝ)
209 remulcl 11160 . . . . . . . . 9 ((2 ∈ ℝ ∧ (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℝ) → (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∈ ℝ)
210116, 208, 209sylancr 587 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∈ ℝ)
211 remulcl 11160 . . . . . . . . 9 ((2 ∈ ℝ ∧ Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘) ∈ ℝ) → (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)) ∈ ℝ)
212116, 181, 211sylancr 587 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)) ∈ ℝ)
213 le2add 11667 . . . . . . . 8 ((((seq1( + , 𝐺)‘𝑗) ∈ ℝ ∧ (𝐺‘(𝑗 + 1)) ∈ ℝ) ∧ ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∈ ℝ ∧ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)) ∈ ℝ)) → (((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∧ (𝐺‘(𝑗 + 1)) ≤ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))) → ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))) ≤ ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))))
214201, 205, 210, 212, 213syl22anc 838 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) ∧ (𝐺‘(𝑗 + 1)) ≤ (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))) → ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))) ≤ ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))))
215186, 214mpan2d 694 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) → ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))) ≤ ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))))
216112, 64eleqtrdi 2839 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
217 seqp1 13988 . . . . . . . 8 (𝑗 ∈ (ℤ‘1) → (seq1( + , 𝐺)‘(𝑗 + 1)) = ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))
218216, 217syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐺)‘(𝑗 + 1)) = ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))
219 fzfid 13945 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (1...(2↑(𝑗 + 1))) ∈ Fin)
220 elfznn 13521 . . . . . . . . . . . 12 (𝑘 ∈ (1...(2↑(𝑗 + 1))) → 𝑘 ∈ ℕ)
22138recnd 11209 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
222150, 220, 221syl2an 596 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑(𝑗 + 1)))) → (𝐹𝑘) ∈ ℂ)
223140, 127, 219, 222fsumsplit 15714 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...(2↑(𝑗 + 1)))(𝐹𝑘) = (Σ𝑘 ∈ (1...(2↑𝑗))(𝐹𝑘) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))
224 eqidd 2731 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑(𝑗 + 1)))) → (𝐹𝑘) = (𝐹𝑘))
22599, 64eleqtrdi 2839 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (2↑(𝑗 + 1)) ∈ (ℤ‘1))
226224, 225, 222fsumser 15703 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...(2↑(𝑗 + 1)))(𝐹𝑘) = (seq1( + , 𝐹)‘(2↑(𝑗 + 1))))
227 eqidd 2731 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑𝑗))) → (𝐹𝑘) = (𝐹𝑘))
228 elfznn 13521 . . . . . . . . . . . . 13 (𝑘 ∈ (1...(2↑𝑗)) → 𝑘 ∈ ℕ)
229150, 228, 221syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...(2↑𝑗))) → (𝐹𝑘) ∈ ℂ)
230227, 121, 229fsumser 15703 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...(2↑𝑗))(𝐹𝑘) = (seq1( + , 𝐹)‘(2↑𝑗)))
231230oveq1d 7405 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (Σ𝑘 ∈ (1...(2↑𝑗))(𝐹𝑘) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)) = ((seq1( + , 𝐹)‘(2↑𝑗)) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))
232223, 226, 2313eqtr3d 2773 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘(2↑(𝑗 + 1))) = ((seq1( + , 𝐹)‘(2↑𝑗)) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))
233232oveq2d 7406 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))) = (2 · ((seq1( + , 𝐹)‘(2↑𝑗)) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))))
234208recnd 11209 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (seq1( + , 𝐹)‘(2↑𝑗)) ∈ ℂ)
235181recnd 11209 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘) ∈ ℂ)
23694, 234, 235adddid 11205 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (2 · ((seq1( + , 𝐹)‘(2↑𝑗)) + Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))) = ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))))
237233, 236eqtrd 2765 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))) = ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘))))
238218, 237breq12d 5123 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))) ↔ ((seq1( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))) ≤ ((2 · (seq1( + , 𝐹)‘(2↑𝑗))) + (2 · Σ𝑘 ∈ (((2↑𝑗) + 1)...(2↑(𝑗 + 1)))(𝐹𝑘)))))
239215, 238sylibrd 259 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) → (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1))))))
240239expcom 413 . . . 4 (𝑗 ∈ ℕ → (𝜑 → ((seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗))) → (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))))))
241240a2d 29 . . 3 (𝑗 ∈ ℕ → ((𝜑 → (seq1( + , 𝐺)‘𝑗) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑗)))) → (𝜑 → (seq1( + , 𝐺)‘(𝑗 + 1)) ≤ (2 · (seq1( + , 𝐹)‘(2↑(𝑗 + 1)))))))
24210, 16, 22, 28, 71, 241nnind 12211 . 2 (𝑁 ∈ ℕ → (𝜑 → (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁)))))
243242impcom 407 1 ((𝜑𝑁 ∈ ℕ) → (seq1( + , 𝐺)‘𝑁) ≤ (2 · (seq1( + , 𝐹)‘(2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  cun 3915  cin 3916  c0 4299   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  Fincfn 8921  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412  cn 12193  2c2 12248  0cn0 12449  cz 12536  cuz 12800  +crp 12958  ...cfz 13475  seqcseq 13973  cexp 14033  chash 14302  Σcsu 15659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660
This theorem is referenced by:  climcnds  15824
  Copyright terms: Public domain W3C validator