| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponcomb | Structured version Visualization version GIF version | ||
| Description: Biconditional form of toponcom 22821. (Contributed by BJ, 5-Dec-2021.) |
| Ref | Expression |
|---|---|
| toponcomb | ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘∪ 𝐾) ↔ 𝐾 ∈ (TopOn‘∪ 𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponcom 22821 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝐽 ∈ (TopOn‘∪ 𝐾)) → 𝐾 ∈ (TopOn‘∪ 𝐽)) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝐾 ∈ Top → (𝐽 ∈ (TopOn‘∪ 𝐾) → 𝐾 ∈ (TopOn‘∪ 𝐽))) |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘∪ 𝐾) → 𝐾 ∈ (TopOn‘∪ 𝐽))) |
| 4 | toponcom 22821 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘∪ 𝐽)) → 𝐽 ∈ (TopOn‘∪ 𝐾)) | |
| 5 | 4 | ex 412 | . . 3 ⊢ (𝐽 ∈ Top → (𝐾 ∈ (TopOn‘∪ 𝐽) → 𝐽 ∈ (TopOn‘∪ 𝐾))) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐾 ∈ (TopOn‘∪ 𝐽) → 𝐽 ∈ (TopOn‘∪ 𝐾))) |
| 7 | 3, 6 | impbid 212 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘∪ 𝐾) ↔ 𝐾 ∈ (TopOn‘∪ 𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∪ cuni 4873 ‘cfv 6513 Topctop 22786 TopOnctopon 22803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fv 6521 df-topon 22804 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |