MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toponcomb Structured version   Visualization version   GIF version

Theorem toponcomb 22849
Description: Biconditional form of toponcom 22848. (Contributed by BJ, 5-Dec-2021.)
Assertion
Ref Expression
toponcomb ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘ 𝐾) ↔ 𝐾 ∈ (TopOn‘ 𝐽)))

Proof of Theorem toponcomb
StepHypRef Expression
1 toponcom 22848 . . . 4 ((𝐾 ∈ Top ∧ 𝐽 ∈ (TopOn‘ 𝐾)) → 𝐾 ∈ (TopOn‘ 𝐽))
21ex 412 . . 3 (𝐾 ∈ Top → (𝐽 ∈ (TopOn‘ 𝐾) → 𝐾 ∈ (TopOn‘ 𝐽)))
32adantl 481 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘ 𝐾) → 𝐾 ∈ (TopOn‘ 𝐽)))
4 toponcom 22848 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘ 𝐽)) → 𝐽 ∈ (TopOn‘ 𝐾))
54ex 412 . . 3 (𝐽 ∈ Top → (𝐾 ∈ (TopOn‘ 𝐽) → 𝐽 ∈ (TopOn‘ 𝐾)))
65adantr 480 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐾 ∈ (TopOn‘ 𝐽) → 𝐽 ∈ (TopOn‘ 𝐾)))
73, 6impbid 212 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘ 𝐾) ↔ 𝐾 ∈ (TopOn‘ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   cuni 4867  cfv 6499  Topctop 22813  TopOnctopon 22830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-topon 22831
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator