MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toponcomb Structured version   Visualization version   GIF version

Theorem toponcomb 22960
Description: Biconditional form of toponcom 22959. (Contributed by BJ, 5-Dec-2021.)
Assertion
Ref Expression
toponcomb ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘ 𝐾) ↔ 𝐾 ∈ (TopOn‘ 𝐽)))

Proof of Theorem toponcomb
StepHypRef Expression
1 toponcom 22959 . . . 4 ((𝐾 ∈ Top ∧ 𝐽 ∈ (TopOn‘ 𝐾)) → 𝐾 ∈ (TopOn‘ 𝐽))
21ex 412 . . 3 (𝐾 ∈ Top → (𝐽 ∈ (TopOn‘ 𝐾) → 𝐾 ∈ (TopOn‘ 𝐽)))
32adantl 481 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘ 𝐾) → 𝐾 ∈ (TopOn‘ 𝐽)))
4 toponcom 22959 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘ 𝐽)) → 𝐽 ∈ (TopOn‘ 𝐾))
54ex 412 . . 3 (𝐽 ∈ Top → (𝐾 ∈ (TopOn‘ 𝐽) → 𝐽 ∈ (TopOn‘ 𝐾)))
65adantr 480 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐾 ∈ (TopOn‘ 𝐽) → 𝐽 ∈ (TopOn‘ 𝐾)))
73, 6impbid 212 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘ 𝐾) ↔ 𝐾 ∈ (TopOn‘ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108   cuni 4915  cfv 6569  Topctop 22924  TopOnctopon 22941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-iota 6522  df-fun 6571  df-fv 6577  df-topon 22942
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator