MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toponcomb Structured version   Visualization version   GIF version

Theorem toponcomb 22854
Description: Biconditional form of toponcom 22853. (Contributed by BJ, 5-Dec-2021.)
Assertion
Ref Expression
toponcomb ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘ 𝐾) ↔ 𝐾 ∈ (TopOn‘ 𝐽)))

Proof of Theorem toponcomb
StepHypRef Expression
1 toponcom 22853 . . . 4 ((𝐾 ∈ Top ∧ 𝐽 ∈ (TopOn‘ 𝐾)) → 𝐾 ∈ (TopOn‘ 𝐽))
21ex 412 . . 3 (𝐾 ∈ Top → (𝐽 ∈ (TopOn‘ 𝐾) → 𝐾 ∈ (TopOn‘ 𝐽)))
32adantl 481 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘ 𝐾) → 𝐾 ∈ (TopOn‘ 𝐽)))
4 toponcom 22853 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘ 𝐽)) → 𝐽 ∈ (TopOn‘ 𝐾))
54ex 412 . . 3 (𝐽 ∈ Top → (𝐾 ∈ (TopOn‘ 𝐽) → 𝐽 ∈ (TopOn‘ 𝐾)))
65adantr 480 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐾 ∈ (TopOn‘ 𝐽) → 𝐽 ∈ (TopOn‘ 𝐾)))
73, 6impbid 212 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘ 𝐾) ↔ 𝐾 ∈ (TopOn‘ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2107   cuni 4881  cfv 6528  Topctop 22818  TopOnctopon 22835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-iota 6481  df-fun 6530  df-fv 6536  df-topon 22836
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator