| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toponcom | Structured version Visualization version GIF version | ||
| Description: If 𝐾 is a topology on the base set of topology 𝐽, then 𝐽 is a topology on the base of 𝐾. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| toponcom | ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘∪ 𝐽)) → 𝐽 ∈ (TopOn‘∪ 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponuni 22827 | . . . 4 ⊢ (𝐾 ∈ (TopOn‘∪ 𝐽) → ∪ 𝐽 = ∪ 𝐾) | |
| 2 | 1 | eqcomd 2737 | . . 3 ⊢ (𝐾 ∈ (TopOn‘∪ 𝐽) → ∪ 𝐾 = ∪ 𝐽) |
| 3 | 2 | anim2i 617 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘∪ 𝐽)) → (𝐽 ∈ Top ∧ ∪ 𝐾 = ∪ 𝐽)) |
| 4 | istopon 22825 | . 2 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐾) ↔ (𝐽 ∈ Top ∧ ∪ 𝐾 = ∪ 𝐽)) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘∪ 𝐽)) → 𝐽 ∈ (TopOn‘∪ 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∪ cuni 4859 ‘cfv 6481 Topctop 22806 TopOnctopon 22823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-topon 22824 |
| This theorem is referenced by: toponcomb 22842 kgencn3 23471 |
| Copyright terms: Public domain | W3C validator |