MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toponcom Structured version   Visualization version   GIF version

Theorem toponcom 22105
Description: If 𝐾 is a topology on the base set of topology 𝐽, then 𝐽 is a topology on the base of 𝐾. (Contributed by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
toponcom ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘ 𝐽)) → 𝐽 ∈ (TopOn‘ 𝐾))

Proof of Theorem toponcom
StepHypRef Expression
1 toponuni 22091 . . . 4 (𝐾 ∈ (TopOn‘ 𝐽) → 𝐽 = 𝐾)
21eqcomd 2739 . . 3 (𝐾 ∈ (TopOn‘ 𝐽) → 𝐾 = 𝐽)
32anim2i 616 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘ 𝐽)) → (𝐽 ∈ Top ∧ 𝐾 = 𝐽))
4 istopon 22089 . 2 (𝐽 ∈ (TopOn‘ 𝐾) ↔ (𝐽 ∈ Top ∧ 𝐾 = 𝐽))
53, 4sylibr 233 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘ 𝐽)) → 𝐽 ∈ (TopOn‘ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2101   cuni 4841  cfv 6447  Topctop 22070  TopOnctopon 22087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-mpt 5161  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-iota 6399  df-fun 6449  df-fv 6455  df-topon 22088
This theorem is referenced by:  toponcomb  22106  kgencn3  22737
  Copyright terms: Public domain W3C validator