![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > toponcom | Structured version Visualization version GIF version |
Description: If πΎ is a topology on the base set of topology π½, then π½ is a topology on the base of πΎ. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
toponcom | β’ ((π½ β Top β§ πΎ β (TopOnββͺ π½)) β π½ β (TopOnββͺ πΎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponuni 22415 | . . . 4 β’ (πΎ β (TopOnββͺ π½) β βͺ π½ = βͺ πΎ) | |
2 | 1 | eqcomd 2738 | . . 3 β’ (πΎ β (TopOnββͺ π½) β βͺ πΎ = βͺ π½) |
3 | 2 | anim2i 617 | . 2 β’ ((π½ β Top β§ πΎ β (TopOnββͺ π½)) β (π½ β Top β§ βͺ πΎ = βͺ π½)) |
4 | istopon 22413 | . 2 β’ (π½ β (TopOnββͺ πΎ) β (π½ β Top β§ βͺ πΎ = βͺ π½)) | |
5 | 3, 4 | sylibr 233 | 1 β’ ((π½ β Top β§ πΎ β (TopOnββͺ π½)) β π½ β (TopOnββͺ πΎ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βͺ cuni 4908 βcfv 6543 Topctop 22394 TopOnctopon 22411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-topon 22412 |
This theorem is referenced by: toponcomb 22430 kgencn3 23061 |
Copyright terms: Public domain | W3C validator |