MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toponcom Structured version   Visualization version   GIF version

Theorem toponcom 22429
Description: If 𝐾 is a topology on the base set of topology 𝐽, then 𝐽 is a topology on the base of 𝐾. (Contributed by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
toponcom ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOnβ€˜βˆͺ 𝐽)) β†’ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐾))

Proof of Theorem toponcom
StepHypRef Expression
1 toponuni 22415 . . . 4 (𝐾 ∈ (TopOnβ€˜βˆͺ 𝐽) β†’ βˆͺ 𝐽 = βˆͺ 𝐾)
21eqcomd 2738 . . 3 (𝐾 ∈ (TopOnβ€˜βˆͺ 𝐽) β†’ βˆͺ 𝐾 = βˆͺ 𝐽)
32anim2i 617 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOnβ€˜βˆͺ 𝐽)) β†’ (𝐽 ∈ Top ∧ βˆͺ 𝐾 = βˆͺ 𝐽))
4 istopon 22413 . 2 (𝐽 ∈ (TopOnβ€˜βˆͺ 𝐾) ↔ (𝐽 ∈ Top ∧ βˆͺ 𝐾 = βˆͺ 𝐽))
53, 4sylibr 233 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOnβ€˜βˆͺ 𝐽)) β†’ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐾))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆͺ cuni 4908  β€˜cfv 6543  Topctop 22394  TopOnctopon 22411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-topon 22412
This theorem is referenced by:  toponcomb  22430  kgencn3  23061
  Copyright terms: Public domain W3C validator