MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toponcom Structured version   Visualization version   GIF version

Theorem toponcom 22871
Description: If 𝐾 is a topology on the base set of topology 𝐽, then 𝐽 is a topology on the base of 𝐾. (Contributed by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
toponcom ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘ 𝐽)) → 𝐽 ∈ (TopOn‘ 𝐾))

Proof of Theorem toponcom
StepHypRef Expression
1 toponuni 22857 . . . 4 (𝐾 ∈ (TopOn‘ 𝐽) → 𝐽 = 𝐾)
21eqcomd 2742 . . 3 (𝐾 ∈ (TopOn‘ 𝐽) → 𝐾 = 𝐽)
32anim2i 617 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘ 𝐽)) → (𝐽 ∈ Top ∧ 𝐾 = 𝐽))
4 istopon 22855 . 2 (𝐽 ∈ (TopOn‘ 𝐾) ↔ (𝐽 ∈ Top ∧ 𝐾 = 𝐽))
53, 4sylibr 234 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘ 𝐽)) → 𝐽 ∈ (TopOn‘ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   cuni 4888  cfv 6536  Topctop 22836  TopOnctopon 22853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-topon 22854
This theorem is referenced by:  toponcomb  22872  kgencn3  23501
  Copyright terms: Public domain W3C validator