MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toponcom Structured version   Visualization version   GIF version

Theorem toponcom 22950
Description: If 𝐾 is a topology on the base set of topology 𝐽, then 𝐽 is a topology on the base of 𝐾. (Contributed by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
toponcom ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘ 𝐽)) → 𝐽 ∈ (TopOn‘ 𝐾))

Proof of Theorem toponcom
StepHypRef Expression
1 toponuni 22936 . . . 4 (𝐾 ∈ (TopOn‘ 𝐽) → 𝐽 = 𝐾)
21eqcomd 2741 . . 3 (𝐾 ∈ (TopOn‘ 𝐽) → 𝐾 = 𝐽)
32anim2i 617 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘ 𝐽)) → (𝐽 ∈ Top ∧ 𝐾 = 𝐽))
4 istopon 22934 . 2 (𝐽 ∈ (TopOn‘ 𝐾) ↔ (𝐽 ∈ Top ∧ 𝐾 = 𝐽))
53, 4sylibr 234 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘ 𝐽)) → 𝐽 ∈ (TopOn‘ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106   cuni 4912  cfv 6563  Topctop 22915  TopOnctopon 22932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-topon 22933
This theorem is referenced by:  toponcomb  22951  kgencn3  23582
  Copyright terms: Public domain W3C validator