![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > topgele | Structured version Visualization version GIF version |
Description: The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
topgele | ⊢ (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 22940 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
2 | 0opn 22931 | . . . 4 ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ∅ ∈ 𝐽) |
4 | toponmax 22953 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
5 | 3, 4 | prssd 4847 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → {∅, 𝑋} ⊆ 𝐽) |
6 | toponuni 22941 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
7 | eqimss2 4068 | . . . 4 ⊢ (𝑋 = ∪ 𝐽 → ∪ 𝐽 ⊆ 𝑋) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ∪ 𝐽 ⊆ 𝑋) |
9 | sspwuni 5123 | . . 3 ⊢ (𝐽 ⊆ 𝒫 𝑋 ↔ ∪ 𝐽 ⊆ 𝑋) | |
10 | 8, 9 | sylibr 234 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ⊆ 𝒫 𝑋) |
11 | 5, 10 | jca 511 | 1 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 {cpr 4650 ∪ cuni 4931 ‘cfv 6573 Topctop 22920 TopOnctopon 22937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-top 22921 df-topon 22938 |
This theorem is referenced by: topsn 22958 txindis 23663 dissneqlem 37306 ntrf2 44086 |
Copyright terms: Public domain | W3C validator |