MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topgele Structured version   Visualization version   GIF version

Theorem topgele 22957
Description: The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
topgele (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽𝐽 ⊆ 𝒫 𝑋))

Proof of Theorem topgele
StepHypRef Expression
1 topontop 22940 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 0opn 22931 . . . 4 (𝐽 ∈ Top → ∅ ∈ 𝐽)
31, 2syl 17 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ∅ ∈ 𝐽)
4 toponmax 22953 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
53, 4prssd 4847 . 2 (𝐽 ∈ (TopOn‘𝑋) → {∅, 𝑋} ⊆ 𝐽)
6 toponuni 22941 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
7 eqimss2 4068 . . . 4 (𝑋 = 𝐽 𝐽𝑋)
86, 7syl 17 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽𝑋)
9 sspwuni 5123 . . 3 (𝐽 ⊆ 𝒫 𝑋 𝐽𝑋)
108, 9sylibr 234 . 2 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ⊆ 𝒫 𝑋)
115, 10jca 511 1 (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽𝐽 ⊆ 𝒫 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wss 3976  c0 4352  𝒫 cpw 4622  {cpr 4650   cuni 4931  cfv 6573  Topctop 22920  TopOnctopon 22937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-top 22921  df-topon 22938
This theorem is referenced by:  topsn  22958  txindis  23663  dissneqlem  37306  ntrf2  44086
  Copyright terms: Public domain W3C validator