MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topgele Structured version   Visualization version   GIF version

Theorem topgele 22824
Description: The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
topgele (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽𝐽 ⊆ 𝒫 𝑋))

Proof of Theorem topgele
StepHypRef Expression
1 topontop 22807 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 0opn 22798 . . . 4 (𝐽 ∈ Top → ∅ ∈ 𝐽)
31, 2syl 17 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ∅ ∈ 𝐽)
4 toponmax 22820 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
53, 4prssd 4789 . 2 (𝐽 ∈ (TopOn‘𝑋) → {∅, 𝑋} ⊆ 𝐽)
6 toponuni 22808 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
7 eqimss2 4009 . . . 4 (𝑋 = 𝐽 𝐽𝑋)
86, 7syl 17 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽𝑋)
9 sspwuni 5067 . . 3 (𝐽 ⊆ 𝒫 𝑋 𝐽𝑋)
108, 9sylibr 234 . 2 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ⊆ 𝒫 𝑋)
115, 10jca 511 1 (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽𝐽 ⊆ 𝒫 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3917  c0 4299  𝒫 cpw 4566  {cpr 4594   cuni 4874  cfv 6514  Topctop 22787  TopOnctopon 22804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-top 22788  df-topon 22805
This theorem is referenced by:  topsn  22825  txindis  23528  dissneqlem  37335  ntrf2  44120
  Copyright terms: Public domain W3C validator