MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topgele Structured version   Visualization version   GIF version

Theorem topgele 22431
Description: The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
topgele (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ ({βˆ…, 𝑋} βŠ† 𝐽 ∧ 𝐽 βŠ† 𝒫 𝑋))

Proof of Theorem topgele
StepHypRef Expression
1 topontop 22414 . . . 4 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝐽 ∈ Top)
2 0opn 22405 . . . 4 (𝐽 ∈ Top β†’ βˆ… ∈ 𝐽)
31, 2syl 17 . . 3 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ βˆ… ∈ 𝐽)
4 toponmax 22427 . . 3 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 ∈ 𝐽)
53, 4prssd 4825 . 2 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ {βˆ…, 𝑋} βŠ† 𝐽)
6 toponuni 22415 . . . 4 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽)
7 eqimss2 4041 . . . 4 (𝑋 = βˆͺ 𝐽 β†’ βˆͺ 𝐽 βŠ† 𝑋)
86, 7syl 17 . . 3 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ βˆͺ 𝐽 βŠ† 𝑋)
9 sspwuni 5103 . . 3 (𝐽 βŠ† 𝒫 𝑋 ↔ βˆͺ 𝐽 βŠ† 𝑋)
108, 9sylibr 233 . 2 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝐽 βŠ† 𝒫 𝑋)
115, 10jca 512 1 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ ({βˆ…, 𝑋} βŠ† 𝐽 ∧ 𝐽 βŠ† 𝒫 𝑋))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   βŠ† wss 3948  βˆ…c0 4322  π’« cpw 4602  {cpr 4630  βˆͺ cuni 4908  β€˜cfv 6543  Topctop 22394  TopOnctopon 22411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-top 22395  df-topon 22412
This theorem is referenced by:  topsn  22432  txindis  23137  dissneqlem  36216  ntrf2  42865
  Copyright terms: Public domain W3C validator