MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topgele Structured version   Visualization version   GIF version

Theorem topgele 22868
Description: The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
topgele (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽𝐽 ⊆ 𝒫 𝑋))

Proof of Theorem topgele
StepHypRef Expression
1 topontop 22851 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 0opn 22842 . . . 4 (𝐽 ∈ Top → ∅ ∈ 𝐽)
31, 2syl 17 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ∅ ∈ 𝐽)
4 toponmax 22864 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
53, 4prssd 4798 . 2 (𝐽 ∈ (TopOn‘𝑋) → {∅, 𝑋} ⊆ 𝐽)
6 toponuni 22852 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
7 eqimss2 4018 . . . 4 (𝑋 = 𝐽 𝐽𝑋)
86, 7syl 17 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽𝑋)
9 sspwuni 5076 . . 3 (𝐽 ⊆ 𝒫 𝑋 𝐽𝑋)
108, 9sylibr 234 . 2 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ⊆ 𝒫 𝑋)
115, 10jca 511 1 (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽𝐽 ⊆ 𝒫 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wss 3926  c0 4308  𝒫 cpw 4575  {cpr 4603   cuni 4883  cfv 6531  Topctop 22831  TopOnctopon 22848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-top 22832  df-topon 22849
This theorem is referenced by:  topsn  22869  txindis  23572  dissneqlem  37358  ntrf2  44148
  Copyright terms: Public domain W3C validator