![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > topgele | Structured version Visualization version GIF version |
Description: The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
topgele | β’ (π½ β (TopOnβπ) β ({β , π} β π½ β§ π½ β π« π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 22414 | . . . 4 β’ (π½ β (TopOnβπ) β π½ β Top) | |
2 | 0opn 22405 | . . . 4 β’ (π½ β Top β β β π½) | |
3 | 1, 2 | syl 17 | . . 3 β’ (π½ β (TopOnβπ) β β β π½) |
4 | toponmax 22427 | . . 3 β’ (π½ β (TopOnβπ) β π β π½) | |
5 | 3, 4 | prssd 4825 | . 2 β’ (π½ β (TopOnβπ) β {β , π} β π½) |
6 | toponuni 22415 | . . . 4 β’ (π½ β (TopOnβπ) β π = βͺ π½) | |
7 | eqimss2 4041 | . . . 4 β’ (π = βͺ π½ β βͺ π½ β π) | |
8 | 6, 7 | syl 17 | . . 3 β’ (π½ β (TopOnβπ) β βͺ π½ β π) |
9 | sspwuni 5103 | . . 3 β’ (π½ β π« π β βͺ π½ β π) | |
10 | 8, 9 | sylibr 233 | . 2 β’ (π½ β (TopOnβπ) β π½ β π« π) |
11 | 5, 10 | jca 512 | 1 β’ (π½ β (TopOnβπ) β ({β , π} β π½ β§ π½ β π« π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β wss 3948 β c0 4322 π« cpw 4602 {cpr 4630 βͺ cuni 4908 βcfv 6543 Topctop 22394 TopOnctopon 22411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-top 22395 df-topon 22412 |
This theorem is referenced by: topsn 22432 txindis 23137 dissneqlem 36216 ntrf2 42865 |
Copyright terms: Public domain | W3C validator |