| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topontop | Structured version Visualization version GIF version | ||
| Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| topontop | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopon 22799 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cuni 4871 ‘cfv 6511 Topctop 22780 TopOnctopon 22797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-topon 22798 |
| This theorem is referenced by: topontopi 22802 topontopon 22806 toprntopon 22812 toponmax 22813 topgele 22817 istps 22821 en2top 22872 pptbas 22895 toponmre 22980 cldmreon 22981 iscldtop 22982 neiptopreu 23020 resttopon 23048 resttopon2 23055 restlp 23070 restperf 23071 perfopn 23072 ordtopn3 23083 ordtcld1 23084 ordtcld2 23085 ordttop 23087 lmfval 23119 cnfval 23120 cnpfval 23121 tgcn 23139 tgcnp 23140 subbascn 23141 iscnp4 23150 iscncl 23156 cncls2 23160 cncls 23161 cnntr 23162 cncnp 23167 cnindis 23179 lmcls 23189 iscnrm2 23225 ist0-2 23231 ist1-2 23234 ishaus2 23238 hausnei2 23240 isreg2 23264 sscmp 23292 dfconn2 23306 clsconn 23317 conncompcld 23321 1stccnp 23349 locfincf 23418 kgenval 23422 kgenftop 23427 1stckgenlem 23440 kgen2ss 23442 txtopon 23478 pttopon 23483 txcls 23491 ptclsg 23502 dfac14lem 23504 xkoccn 23506 txcnp 23507 ptcnplem 23508 txlm 23535 cnmpt2res 23564 cnmptkp 23567 cnmptk1 23568 cnmpt1k 23569 cnmptkk 23570 cnmptk1p 23572 cnmptk2 23573 xkoinjcn 23574 qtoptopon 23591 qtopcld 23600 qtoprest 23604 qtopcmap 23606 kqval 23613 regr1lem 23626 kqreglem1 23628 kqreglem2 23629 kqnrmlem1 23630 kqnrmlem2 23631 kqtop 23632 pt1hmeo 23693 xpstopnlem1 23696 xkohmeo 23702 neifil 23767 trnei 23779 elflim 23858 flimss1 23860 flimopn 23862 fbflim2 23864 flimcf 23869 flimclslem 23871 flffval 23876 flfnei 23878 flftg 23883 cnpflf2 23887 isfcls2 23900 fclsopn 23901 fclsnei 23906 fclscf 23912 fclscmp 23917 fcfval 23920 fcfnei 23922 cnpfcf 23928 tgpmulg2 23981 tmdgsum 23982 tmdgsum2 23983 subgntr 23994 opnsubg 23995 clssubg 23996 clsnsg 23997 cldsubg 23998 snclseqg 24003 tgphaus 24004 qustgpopn 24007 prdstgpd 24012 tsmsgsum 24026 tsmsid 24027 tgptsmscld 24038 mopntop 24328 metdseq0 24743 cnmpopc 24822 ishtpy 24871 om1val 24930 pi1val 24937 csscld 25149 clsocv 25150 relcmpcmet 25218 bcth2 25230 limcres 25787 perfdvf 25804 dvaddbr 25840 dvmulbr 25841 dvmulbrOLD 25842 dvcmulf 25848 dvmptres2 25866 dvmptcmul 25868 dvmptntr 25875 dvcnvlem 25880 lhop2 25920 lhop 25921 dvcnvrelem2 25923 taylthlem1 26281 zartop 33866 neibastop2 36349 neibastop3 36350 topjoin 36353 dissneqlem 37328 istopclsd 42688 dvresntr 45916 |
| Copyright terms: Public domain | W3C validator |