| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topontop | Structured version Visualization version GIF version | ||
| Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| topontop | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopon 22797 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cuni 4858 ‘cfv 6482 Topctop 22778 TopOnctopon 22795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-topon 22796 |
| This theorem is referenced by: topontopi 22800 topontopon 22804 toprntopon 22810 toponmax 22811 topgele 22815 istps 22819 en2top 22870 pptbas 22893 toponmre 22978 cldmreon 22979 iscldtop 22980 neiptopreu 23018 resttopon 23046 resttopon2 23053 restlp 23068 restperf 23069 perfopn 23070 ordtopn3 23081 ordtcld1 23082 ordtcld2 23083 ordttop 23085 lmfval 23117 cnfval 23118 cnpfval 23119 tgcn 23137 tgcnp 23138 subbascn 23139 iscnp4 23148 iscncl 23154 cncls2 23158 cncls 23159 cnntr 23160 cncnp 23165 cnindis 23177 lmcls 23187 iscnrm2 23223 ist0-2 23229 ist1-2 23232 ishaus2 23236 hausnei2 23238 isreg2 23262 sscmp 23290 dfconn2 23304 clsconn 23315 conncompcld 23319 1stccnp 23347 locfincf 23416 kgenval 23420 kgenftop 23425 1stckgenlem 23438 kgen2ss 23440 txtopon 23476 pttopon 23481 txcls 23489 ptclsg 23500 dfac14lem 23502 xkoccn 23504 txcnp 23505 ptcnplem 23506 txlm 23533 cnmpt2res 23562 cnmptkp 23565 cnmptk1 23566 cnmpt1k 23567 cnmptkk 23568 cnmptk1p 23570 cnmptk2 23571 xkoinjcn 23572 qtoptopon 23589 qtopcld 23598 qtoprest 23602 qtopcmap 23604 kqval 23611 regr1lem 23624 kqreglem1 23626 kqreglem2 23627 kqnrmlem1 23628 kqnrmlem2 23629 kqtop 23630 pt1hmeo 23691 xpstopnlem1 23694 xkohmeo 23700 neifil 23765 trnei 23777 elflim 23856 flimss1 23858 flimopn 23860 fbflim2 23862 flimcf 23867 flimclslem 23869 flffval 23874 flfnei 23876 flftg 23881 cnpflf2 23885 isfcls2 23898 fclsopn 23899 fclsnei 23904 fclscf 23910 fclscmp 23915 fcfval 23918 fcfnei 23920 cnpfcf 23926 tgpmulg2 23979 tmdgsum 23980 tmdgsum2 23981 subgntr 23992 opnsubg 23993 clssubg 23994 clsnsg 23995 cldsubg 23996 snclseqg 24001 tgphaus 24002 qustgpopn 24005 prdstgpd 24010 tsmsgsum 24024 tsmsid 24025 tgptsmscld 24036 mopntop 24326 metdseq0 24741 cnmpopc 24820 ishtpy 24869 om1val 24928 pi1val 24935 csscld 25147 clsocv 25148 relcmpcmet 25216 bcth2 25228 limcres 25785 perfdvf 25802 dvaddbr 25838 dvmulbr 25839 dvmulbrOLD 25840 dvcmulf 25846 dvmptres2 25864 dvmptcmul 25866 dvmptntr 25873 dvcnvlem 25878 lhop2 25918 lhop 25919 dvcnvrelem2 25921 taylthlem1 26279 zartop 33843 neibastop2 36339 neibastop3 36340 topjoin 36343 dissneqlem 37318 istopclsd 42677 dvresntr 45903 |
| Copyright terms: Public domain | W3C validator |