Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > topontop | Structured version Visualization version GIF version |
Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
topontop | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopon 21969 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∪ cuni 4836 ‘cfv 6418 Topctop 21950 TopOnctopon 21967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-topon 21968 |
This theorem is referenced by: topontopi 21972 topontopon 21976 toprntopon 21982 toponmax 21983 topgele 21987 istps 21991 en2top 22043 pptbas 22066 toponmre 22152 cldmreon 22153 iscldtop 22154 neiptopreu 22192 resttopon 22220 resttopon2 22227 restlp 22242 restperf 22243 perfopn 22244 ordtopn3 22255 ordtcld1 22256 ordtcld2 22257 ordttop 22259 lmfval 22291 cnfval 22292 cnpfval 22293 tgcn 22311 tgcnp 22312 subbascn 22313 iscnp4 22322 iscncl 22328 cncls2 22332 cncls 22333 cnntr 22334 cncnp 22339 cnindis 22351 lmcls 22361 iscnrm2 22397 ist0-2 22403 ist1-2 22406 ishaus2 22410 hausnei2 22412 isreg2 22436 sscmp 22464 dfconn2 22478 clsconn 22489 conncompcld 22493 1stccnp 22521 locfincf 22590 kgenval 22594 kgenftop 22599 1stckgenlem 22612 kgen2ss 22614 txtopon 22650 pttopon 22655 txcls 22663 ptclsg 22674 dfac14lem 22676 xkoccn 22678 txcnp 22679 ptcnplem 22680 txlm 22707 cnmpt2res 22736 cnmptkp 22739 cnmptk1 22740 cnmpt1k 22741 cnmptkk 22742 cnmptk1p 22744 cnmptk2 22745 xkoinjcn 22746 qtoptopon 22763 qtopcld 22772 qtoprest 22776 qtopcmap 22778 kqval 22785 regr1lem 22798 kqreglem1 22800 kqreglem2 22801 kqnrmlem1 22802 kqnrmlem2 22803 kqtop 22804 pt1hmeo 22865 xpstopnlem1 22868 xkohmeo 22874 neifil 22939 trnei 22951 elflim 23030 flimss1 23032 flimopn 23034 fbflim2 23036 flimcf 23041 flimclslem 23043 flffval 23048 flfnei 23050 flftg 23055 cnpflf2 23059 isfcls2 23072 fclsopn 23073 fclsnei 23078 fclscf 23084 fclscmp 23089 fcfval 23092 fcfnei 23094 cnpfcf 23100 tgpmulg2 23153 tmdgsum 23154 tmdgsum2 23155 subgntr 23166 opnsubg 23167 clssubg 23168 clsnsg 23169 cldsubg 23170 snclseqg 23175 tgphaus 23176 qustgpopn 23179 prdstgpd 23184 tsmsgsum 23198 tsmsid 23199 tgptsmscld 23210 mopntop 23501 metdseq0 23923 cnmpopc 23997 ishtpy 24041 om1val 24099 pi1val 24106 csscld 24318 clsocv 24319 relcmpcmet 24387 bcth2 24399 limcres 24955 perfdvf 24972 dvaddbr 25007 dvmulbr 25008 dvcmulf 25014 dvmptres2 25031 dvmptcmul 25033 dvmptntr 25040 dvcnvlem 25045 lhop2 25084 lhop 25085 dvcnvrelem2 25087 taylthlem1 25437 zartop 31728 neibastop2 34477 neibastop3 34478 topjoin 34481 dissneqlem 35438 istopclsd 40438 dvresntr 43349 |
Copyright terms: Public domain | W3C validator |