| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topontop | Structured version Visualization version GIF version | ||
| Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| topontop | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopon 22805 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cuni 4879 ‘cfv 6519 Topctop 22786 TopOnctopon 22803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-iota 6472 df-fun 6521 df-fv 6527 df-topon 22804 |
| This theorem is referenced by: topontopi 22808 topontopon 22812 toprntopon 22818 toponmax 22819 topgele 22823 istps 22827 en2top 22878 pptbas 22901 toponmre 22986 cldmreon 22987 iscldtop 22988 neiptopreu 23026 resttopon 23054 resttopon2 23061 restlp 23076 restperf 23077 perfopn 23078 ordtopn3 23089 ordtcld1 23090 ordtcld2 23091 ordttop 23093 lmfval 23125 cnfval 23126 cnpfval 23127 tgcn 23145 tgcnp 23146 subbascn 23147 iscnp4 23156 iscncl 23162 cncls2 23166 cncls 23167 cnntr 23168 cncnp 23173 cnindis 23185 lmcls 23195 iscnrm2 23231 ist0-2 23237 ist1-2 23240 ishaus2 23244 hausnei2 23246 isreg2 23270 sscmp 23298 dfconn2 23312 clsconn 23323 conncompcld 23327 1stccnp 23355 locfincf 23424 kgenval 23428 kgenftop 23433 1stckgenlem 23446 kgen2ss 23448 txtopon 23484 pttopon 23489 txcls 23497 ptclsg 23508 dfac14lem 23510 xkoccn 23512 txcnp 23513 ptcnplem 23514 txlm 23541 cnmpt2res 23570 cnmptkp 23573 cnmptk1 23574 cnmpt1k 23575 cnmptkk 23576 cnmptk1p 23578 cnmptk2 23579 xkoinjcn 23580 qtoptopon 23597 qtopcld 23606 qtoprest 23610 qtopcmap 23612 kqval 23619 regr1lem 23632 kqreglem1 23634 kqreglem2 23635 kqnrmlem1 23636 kqnrmlem2 23637 kqtop 23638 pt1hmeo 23699 xpstopnlem1 23702 xkohmeo 23708 neifil 23773 trnei 23785 elflim 23864 flimss1 23866 flimopn 23868 fbflim2 23870 flimcf 23875 flimclslem 23877 flffval 23882 flfnei 23884 flftg 23889 cnpflf2 23893 isfcls2 23906 fclsopn 23907 fclsnei 23912 fclscf 23918 fclscmp 23923 fcfval 23926 fcfnei 23928 cnpfcf 23934 tgpmulg2 23987 tmdgsum 23988 tmdgsum2 23989 subgntr 24000 opnsubg 24001 clssubg 24002 clsnsg 24003 cldsubg 24004 snclseqg 24009 tgphaus 24010 qustgpopn 24013 prdstgpd 24018 tsmsgsum 24032 tsmsid 24033 tgptsmscld 24044 mopntop 24334 metdseq0 24749 cnmpopc 24828 ishtpy 24877 om1val 24936 pi1val 24943 csscld 25156 clsocv 25157 relcmpcmet 25225 bcth2 25237 limcres 25794 perfdvf 25811 dvaddbr 25847 dvmulbr 25848 dvmulbrOLD 25849 dvcmulf 25855 dvmptres2 25873 dvmptcmul 25875 dvmptntr 25882 dvcnvlem 25887 lhop2 25927 lhop 25928 dvcnvrelem2 25930 taylthlem1 26288 zartop 33874 neibastop2 36346 neibastop3 36347 topjoin 36350 dissneqlem 37325 istopclsd 42660 dvresntr 45889 |
| Copyright terms: Public domain | W3C validator |