| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topontop | Structured version Visualization version GIF version | ||
| Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| topontop | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopon 22832 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cuni 4867 ‘cfv 6499 Topctop 22813 TopOnctopon 22830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-topon 22831 |
| This theorem is referenced by: topontopi 22835 topontopon 22839 toprntopon 22845 toponmax 22846 topgele 22850 istps 22854 en2top 22905 pptbas 22928 toponmre 23013 cldmreon 23014 iscldtop 23015 neiptopreu 23053 resttopon 23081 resttopon2 23088 restlp 23103 restperf 23104 perfopn 23105 ordtopn3 23116 ordtcld1 23117 ordtcld2 23118 ordttop 23120 lmfval 23152 cnfval 23153 cnpfval 23154 tgcn 23172 tgcnp 23173 subbascn 23174 iscnp4 23183 iscncl 23189 cncls2 23193 cncls 23194 cnntr 23195 cncnp 23200 cnindis 23212 lmcls 23222 iscnrm2 23258 ist0-2 23264 ist1-2 23267 ishaus2 23271 hausnei2 23273 isreg2 23297 sscmp 23325 dfconn2 23339 clsconn 23350 conncompcld 23354 1stccnp 23382 locfincf 23451 kgenval 23455 kgenftop 23460 1stckgenlem 23473 kgen2ss 23475 txtopon 23511 pttopon 23516 txcls 23524 ptclsg 23535 dfac14lem 23537 xkoccn 23539 txcnp 23540 ptcnplem 23541 txlm 23568 cnmpt2res 23597 cnmptkp 23600 cnmptk1 23601 cnmpt1k 23602 cnmptkk 23603 cnmptk1p 23605 cnmptk2 23606 xkoinjcn 23607 qtoptopon 23624 qtopcld 23633 qtoprest 23637 qtopcmap 23639 kqval 23646 regr1lem 23659 kqreglem1 23661 kqreglem2 23662 kqnrmlem1 23663 kqnrmlem2 23664 kqtop 23665 pt1hmeo 23726 xpstopnlem1 23729 xkohmeo 23735 neifil 23800 trnei 23812 elflim 23891 flimss1 23893 flimopn 23895 fbflim2 23897 flimcf 23902 flimclslem 23904 flffval 23909 flfnei 23911 flftg 23916 cnpflf2 23920 isfcls2 23933 fclsopn 23934 fclsnei 23939 fclscf 23945 fclscmp 23950 fcfval 23953 fcfnei 23955 cnpfcf 23961 tgpmulg2 24014 tmdgsum 24015 tmdgsum2 24016 subgntr 24027 opnsubg 24028 clssubg 24029 clsnsg 24030 cldsubg 24031 snclseqg 24036 tgphaus 24037 qustgpopn 24040 prdstgpd 24045 tsmsgsum 24059 tsmsid 24060 tgptsmscld 24071 mopntop 24361 metdseq0 24776 cnmpopc 24855 ishtpy 24904 om1val 24963 pi1val 24970 csscld 25182 clsocv 25183 relcmpcmet 25251 bcth2 25263 limcres 25820 perfdvf 25837 dvaddbr 25873 dvmulbr 25874 dvmulbrOLD 25875 dvcmulf 25881 dvmptres2 25899 dvmptcmul 25901 dvmptntr 25908 dvcnvlem 25913 lhop2 25953 lhop 25954 dvcnvrelem2 25956 taylthlem1 26314 zartop 33859 neibastop2 36342 neibastop3 36343 topjoin 36346 dissneqlem 37321 istopclsd 42681 dvresntr 45909 |
| Copyright terms: Public domain | W3C validator |