![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > topontop | Structured version Visualization version GIF version |
Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
topontop | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopon 22939 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∪ cuni 4931 ‘cfv 6573 Topctop 22920 TopOnctopon 22937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-topon 22938 |
This theorem is referenced by: topontopi 22942 topontopon 22946 toprntopon 22952 toponmax 22953 topgele 22957 istps 22961 en2top 23013 pptbas 23036 toponmre 23122 cldmreon 23123 iscldtop 23124 neiptopreu 23162 resttopon 23190 resttopon2 23197 restlp 23212 restperf 23213 perfopn 23214 ordtopn3 23225 ordtcld1 23226 ordtcld2 23227 ordttop 23229 lmfval 23261 cnfval 23262 cnpfval 23263 tgcn 23281 tgcnp 23282 subbascn 23283 iscnp4 23292 iscncl 23298 cncls2 23302 cncls 23303 cnntr 23304 cncnp 23309 cnindis 23321 lmcls 23331 iscnrm2 23367 ist0-2 23373 ist1-2 23376 ishaus2 23380 hausnei2 23382 isreg2 23406 sscmp 23434 dfconn2 23448 clsconn 23459 conncompcld 23463 1stccnp 23491 locfincf 23560 kgenval 23564 kgenftop 23569 1stckgenlem 23582 kgen2ss 23584 txtopon 23620 pttopon 23625 txcls 23633 ptclsg 23644 dfac14lem 23646 xkoccn 23648 txcnp 23649 ptcnplem 23650 txlm 23677 cnmpt2res 23706 cnmptkp 23709 cnmptk1 23710 cnmpt1k 23711 cnmptkk 23712 cnmptk1p 23714 cnmptk2 23715 xkoinjcn 23716 qtoptopon 23733 qtopcld 23742 qtoprest 23746 qtopcmap 23748 kqval 23755 regr1lem 23768 kqreglem1 23770 kqreglem2 23771 kqnrmlem1 23772 kqnrmlem2 23773 kqtop 23774 pt1hmeo 23835 xpstopnlem1 23838 xkohmeo 23844 neifil 23909 trnei 23921 elflim 24000 flimss1 24002 flimopn 24004 fbflim2 24006 flimcf 24011 flimclslem 24013 flffval 24018 flfnei 24020 flftg 24025 cnpflf2 24029 isfcls2 24042 fclsopn 24043 fclsnei 24048 fclscf 24054 fclscmp 24059 fcfval 24062 fcfnei 24064 cnpfcf 24070 tgpmulg2 24123 tmdgsum 24124 tmdgsum2 24125 subgntr 24136 opnsubg 24137 clssubg 24138 clsnsg 24139 cldsubg 24140 snclseqg 24145 tgphaus 24146 qustgpopn 24149 prdstgpd 24154 tsmsgsum 24168 tsmsid 24169 tgptsmscld 24180 mopntop 24471 metdseq0 24895 cnmpopc 24974 ishtpy 25023 om1val 25082 pi1val 25089 csscld 25302 clsocv 25303 relcmpcmet 25371 bcth2 25383 limcres 25941 perfdvf 25958 dvaddbr 25994 dvmulbr 25995 dvmulbrOLD 25996 dvcmulf 26002 dvmptres2 26020 dvmptcmul 26022 dvmptntr 26029 dvcnvlem 26034 lhop2 26074 lhop 26075 dvcnvrelem2 26077 taylthlem1 26433 zartop 33822 neibastop2 36327 neibastop3 36328 topjoin 36331 dissneqlem 37306 istopclsd 42656 dvresntr 45839 |
Copyright terms: Public domain | W3C validator |