| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topontop | Structured version Visualization version GIF version | ||
| Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| topontop | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopon 22885 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∪ cuni 4889 ‘cfv 6542 Topctop 22866 TopOnctopon 22883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6495 df-fun 6544 df-fv 6550 df-topon 22884 |
| This theorem is referenced by: topontopi 22888 topontopon 22892 toprntopon 22898 toponmax 22899 topgele 22903 istps 22907 en2top 22958 pptbas 22981 toponmre 23066 cldmreon 23067 iscldtop 23068 neiptopreu 23106 resttopon 23134 resttopon2 23141 restlp 23156 restperf 23157 perfopn 23158 ordtopn3 23169 ordtcld1 23170 ordtcld2 23171 ordttop 23173 lmfval 23205 cnfval 23206 cnpfval 23207 tgcn 23225 tgcnp 23226 subbascn 23227 iscnp4 23236 iscncl 23242 cncls2 23246 cncls 23247 cnntr 23248 cncnp 23253 cnindis 23265 lmcls 23275 iscnrm2 23311 ist0-2 23317 ist1-2 23320 ishaus2 23324 hausnei2 23326 isreg2 23350 sscmp 23378 dfconn2 23392 clsconn 23403 conncompcld 23407 1stccnp 23435 locfincf 23504 kgenval 23508 kgenftop 23513 1stckgenlem 23526 kgen2ss 23528 txtopon 23564 pttopon 23569 txcls 23577 ptclsg 23588 dfac14lem 23590 xkoccn 23592 txcnp 23593 ptcnplem 23594 txlm 23621 cnmpt2res 23650 cnmptkp 23653 cnmptk1 23654 cnmpt1k 23655 cnmptkk 23656 cnmptk1p 23658 cnmptk2 23659 xkoinjcn 23660 qtoptopon 23677 qtopcld 23686 qtoprest 23690 qtopcmap 23692 kqval 23699 regr1lem 23712 kqreglem1 23714 kqreglem2 23715 kqnrmlem1 23716 kqnrmlem2 23717 kqtop 23718 pt1hmeo 23779 xpstopnlem1 23782 xkohmeo 23788 neifil 23853 trnei 23865 elflim 23944 flimss1 23946 flimopn 23948 fbflim2 23950 flimcf 23955 flimclslem 23957 flffval 23962 flfnei 23964 flftg 23969 cnpflf2 23973 isfcls2 23986 fclsopn 23987 fclsnei 23992 fclscf 23998 fclscmp 24003 fcfval 24006 fcfnei 24008 cnpfcf 24014 tgpmulg2 24067 tmdgsum 24068 tmdgsum2 24069 subgntr 24080 opnsubg 24081 clssubg 24082 clsnsg 24083 cldsubg 24084 snclseqg 24089 tgphaus 24090 qustgpopn 24093 prdstgpd 24098 tsmsgsum 24112 tsmsid 24113 tgptsmscld 24124 mopntop 24414 metdseq0 24831 cnmpopc 24910 ishtpy 24959 om1val 25018 pi1val 25025 csscld 25238 clsocv 25239 relcmpcmet 25307 bcth2 25319 limcres 25876 perfdvf 25893 dvaddbr 25929 dvmulbr 25930 dvmulbrOLD 25931 dvcmulf 25937 dvmptres2 25955 dvmptcmul 25957 dvmptntr 25964 dvcnvlem 25969 lhop2 26009 lhop 26010 dvcnvrelem2 26012 taylthlem1 26370 zartop 33816 neibastop2 36303 neibastop3 36304 topjoin 36307 dissneqlem 37282 istopclsd 42656 dvresntr 45878 |
| Copyright terms: Public domain | W3C validator |