Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > topontop | Structured version Visualization version GIF version |
Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
topontop | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopon 22159 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∪ cuni 4851 ‘cfv 6473 Topctop 22140 TopOnctopon 22157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6425 df-fun 6475 df-fv 6481 df-topon 22158 |
This theorem is referenced by: topontopi 22162 topontopon 22166 toprntopon 22172 toponmax 22173 topgele 22177 istps 22181 en2top 22233 pptbas 22256 toponmre 22342 cldmreon 22343 iscldtop 22344 neiptopreu 22382 resttopon 22410 resttopon2 22417 restlp 22432 restperf 22433 perfopn 22434 ordtopn3 22445 ordtcld1 22446 ordtcld2 22447 ordttop 22449 lmfval 22481 cnfval 22482 cnpfval 22483 tgcn 22501 tgcnp 22502 subbascn 22503 iscnp4 22512 iscncl 22518 cncls2 22522 cncls 22523 cnntr 22524 cncnp 22529 cnindis 22541 lmcls 22551 iscnrm2 22587 ist0-2 22593 ist1-2 22596 ishaus2 22600 hausnei2 22602 isreg2 22626 sscmp 22654 dfconn2 22668 clsconn 22679 conncompcld 22683 1stccnp 22711 locfincf 22780 kgenval 22784 kgenftop 22789 1stckgenlem 22802 kgen2ss 22804 txtopon 22840 pttopon 22845 txcls 22853 ptclsg 22864 dfac14lem 22866 xkoccn 22868 txcnp 22869 ptcnplem 22870 txlm 22897 cnmpt2res 22926 cnmptkp 22929 cnmptk1 22930 cnmpt1k 22931 cnmptkk 22932 cnmptk1p 22934 cnmptk2 22935 xkoinjcn 22936 qtoptopon 22953 qtopcld 22962 qtoprest 22966 qtopcmap 22968 kqval 22975 regr1lem 22988 kqreglem1 22990 kqreglem2 22991 kqnrmlem1 22992 kqnrmlem2 22993 kqtop 22994 pt1hmeo 23055 xpstopnlem1 23058 xkohmeo 23064 neifil 23129 trnei 23141 elflim 23220 flimss1 23222 flimopn 23224 fbflim2 23226 flimcf 23231 flimclslem 23233 flffval 23238 flfnei 23240 flftg 23245 cnpflf2 23249 isfcls2 23262 fclsopn 23263 fclsnei 23268 fclscf 23274 fclscmp 23279 fcfval 23282 fcfnei 23284 cnpfcf 23290 tgpmulg2 23343 tmdgsum 23344 tmdgsum2 23345 subgntr 23356 opnsubg 23357 clssubg 23358 clsnsg 23359 cldsubg 23360 snclseqg 23365 tgphaus 23366 qustgpopn 23369 prdstgpd 23374 tsmsgsum 23388 tsmsid 23389 tgptsmscld 23400 mopntop 23691 metdseq0 24115 cnmpopc 24189 ishtpy 24233 om1val 24291 pi1val 24298 csscld 24511 clsocv 24512 relcmpcmet 24580 bcth2 24592 limcres 25148 perfdvf 25165 dvaddbr 25200 dvmulbr 25201 dvcmulf 25207 dvmptres2 25224 dvmptcmul 25226 dvmptntr 25233 dvcnvlem 25238 lhop2 25277 lhop 25278 dvcnvrelem2 25280 taylthlem1 25630 zartop 32065 neibastop2 34641 neibastop3 34642 topjoin 34645 dissneqlem 35609 istopclsd 40772 dvresntr 43784 |
Copyright terms: Public domain | W3C validator |