| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topontop | Structured version Visualization version GIF version | ||
| Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| topontop | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istopon 22827 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∪ cuni 4856 ‘cfv 6481 Topctop 22808 TopOnctopon 22825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-topon 22826 |
| This theorem is referenced by: topontopi 22830 topontopon 22834 toprntopon 22840 toponmax 22841 topgele 22845 istps 22849 en2top 22900 pptbas 22923 toponmre 23008 cldmreon 23009 iscldtop 23010 neiptopreu 23048 resttopon 23076 resttopon2 23083 restlp 23098 restperf 23099 perfopn 23100 ordtopn3 23111 ordtcld1 23112 ordtcld2 23113 ordttop 23115 lmfval 23147 cnfval 23148 cnpfval 23149 tgcn 23167 tgcnp 23168 subbascn 23169 iscnp4 23178 iscncl 23184 cncls2 23188 cncls 23189 cnntr 23190 cncnp 23195 cnindis 23207 lmcls 23217 iscnrm2 23253 ist0-2 23259 ist1-2 23262 ishaus2 23266 hausnei2 23268 isreg2 23292 sscmp 23320 dfconn2 23334 clsconn 23345 conncompcld 23349 1stccnp 23377 locfincf 23446 kgenval 23450 kgenftop 23455 1stckgenlem 23468 kgen2ss 23470 txtopon 23506 pttopon 23511 txcls 23519 ptclsg 23530 dfac14lem 23532 xkoccn 23534 txcnp 23535 ptcnplem 23536 txlm 23563 cnmpt2res 23592 cnmptkp 23595 cnmptk1 23596 cnmpt1k 23597 cnmptkk 23598 cnmptk1p 23600 cnmptk2 23601 xkoinjcn 23602 qtoptopon 23619 qtopcld 23628 qtoprest 23632 qtopcmap 23634 kqval 23641 regr1lem 23654 kqreglem1 23656 kqreglem2 23657 kqnrmlem1 23658 kqnrmlem2 23659 kqtop 23660 pt1hmeo 23721 xpstopnlem1 23724 xkohmeo 23730 neifil 23795 trnei 23807 elflim 23886 flimss1 23888 flimopn 23890 fbflim2 23892 flimcf 23897 flimclslem 23899 flffval 23904 flfnei 23906 flftg 23911 cnpflf2 23915 isfcls2 23928 fclsopn 23929 fclsnei 23934 fclscf 23940 fclscmp 23945 fcfval 23948 fcfnei 23950 cnpfcf 23956 tgpmulg2 24009 tmdgsum 24010 tmdgsum2 24011 subgntr 24022 opnsubg 24023 clssubg 24024 clsnsg 24025 cldsubg 24026 snclseqg 24031 tgphaus 24032 qustgpopn 24035 prdstgpd 24040 tsmsgsum 24054 tsmsid 24055 tgptsmscld 24066 mopntop 24355 metdseq0 24770 cnmpopc 24849 ishtpy 24898 om1val 24957 pi1val 24964 csscld 25176 clsocv 25177 relcmpcmet 25245 bcth2 25257 limcres 25814 perfdvf 25831 dvaddbr 25867 dvmulbr 25868 dvmulbrOLD 25869 dvcmulf 25875 dvmptres2 25893 dvmptcmul 25895 dvmptntr 25902 dvcnvlem 25907 lhop2 25947 lhop 25948 dvcnvrelem2 25950 taylthlem1 26308 zartop 33889 neibastop2 36405 neibastop3 36406 topjoin 36409 dissneqlem 37384 istopclsd 42803 dvresntr 46026 |
| Copyright terms: Public domain | W3C validator |