Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > topontop | Structured version Visualization version GIF version |
Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
topontop | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopon 22061 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∪ cuni 4839 ‘cfv 6433 Topctop 22042 TopOnctopon 22059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-topon 22060 |
This theorem is referenced by: topontopi 22064 topontopon 22068 toprntopon 22074 toponmax 22075 topgele 22079 istps 22083 en2top 22135 pptbas 22158 toponmre 22244 cldmreon 22245 iscldtop 22246 neiptopreu 22284 resttopon 22312 resttopon2 22319 restlp 22334 restperf 22335 perfopn 22336 ordtopn3 22347 ordtcld1 22348 ordtcld2 22349 ordttop 22351 lmfval 22383 cnfval 22384 cnpfval 22385 tgcn 22403 tgcnp 22404 subbascn 22405 iscnp4 22414 iscncl 22420 cncls2 22424 cncls 22425 cnntr 22426 cncnp 22431 cnindis 22443 lmcls 22453 iscnrm2 22489 ist0-2 22495 ist1-2 22498 ishaus2 22502 hausnei2 22504 isreg2 22528 sscmp 22556 dfconn2 22570 clsconn 22581 conncompcld 22585 1stccnp 22613 locfincf 22682 kgenval 22686 kgenftop 22691 1stckgenlem 22704 kgen2ss 22706 txtopon 22742 pttopon 22747 txcls 22755 ptclsg 22766 dfac14lem 22768 xkoccn 22770 txcnp 22771 ptcnplem 22772 txlm 22799 cnmpt2res 22828 cnmptkp 22831 cnmptk1 22832 cnmpt1k 22833 cnmptkk 22834 cnmptk1p 22836 cnmptk2 22837 xkoinjcn 22838 qtoptopon 22855 qtopcld 22864 qtoprest 22868 qtopcmap 22870 kqval 22877 regr1lem 22890 kqreglem1 22892 kqreglem2 22893 kqnrmlem1 22894 kqnrmlem2 22895 kqtop 22896 pt1hmeo 22957 xpstopnlem1 22960 xkohmeo 22966 neifil 23031 trnei 23043 elflim 23122 flimss1 23124 flimopn 23126 fbflim2 23128 flimcf 23133 flimclslem 23135 flffval 23140 flfnei 23142 flftg 23147 cnpflf2 23151 isfcls2 23164 fclsopn 23165 fclsnei 23170 fclscf 23176 fclscmp 23181 fcfval 23184 fcfnei 23186 cnpfcf 23192 tgpmulg2 23245 tmdgsum 23246 tmdgsum2 23247 subgntr 23258 opnsubg 23259 clssubg 23260 clsnsg 23261 cldsubg 23262 snclseqg 23267 tgphaus 23268 qustgpopn 23271 prdstgpd 23276 tsmsgsum 23290 tsmsid 23291 tgptsmscld 23302 mopntop 23593 metdseq0 24017 cnmpopc 24091 ishtpy 24135 om1val 24193 pi1val 24200 csscld 24413 clsocv 24414 relcmpcmet 24482 bcth2 24494 limcres 25050 perfdvf 25067 dvaddbr 25102 dvmulbr 25103 dvcmulf 25109 dvmptres2 25126 dvmptcmul 25128 dvmptntr 25135 dvcnvlem 25140 lhop2 25179 lhop 25180 dvcnvrelem2 25182 taylthlem1 25532 zartop 31826 neibastop2 34550 neibastop3 34551 topjoin 34554 dissneqlem 35511 istopclsd 40522 dvresntr 43459 |
Copyright terms: Public domain | W3C validator |