![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > topontop | Structured version Visualization version GIF version |
Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
topontop | ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopon 22940 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2107 ∪ cuni 4913 ‘cfv 6566 Topctop 22921 TopOnctopon 22938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-iota 6519 df-fun 6568 df-fv 6574 df-topon 22939 |
This theorem is referenced by: topontopi 22943 topontopon 22947 toprntopon 22953 toponmax 22954 topgele 22958 istps 22962 en2top 23014 pptbas 23037 toponmre 23123 cldmreon 23124 iscldtop 23125 neiptopreu 23163 resttopon 23191 resttopon2 23198 restlp 23213 restperf 23214 perfopn 23215 ordtopn3 23226 ordtcld1 23227 ordtcld2 23228 ordttop 23230 lmfval 23262 cnfval 23263 cnpfval 23264 tgcn 23282 tgcnp 23283 subbascn 23284 iscnp4 23293 iscncl 23299 cncls2 23303 cncls 23304 cnntr 23305 cncnp 23310 cnindis 23322 lmcls 23332 iscnrm2 23368 ist0-2 23374 ist1-2 23377 ishaus2 23381 hausnei2 23383 isreg2 23407 sscmp 23435 dfconn2 23449 clsconn 23460 conncompcld 23464 1stccnp 23492 locfincf 23561 kgenval 23565 kgenftop 23570 1stckgenlem 23583 kgen2ss 23585 txtopon 23621 pttopon 23626 txcls 23634 ptclsg 23645 dfac14lem 23647 xkoccn 23649 txcnp 23650 ptcnplem 23651 txlm 23678 cnmpt2res 23707 cnmptkp 23710 cnmptk1 23711 cnmpt1k 23712 cnmptkk 23713 cnmptk1p 23715 cnmptk2 23716 xkoinjcn 23717 qtoptopon 23734 qtopcld 23743 qtoprest 23747 qtopcmap 23749 kqval 23756 regr1lem 23769 kqreglem1 23771 kqreglem2 23772 kqnrmlem1 23773 kqnrmlem2 23774 kqtop 23775 pt1hmeo 23836 xpstopnlem1 23839 xkohmeo 23845 neifil 23910 trnei 23922 elflim 24001 flimss1 24003 flimopn 24005 fbflim2 24007 flimcf 24012 flimclslem 24014 flffval 24019 flfnei 24021 flftg 24026 cnpflf2 24030 isfcls2 24043 fclsopn 24044 fclsnei 24049 fclscf 24055 fclscmp 24060 fcfval 24063 fcfnei 24065 cnpfcf 24071 tgpmulg2 24124 tmdgsum 24125 tmdgsum2 24126 subgntr 24137 opnsubg 24138 clssubg 24139 clsnsg 24140 cldsubg 24141 snclseqg 24146 tgphaus 24147 qustgpopn 24150 prdstgpd 24155 tsmsgsum 24169 tsmsid 24170 tgptsmscld 24181 mopntop 24472 metdseq0 24898 cnmpopc 24977 ishtpy 25026 om1val 25085 pi1val 25092 csscld 25305 clsocv 25306 relcmpcmet 25374 bcth2 25386 limcres 25944 perfdvf 25961 dvaddbr 25997 dvmulbr 25998 dvmulbrOLD 25999 dvcmulf 26005 dvmptres2 26023 dvmptcmul 26025 dvmptntr 26032 dvcnvlem 26037 lhop2 26077 lhop 26078 dvcnvrelem2 26080 taylthlem1 26438 zartop 33850 neibastop2 36356 neibastop3 36357 topjoin 36360 dissneqlem 37335 istopclsd 42702 dvresntr 45885 |
Copyright terms: Public domain | W3C validator |