| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toptopon2 | Structured version Visualization version GIF version | ||
| Description: A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| toptopon2 | ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | toptopon 22802 | 1 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∪ cuni 4858 ‘cfv 6482 Topctop 22778 TopOnctopon 22795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-topon 22796 |
| This theorem is referenced by: topontopon 22804 toprntopon 22810 neiptopreu 23018 lmcvg 23147 cnss1 23161 cnss2 23162 cnrest2 23171 cnrest2r 23172 lmss 23183 lmcnp 23189 lmcn 23190 t1t0 23233 haust1 23237 restcnrm 23247 resthauslem 23248 lmmo 23265 rncmp 23281 connima 23310 conncn 23311 kgeni 23422 kgenftop 23425 kgenss 23428 kgenhaus 23429 kgencmp2 23431 kgenidm 23432 1stckgen 23439 kgencn3 23443 kgen2cn 23444 dfac14 23503 ptcnplem 23506 ptcnp 23507 txcnmpt 23509 ptcn 23512 txdis1cn 23520 lmcn2 23534 txkgen 23537 xkohaus 23538 xkopt 23540 cnmpt11 23548 cnmpt11f 23549 cnmpt1t 23550 cnmpt12 23552 cnmpt21 23556 cnmpt21f 23557 cnmpt2t 23558 cnmpt22 23559 cnmpt22f 23560 cnmptcom 23563 cnmptkp 23565 cnmpt2k 23573 txconn 23574 qtopss 23600 qtopeu 23601 qtopomap 23603 qtopcmap 23604 kqtop 23630 kqt0 23631 nrmr0reg 23634 regr1 23635 kqreg 23636 kqnrm 23637 hmeoqtop 23660 hmphref 23666 xpstopnlem1 23694 ptcmpfi 23698 xkocnv 23699 xkohmeo 23700 kqhmph 23704 flimsncls 23871 cnpflfi 23884 flfcnp 23889 flfcnp2 23892 cnpfcfi 23925 cnextucn 24188 cnmpopc 24820 htpyco1 24875 htpyco2 24876 phtpyco2 24887 pcopt 24920 pcopt2 24921 pcorevlem 24924 pi1cof 24957 pi1coghm 24959 cvxsconn 35220 clduni 48889 |
| Copyright terms: Public domain | W3C validator |