| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toptopon2 | Structured version Visualization version GIF version | ||
| Description: A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| toptopon2 | ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | toptopon 22832 | 1 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 ∪ cuni 4856 ‘cfv 6481 Topctop 22808 TopOnctopon 22825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-topon 22826 |
| This theorem is referenced by: topontopon 22834 toprntopon 22840 neiptopreu 23048 lmcvg 23177 cnss1 23191 cnss2 23192 cnrest2 23201 cnrest2r 23202 lmss 23213 lmcnp 23219 lmcn 23220 t1t0 23263 haust1 23267 restcnrm 23277 resthauslem 23278 lmmo 23295 rncmp 23311 connima 23340 conncn 23341 kgeni 23452 kgenftop 23455 kgenss 23458 kgenhaus 23459 kgencmp2 23461 kgenidm 23462 1stckgen 23469 kgencn3 23473 kgen2cn 23474 dfac14 23533 ptcnplem 23536 ptcnp 23537 txcnmpt 23539 ptcn 23542 txdis1cn 23550 lmcn2 23564 txkgen 23567 xkohaus 23568 xkopt 23570 cnmpt11 23578 cnmpt11f 23579 cnmpt1t 23580 cnmpt12 23582 cnmpt21 23586 cnmpt21f 23587 cnmpt2t 23588 cnmpt22 23589 cnmpt22f 23590 cnmptcom 23593 cnmptkp 23595 cnmpt2k 23603 txconn 23604 qtopss 23630 qtopeu 23631 qtopomap 23633 qtopcmap 23634 kqtop 23660 kqt0 23661 nrmr0reg 23664 regr1 23665 kqreg 23666 kqnrm 23667 hmeoqtop 23690 hmphref 23696 xpstopnlem1 23724 ptcmpfi 23728 xkocnv 23729 xkohmeo 23730 kqhmph 23734 flimsncls 23901 cnpflfi 23914 flfcnp 23919 flfcnp2 23922 cnpfcfi 23955 cnextucn 24217 cnmpopc 24849 htpyco1 24904 htpyco2 24905 phtpyco2 24916 pcopt 24949 pcopt2 24950 pcorevlem 24953 pi1cof 24986 pi1coghm 24988 cvxsconn 35287 clduni 49011 |
| Copyright terms: Public domain | W3C validator |