Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > toptopon2 | Structured version Visualization version GIF version |
Description: A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
toptopon2 | ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | toptopon 22066 | 1 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 ∪ cuni 4839 ‘cfv 6433 Topctop 22042 TopOnctopon 22059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-topon 22060 |
This theorem is referenced by: topontopon 22068 toprntopon 22074 neiptopreu 22284 lmcvg 22413 cnss1 22427 cnss2 22428 cnrest2 22437 cnrest2r 22438 lmss 22449 lmcnp 22455 lmcn 22456 t1t0 22499 haust1 22503 restcnrm 22513 resthauslem 22514 lmmo 22531 rncmp 22547 connima 22576 conncn 22577 kgeni 22688 kgenftop 22691 kgenss 22694 kgenhaus 22695 kgencmp2 22697 kgenidm 22698 1stckgen 22705 kgencn3 22709 kgen2cn 22710 dfac14 22769 ptcnplem 22772 ptcnp 22773 txcnmpt 22775 ptcn 22778 txdis1cn 22786 lmcn2 22800 txkgen 22803 xkohaus 22804 xkopt 22806 cnmpt11 22814 cnmpt11f 22815 cnmpt1t 22816 cnmpt12 22818 cnmpt21 22822 cnmpt21f 22823 cnmpt2t 22824 cnmpt22 22825 cnmpt22f 22826 cnmptcom 22829 cnmptkp 22831 cnmpt2k 22839 txconn 22840 qtopss 22866 qtopeu 22867 qtopomap 22869 qtopcmap 22870 kqtop 22896 kqt0 22897 nrmr0reg 22900 regr1 22901 kqreg 22902 kqnrm 22903 hmeoqtop 22926 hmphref 22932 xpstopnlem1 22960 ptcmpfi 22964 xkocnv 22965 xkohmeo 22966 kqhmph 22970 flimsncls 23137 cnpflfi 23150 flfcnp 23155 flfcnp2 23158 cnpfcfi 23191 cnextucn 23455 cnmpopc 24091 htpyco1 24141 htpyco2 24142 phtpyco2 24153 pcopt 24185 pcopt2 24186 pcorevlem 24189 pi1cof 24222 pi1coghm 24224 clduni 46194 |
Copyright terms: Public domain | W3C validator |