![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > toptopon2 | Structured version Visualization version GIF version |
Description: A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
toptopon2 | ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . 2 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | toptopon 22938 | 1 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2105 ∪ cuni 4911 ‘cfv 6562 Topctop 22914 TopOnctopon 22931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-iota 6515 df-fun 6564 df-fv 6570 df-topon 22932 |
This theorem is referenced by: topontopon 22940 toprntopon 22946 neiptopreu 23156 lmcvg 23285 cnss1 23299 cnss2 23300 cnrest2 23309 cnrest2r 23310 lmss 23321 lmcnp 23327 lmcn 23328 t1t0 23371 haust1 23375 restcnrm 23385 resthauslem 23386 lmmo 23403 rncmp 23419 connima 23448 conncn 23449 kgeni 23560 kgenftop 23563 kgenss 23566 kgenhaus 23567 kgencmp2 23569 kgenidm 23570 1stckgen 23577 kgencn3 23581 kgen2cn 23582 dfac14 23641 ptcnplem 23644 ptcnp 23645 txcnmpt 23647 ptcn 23650 txdis1cn 23658 lmcn2 23672 txkgen 23675 xkohaus 23676 xkopt 23678 cnmpt11 23686 cnmpt11f 23687 cnmpt1t 23688 cnmpt12 23690 cnmpt21 23694 cnmpt21f 23695 cnmpt2t 23696 cnmpt22 23697 cnmpt22f 23698 cnmptcom 23701 cnmptkp 23703 cnmpt2k 23711 txconn 23712 qtopss 23738 qtopeu 23739 qtopomap 23741 qtopcmap 23742 kqtop 23768 kqt0 23769 nrmr0reg 23772 regr1 23773 kqreg 23774 kqnrm 23775 hmeoqtop 23798 hmphref 23804 xpstopnlem1 23832 ptcmpfi 23836 xkocnv 23837 xkohmeo 23838 kqhmph 23842 flimsncls 24009 cnpflfi 24022 flfcnp 24027 flfcnp2 24030 cnpfcfi 24063 cnextucn 24327 cnmpopc 24968 htpyco1 25023 htpyco2 25024 phtpyco2 25035 pcopt 25068 pcopt2 25069 pcorevlem 25072 pi1cof 25105 pi1coghm 25107 cvxsconn 35227 clduni 48696 |
Copyright terms: Public domain | W3C validator |