![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > toptopon2 | Structured version Visualization version GIF version |
Description: A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
toptopon2 | ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | toptopon 22944 | 1 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 ∪ cuni 4931 ‘cfv 6573 Topctop 22920 TopOnctopon 22937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-topon 22938 |
This theorem is referenced by: topontopon 22946 toprntopon 22952 neiptopreu 23162 lmcvg 23291 cnss1 23305 cnss2 23306 cnrest2 23315 cnrest2r 23316 lmss 23327 lmcnp 23333 lmcn 23334 t1t0 23377 haust1 23381 restcnrm 23391 resthauslem 23392 lmmo 23409 rncmp 23425 connima 23454 conncn 23455 kgeni 23566 kgenftop 23569 kgenss 23572 kgenhaus 23573 kgencmp2 23575 kgenidm 23576 1stckgen 23583 kgencn3 23587 kgen2cn 23588 dfac14 23647 ptcnplem 23650 ptcnp 23651 txcnmpt 23653 ptcn 23656 txdis1cn 23664 lmcn2 23678 txkgen 23681 xkohaus 23682 xkopt 23684 cnmpt11 23692 cnmpt11f 23693 cnmpt1t 23694 cnmpt12 23696 cnmpt21 23700 cnmpt21f 23701 cnmpt2t 23702 cnmpt22 23703 cnmpt22f 23704 cnmptcom 23707 cnmptkp 23709 cnmpt2k 23717 txconn 23718 qtopss 23744 qtopeu 23745 qtopomap 23747 qtopcmap 23748 kqtop 23774 kqt0 23775 nrmr0reg 23778 regr1 23779 kqreg 23780 kqnrm 23781 hmeoqtop 23804 hmphref 23810 xpstopnlem1 23838 ptcmpfi 23842 xkocnv 23843 xkohmeo 23844 kqhmph 23848 flimsncls 24015 cnpflfi 24028 flfcnp 24033 flfcnp2 24036 cnpfcfi 24069 cnextucn 24333 cnmpopc 24974 htpyco1 25029 htpyco2 25030 phtpyco2 25041 pcopt 25074 pcopt2 25075 pcorevlem 25078 pi1cof 25111 pi1coghm 25113 cvxsconn 35211 clduni 48580 |
Copyright terms: Public domain | W3C validator |