| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toptopon2 | Structured version Visualization version GIF version | ||
| Description: A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| toptopon2 | ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | toptopon 22837 | 1 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∪ cuni 4867 ‘cfv 6499 Topctop 22813 TopOnctopon 22830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-topon 22831 |
| This theorem is referenced by: topontopon 22839 toprntopon 22845 neiptopreu 23053 lmcvg 23182 cnss1 23196 cnss2 23197 cnrest2 23206 cnrest2r 23207 lmss 23218 lmcnp 23224 lmcn 23225 t1t0 23268 haust1 23272 restcnrm 23282 resthauslem 23283 lmmo 23300 rncmp 23316 connima 23345 conncn 23346 kgeni 23457 kgenftop 23460 kgenss 23463 kgenhaus 23464 kgencmp2 23466 kgenidm 23467 1stckgen 23474 kgencn3 23478 kgen2cn 23479 dfac14 23538 ptcnplem 23541 ptcnp 23542 txcnmpt 23544 ptcn 23547 txdis1cn 23555 lmcn2 23569 txkgen 23572 xkohaus 23573 xkopt 23575 cnmpt11 23583 cnmpt11f 23584 cnmpt1t 23585 cnmpt12 23587 cnmpt21 23591 cnmpt21f 23592 cnmpt2t 23593 cnmpt22 23594 cnmpt22f 23595 cnmptcom 23598 cnmptkp 23600 cnmpt2k 23608 txconn 23609 qtopss 23635 qtopeu 23636 qtopomap 23638 qtopcmap 23639 kqtop 23665 kqt0 23666 nrmr0reg 23669 regr1 23670 kqreg 23671 kqnrm 23672 hmeoqtop 23695 hmphref 23701 xpstopnlem1 23729 ptcmpfi 23733 xkocnv 23734 xkohmeo 23735 kqhmph 23739 flimsncls 23906 cnpflfi 23919 flfcnp 23924 flfcnp2 23927 cnpfcfi 23960 cnextucn 24223 cnmpopc 24855 htpyco1 24910 htpyco2 24911 phtpyco2 24922 pcopt 24955 pcopt2 24956 pcorevlem 24959 pi1cof 24992 pi1coghm 24994 cvxsconn 35223 clduni 48882 |
| Copyright terms: Public domain | W3C validator |