| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toptopon2 | Structured version Visualization version GIF version | ||
| Description: A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| toptopon2 | ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | toptopon 22811 | 1 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∪ cuni 4874 ‘cfv 6514 Topctop 22787 TopOnctopon 22804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-topon 22805 |
| This theorem is referenced by: topontopon 22813 toprntopon 22819 neiptopreu 23027 lmcvg 23156 cnss1 23170 cnss2 23171 cnrest2 23180 cnrest2r 23181 lmss 23192 lmcnp 23198 lmcn 23199 t1t0 23242 haust1 23246 restcnrm 23256 resthauslem 23257 lmmo 23274 rncmp 23290 connima 23319 conncn 23320 kgeni 23431 kgenftop 23434 kgenss 23437 kgenhaus 23438 kgencmp2 23440 kgenidm 23441 1stckgen 23448 kgencn3 23452 kgen2cn 23453 dfac14 23512 ptcnplem 23515 ptcnp 23516 txcnmpt 23518 ptcn 23521 txdis1cn 23529 lmcn2 23543 txkgen 23546 xkohaus 23547 xkopt 23549 cnmpt11 23557 cnmpt11f 23558 cnmpt1t 23559 cnmpt12 23561 cnmpt21 23565 cnmpt21f 23566 cnmpt2t 23567 cnmpt22 23568 cnmpt22f 23569 cnmptcom 23572 cnmptkp 23574 cnmpt2k 23582 txconn 23583 qtopss 23609 qtopeu 23610 qtopomap 23612 qtopcmap 23613 kqtop 23639 kqt0 23640 nrmr0reg 23643 regr1 23644 kqreg 23645 kqnrm 23646 hmeoqtop 23669 hmphref 23675 xpstopnlem1 23703 ptcmpfi 23707 xkocnv 23708 xkohmeo 23709 kqhmph 23713 flimsncls 23880 cnpflfi 23893 flfcnp 23898 flfcnp2 23901 cnpfcfi 23934 cnextucn 24197 cnmpopc 24829 htpyco1 24884 htpyco2 24885 phtpyco2 24896 pcopt 24929 pcopt2 24930 pcorevlem 24933 pi1cof 24966 pi1coghm 24968 cvxsconn 35237 clduni 48893 |
| Copyright terms: Public domain | W3C validator |