| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toptopon2 | Structured version Visualization version GIF version | ||
| Description: A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| toptopon2 | ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | toptopon 22804 | 1 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∪ cuni 4871 ‘cfv 6511 Topctop 22780 TopOnctopon 22797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-topon 22798 |
| This theorem is referenced by: topontopon 22806 toprntopon 22812 neiptopreu 23020 lmcvg 23149 cnss1 23163 cnss2 23164 cnrest2 23173 cnrest2r 23174 lmss 23185 lmcnp 23191 lmcn 23192 t1t0 23235 haust1 23239 restcnrm 23249 resthauslem 23250 lmmo 23267 rncmp 23283 connima 23312 conncn 23313 kgeni 23424 kgenftop 23427 kgenss 23430 kgenhaus 23431 kgencmp2 23433 kgenidm 23434 1stckgen 23441 kgencn3 23445 kgen2cn 23446 dfac14 23505 ptcnplem 23508 ptcnp 23509 txcnmpt 23511 ptcn 23514 txdis1cn 23522 lmcn2 23536 txkgen 23539 xkohaus 23540 xkopt 23542 cnmpt11 23550 cnmpt11f 23551 cnmpt1t 23552 cnmpt12 23554 cnmpt21 23558 cnmpt21f 23559 cnmpt2t 23560 cnmpt22 23561 cnmpt22f 23562 cnmptcom 23565 cnmptkp 23567 cnmpt2k 23575 txconn 23576 qtopss 23602 qtopeu 23603 qtopomap 23605 qtopcmap 23606 kqtop 23632 kqt0 23633 nrmr0reg 23636 regr1 23637 kqreg 23638 kqnrm 23639 hmeoqtop 23662 hmphref 23668 xpstopnlem1 23696 ptcmpfi 23700 xkocnv 23701 xkohmeo 23702 kqhmph 23706 flimsncls 23873 cnpflfi 23886 flfcnp 23891 flfcnp2 23894 cnpfcfi 23927 cnextucn 24190 cnmpopc 24822 htpyco1 24877 htpyco2 24878 phtpyco2 24889 pcopt 24922 pcopt2 24923 pcorevlem 24926 pi1cof 24959 pi1coghm 24961 cvxsconn 35230 clduni 48889 |
| Copyright terms: Public domain | W3C validator |