| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > toptopon2 | Structured version Visualization version GIF version | ||
| Description: A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| toptopon2 | ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . 2 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | toptopon 22853 | 1 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2108 ∪ cuni 4883 ‘cfv 6530 Topctop 22829 TopOnctopon 22846 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6483 df-fun 6532 df-fv 6538 df-topon 22847 |
| This theorem is referenced by: topontopon 22855 toprntopon 22861 neiptopreu 23069 lmcvg 23198 cnss1 23212 cnss2 23213 cnrest2 23222 cnrest2r 23223 lmss 23234 lmcnp 23240 lmcn 23241 t1t0 23284 haust1 23288 restcnrm 23298 resthauslem 23299 lmmo 23316 rncmp 23332 connima 23361 conncn 23362 kgeni 23473 kgenftop 23476 kgenss 23479 kgenhaus 23480 kgencmp2 23482 kgenidm 23483 1stckgen 23490 kgencn3 23494 kgen2cn 23495 dfac14 23554 ptcnplem 23557 ptcnp 23558 txcnmpt 23560 ptcn 23563 txdis1cn 23571 lmcn2 23585 txkgen 23588 xkohaus 23589 xkopt 23591 cnmpt11 23599 cnmpt11f 23600 cnmpt1t 23601 cnmpt12 23603 cnmpt21 23607 cnmpt21f 23608 cnmpt2t 23609 cnmpt22 23610 cnmpt22f 23611 cnmptcom 23614 cnmptkp 23616 cnmpt2k 23624 txconn 23625 qtopss 23651 qtopeu 23652 qtopomap 23654 qtopcmap 23655 kqtop 23681 kqt0 23682 nrmr0reg 23685 regr1 23686 kqreg 23687 kqnrm 23688 hmeoqtop 23711 hmphref 23717 xpstopnlem1 23745 ptcmpfi 23749 xkocnv 23750 xkohmeo 23751 kqhmph 23755 flimsncls 23922 cnpflfi 23935 flfcnp 23940 flfcnp2 23943 cnpfcfi 23976 cnextucn 24239 cnmpopc 24871 htpyco1 24926 htpyco2 24927 phtpyco2 24938 pcopt 24971 pcopt2 24972 pcorevlem 24975 pi1cof 25008 pi1coghm 25010 cvxsconn 35211 clduni 48823 |
| Copyright terms: Public domain | W3C validator |