Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > toptopon2 | Structured version Visualization version GIF version |
Description: A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
toptopon2 | ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | toptopon 21974 | 1 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2108 ∪ cuni 4836 ‘cfv 6418 Topctop 21950 TopOnctopon 21967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-topon 21968 |
This theorem is referenced by: topontopon 21976 toprntopon 21982 neiptopreu 22192 lmcvg 22321 cnss1 22335 cnss2 22336 cnrest2 22345 cnrest2r 22346 lmss 22357 lmcnp 22363 lmcn 22364 t1t0 22407 haust1 22411 restcnrm 22421 resthauslem 22422 lmmo 22439 rncmp 22455 connima 22484 conncn 22485 kgeni 22596 kgenftop 22599 kgenss 22602 kgenhaus 22603 kgencmp2 22605 kgenidm 22606 1stckgen 22613 kgencn3 22617 kgen2cn 22618 dfac14 22677 ptcnplem 22680 ptcnp 22681 txcnmpt 22683 ptcn 22686 txdis1cn 22694 lmcn2 22708 txkgen 22711 xkohaus 22712 xkopt 22714 cnmpt11 22722 cnmpt11f 22723 cnmpt1t 22724 cnmpt12 22726 cnmpt21 22730 cnmpt21f 22731 cnmpt2t 22732 cnmpt22 22733 cnmpt22f 22734 cnmptcom 22737 cnmptkp 22739 cnmpt2k 22747 txconn 22748 qtopss 22774 qtopeu 22775 qtopomap 22777 qtopcmap 22778 kqtop 22804 kqt0 22805 nrmr0reg 22808 regr1 22809 kqreg 22810 kqnrm 22811 hmeoqtop 22834 hmphref 22840 xpstopnlem1 22868 ptcmpfi 22872 xkocnv 22873 xkohmeo 22874 kqhmph 22878 flimsncls 23045 cnpflfi 23058 flfcnp 23063 flfcnp2 23066 cnpfcfi 23099 cnextucn 23363 cnmpopc 23997 htpyco1 24047 htpyco2 24048 phtpyco2 24059 pcopt 24091 pcopt2 24092 pcorevlem 24095 pi1cof 24128 pi1coghm 24130 clduni 46082 |
Copyright terms: Public domain | W3C validator |