MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpdomlem1 Structured version   Visualization version   GIF version

Theorem unxpdomlem1 9140
Description: Lemma for unxpdom 9143. (Trivial substitution proof.) (Contributed by Mario Carneiro, 13-Jan-2013.)
Hypotheses
Ref Expression
unxpdomlem1.1 𝐹 = (𝑥 ∈ (𝑎𝑏) ↦ 𝐺)
unxpdomlem1.2 𝐺 = if(𝑥𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩)
Assertion
Ref Expression
unxpdomlem1 (𝑧 ∈ (𝑎𝑏) → (𝐹𝑧) = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
Distinct variable groups:   𝑧,𝐹   𝑎,𝑏,𝑚,𝑛,𝑠,𝑡,𝑥,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑡,𝑚,𝑛,𝑠,𝑎,𝑏)   𝐺(𝑥,𝑧,𝑡,𝑚,𝑛,𝑠,𝑎,𝑏)

Proof of Theorem unxpdomlem1
StepHypRef Expression
1 unxpdomlem1.2 . . 3 𝐺 = if(𝑥𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩)
2 elequ1 2118 . . . 4 (𝑥 = 𝑧 → (𝑥𝑎𝑧𝑎))
3 opeq1 4822 . . . . 5 (𝑥 = 𝑧 → ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩ = ⟨𝑧, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩)
4 equequ1 2026 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑚𝑧 = 𝑚))
54ifbid 4496 . . . . . 6 (𝑥 = 𝑧 → if(𝑥 = 𝑚, 𝑡, 𝑠) = if(𝑧 = 𝑚, 𝑡, 𝑠))
65opeq2d 4829 . . . . 5 (𝑥 = 𝑧 → ⟨𝑧, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩ = ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩)
73, 6eqtrd 2766 . . . 4 (𝑥 = 𝑧 → ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩ = ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩)
8 equequ1 2026 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑡𝑧 = 𝑡))
98ifbid 4496 . . . . . 6 (𝑥 = 𝑧 → if(𝑥 = 𝑡, 𝑛, 𝑚) = if(𝑧 = 𝑡, 𝑛, 𝑚))
109opeq1d 4828 . . . . 5 (𝑥 = 𝑧 → ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩ = ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑥⟩)
11 opeq2 4823 . . . . 5 (𝑥 = 𝑧 → ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑥⟩ = ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩)
1210, 11eqtrd 2766 . . . 4 (𝑥 = 𝑧 → ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩ = ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩)
132, 7, 12ifbieq12d 4501 . . 3 (𝑥 = 𝑧 → if(𝑥𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩) = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
141, 13eqtrid 2778 . 2 (𝑥 = 𝑧𝐺 = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
15 unxpdomlem1.1 . 2 𝐹 = (𝑥 ∈ (𝑎𝑏) ↦ 𝐺)
16 opex 5402 . . 3 𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩ ∈ V
17 opex 5402 . . 3 ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩ ∈ V
1816, 17ifex 4523 . 2 if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩) ∈ V
1914, 15, 18fvmpt 6929 1 (𝑧 ∈ (𝑎𝑏) → (𝐹𝑧) = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cun 3895  ifcif 4472  cop 4579  cmpt 5170  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489
This theorem is referenced by:  unxpdomlem2  9141  unxpdomlem3  9142
  Copyright terms: Public domain W3C validator