MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpdomlem1 Structured version   Visualization version   GIF version

Theorem unxpdomlem1 9313
Description: Lemma for unxpdom 9316. (Trivial substitution proof.) (Contributed by Mario Carneiro, 13-Jan-2013.)
Hypotheses
Ref Expression
unxpdomlem1.1 𝐹 = (𝑥 ∈ (𝑎𝑏) ↦ 𝐺)
unxpdomlem1.2 𝐺 = if(𝑥𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩)
Assertion
Ref Expression
unxpdomlem1 (𝑧 ∈ (𝑎𝑏) → (𝐹𝑧) = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
Distinct variable groups:   𝑧,𝐹   𝑎,𝑏,𝑚,𝑛,𝑠,𝑡,𝑥,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑡,𝑚,𝑛,𝑠,𝑎,𝑏)   𝐺(𝑥,𝑧,𝑡,𝑚,𝑛,𝑠,𝑎,𝑏)

Proof of Theorem unxpdomlem1
StepHypRef Expression
1 unxpdomlem1.2 . . 3 𝐺 = if(𝑥𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩)
2 elequ1 2115 . . . 4 (𝑥 = 𝑧 → (𝑥𝑎𝑧𝑎))
3 opeq1 4897 . . . . 5 (𝑥 = 𝑧 → ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩ = ⟨𝑧, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩)
4 equequ1 2024 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑚𝑧 = 𝑚))
54ifbid 4571 . . . . . 6 (𝑥 = 𝑧 → if(𝑥 = 𝑚, 𝑡, 𝑠) = if(𝑧 = 𝑚, 𝑡, 𝑠))
65opeq2d 4904 . . . . 5 (𝑥 = 𝑧 → ⟨𝑧, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩ = ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩)
73, 6eqtrd 2780 . . . 4 (𝑥 = 𝑧 → ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩ = ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩)
8 equequ1 2024 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑡𝑧 = 𝑡))
98ifbid 4571 . . . . . 6 (𝑥 = 𝑧 → if(𝑥 = 𝑡, 𝑛, 𝑚) = if(𝑧 = 𝑡, 𝑛, 𝑚))
109opeq1d 4903 . . . . 5 (𝑥 = 𝑧 → ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩ = ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑥⟩)
11 opeq2 4898 . . . . 5 (𝑥 = 𝑧 → ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑥⟩ = ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩)
1210, 11eqtrd 2780 . . . 4 (𝑥 = 𝑧 → ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩ = ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩)
132, 7, 12ifbieq12d 4576 . . 3 (𝑥 = 𝑧 → if(𝑥𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩) = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
141, 13eqtrid 2792 . 2 (𝑥 = 𝑧𝐺 = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
15 unxpdomlem1.1 . 2 𝐹 = (𝑥 ∈ (𝑎𝑏) ↦ 𝐺)
16 opex 5484 . . 3 𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩ ∈ V
17 opex 5484 . . 3 ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩ ∈ V
1816, 17ifex 4598 . 2 if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩) ∈ V
1914, 15, 18fvmpt 7029 1 (𝑧 ∈ (𝑎𝑏) → (𝐹𝑧) = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cun 3974  ifcif 4548  cop 4654  cmpt 5249  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581
This theorem is referenced by:  unxpdomlem2  9314  unxpdomlem3  9315
  Copyright terms: Public domain W3C validator