| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unxpdomlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for unxpdom 9148. (Trivial substitution proof.) (Contributed by Mario Carneiro, 13-Jan-2013.) |
| Ref | Expression |
|---|---|
| unxpdomlem1.1 | ⊢ 𝐹 = (𝑥 ∈ (𝑎 ∪ 𝑏) ↦ 𝐺) |
| unxpdomlem1.2 | ⊢ 𝐺 = if(𝑥 ∈ 𝑎, 〈𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥〉) |
| Ref | Expression |
|---|---|
| unxpdomlem1 | ⊢ (𝑧 ∈ (𝑎 ∪ 𝑏) → (𝐹‘𝑧) = if(𝑧 ∈ 𝑎, 〈𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unxpdomlem1.2 | . . 3 ⊢ 𝐺 = if(𝑥 ∈ 𝑎, 〈𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥〉) | |
| 2 | elequ1 2116 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝑎 ↔ 𝑧 ∈ 𝑎)) | |
| 3 | opeq1 4824 | . . . . 5 ⊢ (𝑥 = 𝑧 → 〈𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)〉 = 〈𝑧, if(𝑥 = 𝑚, 𝑡, 𝑠)〉) | |
| 4 | equequ1 2025 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥 = 𝑚 ↔ 𝑧 = 𝑚)) | |
| 5 | 4 | ifbid 4500 | . . . . . 6 ⊢ (𝑥 = 𝑧 → if(𝑥 = 𝑚, 𝑡, 𝑠) = if(𝑧 = 𝑚, 𝑡, 𝑠)) |
| 6 | 5 | opeq2d 4831 | . . . . 5 ⊢ (𝑥 = 𝑧 → 〈𝑧, if(𝑥 = 𝑚, 𝑡, 𝑠)〉 = 〈𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)〉) |
| 7 | 3, 6 | eqtrd 2764 | . . . 4 ⊢ (𝑥 = 𝑧 → 〈𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)〉 = 〈𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)〉) |
| 8 | equequ1 2025 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥 = 𝑡 ↔ 𝑧 = 𝑡)) | |
| 9 | 8 | ifbid 4500 | . . . . . 6 ⊢ (𝑥 = 𝑧 → if(𝑥 = 𝑡, 𝑛, 𝑚) = if(𝑧 = 𝑡, 𝑛, 𝑚)) |
| 10 | 9 | opeq1d 4830 | . . . . 5 ⊢ (𝑥 = 𝑧 → 〈if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥〉 = 〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑥〉) |
| 11 | opeq2 4825 | . . . . 5 ⊢ (𝑥 = 𝑧 → 〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑥〉 = 〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧〉) | |
| 12 | 10, 11 | eqtrd 2764 | . . . 4 ⊢ (𝑥 = 𝑧 → 〈if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥〉 = 〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧〉) |
| 13 | 2, 7, 12 | ifbieq12d 4505 | . . 3 ⊢ (𝑥 = 𝑧 → if(𝑥 ∈ 𝑎, 〈𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥〉) = if(𝑧 ∈ 𝑎, 〈𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧〉)) |
| 14 | 1, 13 | eqtrid 2776 | . 2 ⊢ (𝑥 = 𝑧 → 𝐺 = if(𝑧 ∈ 𝑎, 〈𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧〉)) |
| 15 | unxpdomlem1.1 | . 2 ⊢ 𝐹 = (𝑥 ∈ (𝑎 ∪ 𝑏) ↦ 𝐺) | |
| 16 | opex 5407 | . . 3 ⊢ 〈𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)〉 ∈ V | |
| 17 | opex 5407 | . . 3 ⊢ 〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧〉 ∈ V | |
| 18 | 16, 17 | ifex 4527 | . 2 ⊢ if(𝑧 ∈ 𝑎, 〈𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧〉) ∈ V |
| 19 | 14, 15, 18 | fvmpt 6930 | 1 ⊢ (𝑧 ∈ (𝑎 ∪ 𝑏) → (𝐹‘𝑧) = if(𝑧 ∈ 𝑎, 〈𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3901 ifcif 4476 〈cop 4583 ↦ cmpt 5173 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 |
| This theorem is referenced by: unxpdomlem2 9146 unxpdomlem3 9147 |
| Copyright terms: Public domain | W3C validator |