MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpdomlem1 Structured version   Visualization version   GIF version

Theorem unxpdomlem1 9284
Description: Lemma for unxpdom 9287. (Trivial substitution proof.) (Contributed by Mario Carneiro, 13-Jan-2013.)
Hypotheses
Ref Expression
unxpdomlem1.1 𝐹 = (𝑥 ∈ (𝑎𝑏) ↦ 𝐺)
unxpdomlem1.2 𝐺 = if(𝑥𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩)
Assertion
Ref Expression
unxpdomlem1 (𝑧 ∈ (𝑎𝑏) → (𝐹𝑧) = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
Distinct variable groups:   𝑧,𝐹   𝑎,𝑏,𝑚,𝑛,𝑠,𝑡,𝑥,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑡,𝑚,𝑛,𝑠,𝑎,𝑏)   𝐺(𝑥,𝑧,𝑡,𝑚,𝑛,𝑠,𝑎,𝑏)

Proof of Theorem unxpdomlem1
StepHypRef Expression
1 unxpdomlem1.2 . . 3 𝐺 = if(𝑥𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩)
2 elequ1 2113 . . . 4 (𝑥 = 𝑧 → (𝑥𝑎𝑧𝑎))
3 opeq1 4878 . . . . 5 (𝑥 = 𝑧 → ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩ = ⟨𝑧, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩)
4 equequ1 2022 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑚𝑧 = 𝑚))
54ifbid 4554 . . . . . 6 (𝑥 = 𝑧 → if(𝑥 = 𝑚, 𝑡, 𝑠) = if(𝑧 = 𝑚, 𝑡, 𝑠))
65opeq2d 4885 . . . . 5 (𝑥 = 𝑧 → ⟨𝑧, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩ = ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩)
73, 6eqtrd 2775 . . . 4 (𝑥 = 𝑧 → ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩ = ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩)
8 equequ1 2022 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑡𝑧 = 𝑡))
98ifbid 4554 . . . . . 6 (𝑥 = 𝑧 → if(𝑥 = 𝑡, 𝑛, 𝑚) = if(𝑧 = 𝑡, 𝑛, 𝑚))
109opeq1d 4884 . . . . 5 (𝑥 = 𝑧 → ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩ = ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑥⟩)
11 opeq2 4879 . . . . 5 (𝑥 = 𝑧 → ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑥⟩ = ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩)
1210, 11eqtrd 2775 . . . 4 (𝑥 = 𝑧 → ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩ = ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩)
132, 7, 12ifbieq12d 4559 . . 3 (𝑥 = 𝑧 → if(𝑥𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩) = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
141, 13eqtrid 2787 . 2 (𝑥 = 𝑧𝐺 = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
15 unxpdomlem1.1 . 2 𝐹 = (𝑥 ∈ (𝑎𝑏) ↦ 𝐺)
16 opex 5475 . . 3 𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩ ∈ V
17 opex 5475 . . 3 ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩ ∈ V
1816, 17ifex 4581 . 2 if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩) ∈ V
1914, 15, 18fvmpt 7016 1 (𝑧 ∈ (𝑎𝑏) → (𝐹𝑧) = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cun 3961  ifcif 4531  cop 4637  cmpt 5231  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571
This theorem is referenced by:  unxpdomlem2  9285  unxpdomlem3  9286
  Copyright terms: Public domain W3C validator