MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpdomlem1 Structured version   Visualization version   GIF version

Theorem unxpdomlem1 9263
Description: Lemma for unxpdom 9266. (Trivial substitution proof.) (Contributed by Mario Carneiro, 13-Jan-2013.)
Hypotheses
Ref Expression
unxpdomlem1.1 𝐹 = (𝑥 ∈ (𝑎𝑏) ↦ 𝐺)
unxpdomlem1.2 𝐺 = if(𝑥𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩)
Assertion
Ref Expression
unxpdomlem1 (𝑧 ∈ (𝑎𝑏) → (𝐹𝑧) = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
Distinct variable groups:   𝑧,𝐹   𝑎,𝑏,𝑚,𝑛,𝑠,𝑡,𝑥,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑡,𝑚,𝑛,𝑠,𝑎,𝑏)   𝐺(𝑥,𝑧,𝑡,𝑚,𝑛,𝑠,𝑎,𝑏)

Proof of Theorem unxpdomlem1
StepHypRef Expression
1 unxpdomlem1.2 . . 3 𝐺 = if(𝑥𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩)
2 elequ1 2116 . . . 4 (𝑥 = 𝑧 → (𝑥𝑎𝑧𝑎))
3 opeq1 4854 . . . . 5 (𝑥 = 𝑧 → ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩ = ⟨𝑧, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩)
4 equequ1 2025 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑚𝑧 = 𝑚))
54ifbid 4529 . . . . . 6 (𝑥 = 𝑧 → if(𝑥 = 𝑚, 𝑡, 𝑠) = if(𝑧 = 𝑚, 𝑡, 𝑠))
65opeq2d 4861 . . . . 5 (𝑥 = 𝑧 → ⟨𝑧, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩ = ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩)
73, 6eqtrd 2771 . . . 4 (𝑥 = 𝑧 → ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩ = ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩)
8 equequ1 2025 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑡𝑧 = 𝑡))
98ifbid 4529 . . . . . 6 (𝑥 = 𝑧 → if(𝑥 = 𝑡, 𝑛, 𝑚) = if(𝑧 = 𝑡, 𝑛, 𝑚))
109opeq1d 4860 . . . . 5 (𝑥 = 𝑧 → ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩ = ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑥⟩)
11 opeq2 4855 . . . . 5 (𝑥 = 𝑧 → ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑥⟩ = ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩)
1210, 11eqtrd 2771 . . . 4 (𝑥 = 𝑧 → ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩ = ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩)
132, 7, 12ifbieq12d 4534 . . 3 (𝑥 = 𝑧 → if(𝑥𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩) = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
141, 13eqtrid 2783 . 2 (𝑥 = 𝑧𝐺 = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
15 unxpdomlem1.1 . 2 𝐹 = (𝑥 ∈ (𝑎𝑏) ↦ 𝐺)
16 opex 5444 . . 3 𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩ ∈ V
17 opex 5444 . . 3 ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩ ∈ V
1816, 17ifex 4556 . 2 if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩) ∈ V
1914, 15, 18fvmpt 6991 1 (𝑧 ∈ (𝑎𝑏) → (𝐹𝑧) = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cun 3929  ifcif 4505  cop 4612  cmpt 5206  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544
This theorem is referenced by:  unxpdomlem2  9264  unxpdomlem3  9265
  Copyright terms: Public domain W3C validator