MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpdomlem1 Structured version   Visualization version   GIF version

Theorem unxpdomlem1 9264
Description: Lemma for unxpdom 9267. (Trivial substitution proof.) (Contributed by Mario Carneiro, 13-Jan-2013.)
Hypotheses
Ref Expression
unxpdomlem1.1 𝐹 = (𝑥 ∈ (𝑎𝑏) ↦ 𝐺)
unxpdomlem1.2 𝐺 = if(𝑥𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩)
Assertion
Ref Expression
unxpdomlem1 (𝑧 ∈ (𝑎𝑏) → (𝐹𝑧) = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
Distinct variable groups:   𝑧,𝐹   𝑎,𝑏,𝑚,𝑛,𝑠,𝑡,𝑥,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑡,𝑚,𝑛,𝑠,𝑎,𝑏)   𝐺(𝑥,𝑧,𝑡,𝑚,𝑛,𝑠,𝑎,𝑏)

Proof of Theorem unxpdomlem1
StepHypRef Expression
1 unxpdomlem1.2 . . 3 𝐺 = if(𝑥𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩)
2 elequ1 2106 . . . 4 (𝑥 = 𝑧 → (𝑥𝑎𝑧𝑎))
3 opeq1 4869 . . . . 5 (𝑥 = 𝑧 → ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩ = ⟨𝑧, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩)
4 equequ1 2021 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑚𝑧 = 𝑚))
54ifbid 4547 . . . . . 6 (𝑥 = 𝑧 → if(𝑥 = 𝑚, 𝑡, 𝑠) = if(𝑧 = 𝑚, 𝑡, 𝑠))
65opeq2d 4876 . . . . 5 (𝑥 = 𝑧 → ⟨𝑧, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩ = ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩)
73, 6eqtrd 2767 . . . 4 (𝑥 = 𝑧 → ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩ = ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩)
8 equequ1 2021 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝑡𝑧 = 𝑡))
98ifbid 4547 . . . . . 6 (𝑥 = 𝑧 → if(𝑥 = 𝑡, 𝑛, 𝑚) = if(𝑧 = 𝑡, 𝑛, 𝑚))
109opeq1d 4875 . . . . 5 (𝑥 = 𝑧 → ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩ = ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑥⟩)
11 opeq2 4870 . . . . 5 (𝑥 = 𝑧 → ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑥⟩ = ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩)
1210, 11eqtrd 2767 . . . 4 (𝑥 = 𝑧 → ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩ = ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩)
132, 7, 12ifbieq12d 4552 . . 3 (𝑥 = 𝑧 → if(𝑥𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩) = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
141, 13eqtrid 2779 . 2 (𝑥 = 𝑧𝐺 = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
15 unxpdomlem1.1 . 2 𝐹 = (𝑥 ∈ (𝑎𝑏) ↦ 𝐺)
16 opex 5460 . . 3 𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩ ∈ V
17 opex 5460 . . 3 ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩ ∈ V
1816, 17ifex 4574 . 2 if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩) ∈ V
1914, 15, 18fvmpt 6999 1 (𝑧 ∈ (𝑎𝑏) → (𝐹𝑧) = if(𝑧𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  cun 3942  ifcif 4524  cop 4630  cmpt 5225  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550
This theorem is referenced by:  unxpdomlem2  9265  unxpdomlem3  9266
  Copyright terms: Public domain W3C validator