| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unxpdom | Structured version Visualization version GIF version | ||
| Description: Cartesian product dominates union for sets with cardinality greater than 1. Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 13-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) |
| Ref | Expression |
|---|---|
| unxpdom | ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom 8971 | . . . 4 ⊢ Rel ≺ | |
| 2 | 1 | brrelex2i 5716 | . . 3 ⊢ (1o ≺ 𝐴 → 𝐴 ∈ V) |
| 3 | 1 | brrelex2i 5716 | . . 3 ⊢ (1o ≺ 𝐵 → 𝐵 ∈ V) |
| 4 | 2, 3 | anim12i 613 | . 2 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 5 | breq2 5128 | . . . . 5 ⊢ (𝑥 = 𝐴 → (1o ≺ 𝑥 ↔ 1o ≺ 𝐴)) | |
| 6 | 5 | anbi1d 631 | . . . 4 ⊢ (𝑥 = 𝐴 → ((1o ≺ 𝑥 ∧ 1o ≺ 𝑦) ↔ (1o ≺ 𝐴 ∧ 1o ≺ 𝑦))) |
| 7 | uneq1 4141 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦)) | |
| 8 | xpeq1 5673 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 × 𝑦) = (𝐴 × 𝑦)) | |
| 9 | 7, 8 | breq12d 5137 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∪ 𝑦) ≼ (𝑥 × 𝑦) ↔ (𝐴 ∪ 𝑦) ≼ (𝐴 × 𝑦))) |
| 10 | 6, 9 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → (((1o ≺ 𝑥 ∧ 1o ≺ 𝑦) → (𝑥 ∪ 𝑦) ≼ (𝑥 × 𝑦)) ↔ ((1o ≺ 𝐴 ∧ 1o ≺ 𝑦) → (𝐴 ∪ 𝑦) ≼ (𝐴 × 𝑦)))) |
| 11 | breq2 5128 | . . . . 5 ⊢ (𝑦 = 𝐵 → (1o ≺ 𝑦 ↔ 1o ≺ 𝐵)) | |
| 12 | 11 | anbi2d 630 | . . . 4 ⊢ (𝑦 = 𝐵 → ((1o ≺ 𝐴 ∧ 1o ≺ 𝑦) ↔ (1o ≺ 𝐴 ∧ 1o ≺ 𝐵))) |
| 13 | uneq2 4142 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
| 14 | xpeq2 5680 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 × 𝑦) = (𝐴 × 𝐵)) | |
| 15 | 13, 14 | breq12d 5137 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∪ 𝑦) ≼ (𝐴 × 𝑦) ↔ (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵))) |
| 16 | 12, 15 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝐵 → (((1o ≺ 𝐴 ∧ 1o ≺ 𝑦) → (𝐴 ∪ 𝑦) ≼ (𝐴 × 𝑦)) ↔ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵)))) |
| 17 | eqid 2736 | . . . 4 ⊢ (𝑧 ∈ (𝑥 ∪ 𝑦) ↦ if(𝑧 ∈ 𝑥, 〈𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)〉, 〈if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧〉)) = (𝑧 ∈ (𝑥 ∪ 𝑦) ↦ if(𝑧 ∈ 𝑥, 〈𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)〉, 〈if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧〉)) | |
| 18 | eqid 2736 | . . . 4 ⊢ if(𝑧 ∈ 𝑥, 〈𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)〉, 〈if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧〉) = if(𝑧 ∈ 𝑥, 〈𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)〉, 〈if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧〉) | |
| 19 | 17, 18 | unxpdomlem3 9265 | . . 3 ⊢ ((1o ≺ 𝑥 ∧ 1o ≺ 𝑦) → (𝑥 ∪ 𝑦) ≼ (𝑥 × 𝑦)) |
| 20 | 10, 16, 19 | vtocl2g 3558 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵))) |
| 21 | 4, 20 | mpcom 38 | 1 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∪ cun 3929 ifcif 4505 〈cop 4612 class class class wbr 5124 ↦ cmpt 5206 × cxp 5657 1oc1o 8478 ≼ cdom 8962 ≺ csdm 8963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-1o 8485 df-2o 8486 df-en 8965 df-dom 8966 df-sdom 8967 |
| This theorem is referenced by: unxpdom2 9267 sucxpdom 9268 djuxpdom 10205 |
| Copyright terms: Public domain | W3C validator |