MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpdom Structured version   Visualization version   GIF version

Theorem unxpdom 9316
Description: Cartesian product dominates union for sets with cardinality greater than 1. Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 13-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
unxpdom ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵))

Proof of Theorem unxpdom
Dummy variables 𝑥 𝑦 𝑢 𝑡 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsdom 9010 . . . 4 Rel ≺
21brrelex2i 5757 . . 3 (1o𝐴𝐴 ∈ V)
31brrelex2i 5757 . . 3 (1o𝐵𝐵 ∈ V)
42, 3anim12i 612 . 2 ((1o𝐴 ∧ 1o𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
5 breq2 5170 . . . . 5 (𝑥 = 𝐴 → (1o𝑥 ↔ 1o𝐴))
65anbi1d 630 . . . 4 (𝑥 = 𝐴 → ((1o𝑥 ∧ 1o𝑦) ↔ (1o𝐴 ∧ 1o𝑦)))
7 uneq1 4184 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
8 xpeq1 5714 . . . . 5 (𝑥 = 𝐴 → (𝑥 × 𝑦) = (𝐴 × 𝑦))
97, 8breq12d 5179 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑦) ≼ (𝑥 × 𝑦) ↔ (𝐴𝑦) ≼ (𝐴 × 𝑦)))
106, 9imbi12d 344 . . 3 (𝑥 = 𝐴 → (((1o𝑥 ∧ 1o𝑦) → (𝑥𝑦) ≼ (𝑥 × 𝑦)) ↔ ((1o𝐴 ∧ 1o𝑦) → (𝐴𝑦) ≼ (𝐴 × 𝑦))))
11 breq2 5170 . . . . 5 (𝑦 = 𝐵 → (1o𝑦 ↔ 1o𝐵))
1211anbi2d 629 . . . 4 (𝑦 = 𝐵 → ((1o𝐴 ∧ 1o𝑦) ↔ (1o𝐴 ∧ 1o𝐵)))
13 uneq2 4185 . . . . 5 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
14 xpeq2 5721 . . . . 5 (𝑦 = 𝐵 → (𝐴 × 𝑦) = (𝐴 × 𝐵))
1513, 14breq12d 5179 . . . 4 (𝑦 = 𝐵 → ((𝐴𝑦) ≼ (𝐴 × 𝑦) ↔ (𝐴𝐵) ≼ (𝐴 × 𝐵)))
1612, 15imbi12d 344 . . 3 (𝑦 = 𝐵 → (((1o𝐴 ∧ 1o𝑦) → (𝐴𝑦) ≼ (𝐴 × 𝑦)) ↔ ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵))))
17 eqid 2740 . . . 4 (𝑧 ∈ (𝑥𝑦) ↦ if(𝑧𝑥, ⟨𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)⟩, ⟨if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧⟩)) = (𝑧 ∈ (𝑥𝑦) ↦ if(𝑧𝑥, ⟨𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)⟩, ⟨if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧⟩))
18 eqid 2740 . . . 4 if(𝑧𝑥, ⟨𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)⟩, ⟨if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧⟩) = if(𝑧𝑥, ⟨𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)⟩, ⟨if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧⟩)
1917, 18unxpdomlem3 9315 . . 3 ((1o𝑥 ∧ 1o𝑦) → (𝑥𝑦) ≼ (𝑥 × 𝑦))
2010, 16, 19vtocl2g 3586 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵)))
214, 20mpcom 38 1 ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  ifcif 4548  cop 4654   class class class wbr 5166  cmpt 5249   × cxp 5698  1oc1o 8515  cdom 9001  csdm 9002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-1o 8522  df-2o 8523  df-en 9004  df-dom 9005  df-sdom 9006
This theorem is referenced by:  unxpdom2  9317  sucxpdom  9318  djuxpdom  10255
  Copyright terms: Public domain W3C validator