| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unxpdom | Structured version Visualization version GIF version | ||
| Description: Cartesian product dominates union for sets with cardinality greater than 1. Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 13-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) |
| Ref | Expression |
|---|---|
| unxpdom | ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom 8876 | . . . 4 ⊢ Rel ≺ | |
| 2 | 1 | brrelex2i 5673 | . . 3 ⊢ (1o ≺ 𝐴 → 𝐴 ∈ V) |
| 3 | 1 | brrelex2i 5673 | . . 3 ⊢ (1o ≺ 𝐵 → 𝐵 ∈ V) |
| 4 | 2, 3 | anim12i 613 | . 2 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 5 | breq2 5095 | . . . . 5 ⊢ (𝑥 = 𝐴 → (1o ≺ 𝑥 ↔ 1o ≺ 𝐴)) | |
| 6 | 5 | anbi1d 631 | . . . 4 ⊢ (𝑥 = 𝐴 → ((1o ≺ 𝑥 ∧ 1o ≺ 𝑦) ↔ (1o ≺ 𝐴 ∧ 1o ≺ 𝑦))) |
| 7 | uneq1 4111 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦)) | |
| 8 | xpeq1 5630 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 × 𝑦) = (𝐴 × 𝑦)) | |
| 9 | 7, 8 | breq12d 5104 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∪ 𝑦) ≼ (𝑥 × 𝑦) ↔ (𝐴 ∪ 𝑦) ≼ (𝐴 × 𝑦))) |
| 10 | 6, 9 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → (((1o ≺ 𝑥 ∧ 1o ≺ 𝑦) → (𝑥 ∪ 𝑦) ≼ (𝑥 × 𝑦)) ↔ ((1o ≺ 𝐴 ∧ 1o ≺ 𝑦) → (𝐴 ∪ 𝑦) ≼ (𝐴 × 𝑦)))) |
| 11 | breq2 5095 | . . . . 5 ⊢ (𝑦 = 𝐵 → (1o ≺ 𝑦 ↔ 1o ≺ 𝐵)) | |
| 12 | 11 | anbi2d 630 | . . . 4 ⊢ (𝑦 = 𝐵 → ((1o ≺ 𝐴 ∧ 1o ≺ 𝑦) ↔ (1o ≺ 𝐴 ∧ 1o ≺ 𝐵))) |
| 13 | uneq2 4112 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
| 14 | xpeq2 5637 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 × 𝑦) = (𝐴 × 𝐵)) | |
| 15 | 13, 14 | breq12d 5104 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∪ 𝑦) ≼ (𝐴 × 𝑦) ↔ (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵))) |
| 16 | 12, 15 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝐵 → (((1o ≺ 𝐴 ∧ 1o ≺ 𝑦) → (𝐴 ∪ 𝑦) ≼ (𝐴 × 𝑦)) ↔ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵)))) |
| 17 | eqid 2731 | . . . 4 ⊢ (𝑧 ∈ (𝑥 ∪ 𝑦) ↦ if(𝑧 ∈ 𝑥, 〈𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)〉, 〈if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧〉)) = (𝑧 ∈ (𝑥 ∪ 𝑦) ↦ if(𝑧 ∈ 𝑥, 〈𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)〉, 〈if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧〉)) | |
| 18 | eqid 2731 | . . . 4 ⊢ if(𝑧 ∈ 𝑥, 〈𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)〉, 〈if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧〉) = if(𝑧 ∈ 𝑥, 〈𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)〉, 〈if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧〉) | |
| 19 | 17, 18 | unxpdomlem3 9142 | . . 3 ⊢ ((1o ≺ 𝑥 ∧ 1o ≺ 𝑦) → (𝑥 ∪ 𝑦) ≼ (𝑥 × 𝑦)) |
| 20 | 10, 16, 19 | vtocl2g 3529 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵))) |
| 21 | 4, 20 | mpcom 38 | 1 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3900 ifcif 4475 〈cop 4582 class class class wbr 5091 ↦ cmpt 5172 × cxp 5614 1oc1o 8378 ≼ cdom 8867 ≺ csdm 8868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-1o 8385 df-2o 8386 df-en 8870 df-dom 8871 df-sdom 8872 |
| This theorem is referenced by: unxpdom2 9144 sucxpdom 9145 djuxpdom 10077 |
| Copyright terms: Public domain | W3C validator |