MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpdom Structured version   Visualization version   GIF version

Theorem unxpdom 9200
Description: Cartesian product dominates union for sets with cardinality greater than 1. Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 13-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
unxpdom ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵))

Proof of Theorem unxpdom
Dummy variables 𝑥 𝑦 𝑢 𝑡 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsdom 8925 . . . 4 Rel ≺
21brrelex2i 5695 . . 3 (1o𝐴𝐴 ∈ V)
31brrelex2i 5695 . . 3 (1o𝐵𝐵 ∈ V)
42, 3anim12i 613 . 2 ((1o𝐴 ∧ 1o𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
5 breq2 5111 . . . . 5 (𝑥 = 𝐴 → (1o𝑥 ↔ 1o𝐴))
65anbi1d 631 . . . 4 (𝑥 = 𝐴 → ((1o𝑥 ∧ 1o𝑦) ↔ (1o𝐴 ∧ 1o𝑦)))
7 uneq1 4124 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
8 xpeq1 5652 . . . . 5 (𝑥 = 𝐴 → (𝑥 × 𝑦) = (𝐴 × 𝑦))
97, 8breq12d 5120 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑦) ≼ (𝑥 × 𝑦) ↔ (𝐴𝑦) ≼ (𝐴 × 𝑦)))
106, 9imbi12d 344 . . 3 (𝑥 = 𝐴 → (((1o𝑥 ∧ 1o𝑦) → (𝑥𝑦) ≼ (𝑥 × 𝑦)) ↔ ((1o𝐴 ∧ 1o𝑦) → (𝐴𝑦) ≼ (𝐴 × 𝑦))))
11 breq2 5111 . . . . 5 (𝑦 = 𝐵 → (1o𝑦 ↔ 1o𝐵))
1211anbi2d 630 . . . 4 (𝑦 = 𝐵 → ((1o𝐴 ∧ 1o𝑦) ↔ (1o𝐴 ∧ 1o𝐵)))
13 uneq2 4125 . . . . 5 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
14 xpeq2 5659 . . . . 5 (𝑦 = 𝐵 → (𝐴 × 𝑦) = (𝐴 × 𝐵))
1513, 14breq12d 5120 . . . 4 (𝑦 = 𝐵 → ((𝐴𝑦) ≼ (𝐴 × 𝑦) ↔ (𝐴𝐵) ≼ (𝐴 × 𝐵)))
1612, 15imbi12d 344 . . 3 (𝑦 = 𝐵 → (((1o𝐴 ∧ 1o𝑦) → (𝐴𝑦) ≼ (𝐴 × 𝑦)) ↔ ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵))))
17 eqid 2729 . . . 4 (𝑧 ∈ (𝑥𝑦) ↦ if(𝑧𝑥, ⟨𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)⟩, ⟨if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧⟩)) = (𝑧 ∈ (𝑥𝑦) ↦ if(𝑧𝑥, ⟨𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)⟩, ⟨if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧⟩))
18 eqid 2729 . . . 4 if(𝑧𝑥, ⟨𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)⟩, ⟨if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧⟩) = if(𝑧𝑥, ⟨𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)⟩, ⟨if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧⟩)
1917, 18unxpdomlem3 9199 . . 3 ((1o𝑥 ∧ 1o𝑦) → (𝑥𝑦) ≼ (𝑥 × 𝑦))
2010, 16, 19vtocl2g 3540 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵)))
214, 20mpcom 38 1 ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cun 3912  ifcif 4488  cop 4595   class class class wbr 5107  cmpt 5188   × cxp 5636  1oc1o 8427  cdom 8916  csdm 8917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-1o 8434  df-2o 8435  df-en 8919  df-dom 8920  df-sdom 8921
This theorem is referenced by:  unxpdom2  9201  sucxpdom  9202  djuxpdom  10139
  Copyright terms: Public domain W3C validator