MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpdom Structured version   Visualization version   GIF version

Theorem unxpdom 9287
Description: Cartesian product dominates union for sets with cardinality greater than 1. Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 13-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
unxpdom ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵))

Proof of Theorem unxpdom
Dummy variables 𝑥 𝑦 𝑢 𝑡 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsdom 8991 . . . 4 Rel ≺
21brrelex2i 5746 . . 3 (1o𝐴𝐴 ∈ V)
31brrelex2i 5746 . . 3 (1o𝐵𝐵 ∈ V)
42, 3anim12i 613 . 2 ((1o𝐴 ∧ 1o𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
5 breq2 5152 . . . . 5 (𝑥 = 𝐴 → (1o𝑥 ↔ 1o𝐴))
65anbi1d 631 . . . 4 (𝑥 = 𝐴 → ((1o𝑥 ∧ 1o𝑦) ↔ (1o𝐴 ∧ 1o𝑦)))
7 uneq1 4171 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
8 xpeq1 5703 . . . . 5 (𝑥 = 𝐴 → (𝑥 × 𝑦) = (𝐴 × 𝑦))
97, 8breq12d 5161 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑦) ≼ (𝑥 × 𝑦) ↔ (𝐴𝑦) ≼ (𝐴 × 𝑦)))
106, 9imbi12d 344 . . 3 (𝑥 = 𝐴 → (((1o𝑥 ∧ 1o𝑦) → (𝑥𝑦) ≼ (𝑥 × 𝑦)) ↔ ((1o𝐴 ∧ 1o𝑦) → (𝐴𝑦) ≼ (𝐴 × 𝑦))))
11 breq2 5152 . . . . 5 (𝑦 = 𝐵 → (1o𝑦 ↔ 1o𝐵))
1211anbi2d 630 . . . 4 (𝑦 = 𝐵 → ((1o𝐴 ∧ 1o𝑦) ↔ (1o𝐴 ∧ 1o𝐵)))
13 uneq2 4172 . . . . 5 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
14 xpeq2 5710 . . . . 5 (𝑦 = 𝐵 → (𝐴 × 𝑦) = (𝐴 × 𝐵))
1513, 14breq12d 5161 . . . 4 (𝑦 = 𝐵 → ((𝐴𝑦) ≼ (𝐴 × 𝑦) ↔ (𝐴𝐵) ≼ (𝐴 × 𝐵)))
1612, 15imbi12d 344 . . 3 (𝑦 = 𝐵 → (((1o𝐴 ∧ 1o𝑦) → (𝐴𝑦) ≼ (𝐴 × 𝑦)) ↔ ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵))))
17 eqid 2735 . . . 4 (𝑧 ∈ (𝑥𝑦) ↦ if(𝑧𝑥, ⟨𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)⟩, ⟨if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧⟩)) = (𝑧 ∈ (𝑥𝑦) ↦ if(𝑧𝑥, ⟨𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)⟩, ⟨if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧⟩))
18 eqid 2735 . . . 4 if(𝑧𝑥, ⟨𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)⟩, ⟨if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧⟩) = if(𝑧𝑥, ⟨𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)⟩, ⟨if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧⟩)
1917, 18unxpdomlem3 9286 . . 3 ((1o𝑥 ∧ 1o𝑦) → (𝑥𝑦) ≼ (𝑥 × 𝑦))
2010, 16, 19vtocl2g 3574 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵)))
214, 20mpcom 38 1 ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cun 3961  ifcif 4531  cop 4637   class class class wbr 5148  cmpt 5231   × cxp 5687  1oc1o 8498  cdom 8982  csdm 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-1o 8505  df-2o 8506  df-en 8985  df-dom 8986  df-sdom 8987
This theorem is referenced by:  unxpdom2  9288  sucxpdom  9289  djuxpdom  10224
  Copyright terms: Public domain W3C validator