| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unxpdom | Structured version Visualization version GIF version | ||
| Description: Cartesian product dominates union for sets with cardinality greater than 1. Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 13-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) |
| Ref | Expression |
|---|---|
| unxpdom | ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom 8925 | . . . 4 ⊢ Rel ≺ | |
| 2 | 1 | brrelex2i 5695 | . . 3 ⊢ (1o ≺ 𝐴 → 𝐴 ∈ V) |
| 3 | 1 | brrelex2i 5695 | . . 3 ⊢ (1o ≺ 𝐵 → 𝐵 ∈ V) |
| 4 | 2, 3 | anim12i 613 | . 2 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 5 | breq2 5111 | . . . . 5 ⊢ (𝑥 = 𝐴 → (1o ≺ 𝑥 ↔ 1o ≺ 𝐴)) | |
| 6 | 5 | anbi1d 631 | . . . 4 ⊢ (𝑥 = 𝐴 → ((1o ≺ 𝑥 ∧ 1o ≺ 𝑦) ↔ (1o ≺ 𝐴 ∧ 1o ≺ 𝑦))) |
| 7 | uneq1 4124 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦)) | |
| 8 | xpeq1 5652 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 × 𝑦) = (𝐴 × 𝑦)) | |
| 9 | 7, 8 | breq12d 5120 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∪ 𝑦) ≼ (𝑥 × 𝑦) ↔ (𝐴 ∪ 𝑦) ≼ (𝐴 × 𝑦))) |
| 10 | 6, 9 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → (((1o ≺ 𝑥 ∧ 1o ≺ 𝑦) → (𝑥 ∪ 𝑦) ≼ (𝑥 × 𝑦)) ↔ ((1o ≺ 𝐴 ∧ 1o ≺ 𝑦) → (𝐴 ∪ 𝑦) ≼ (𝐴 × 𝑦)))) |
| 11 | breq2 5111 | . . . . 5 ⊢ (𝑦 = 𝐵 → (1o ≺ 𝑦 ↔ 1o ≺ 𝐵)) | |
| 12 | 11 | anbi2d 630 | . . . 4 ⊢ (𝑦 = 𝐵 → ((1o ≺ 𝐴 ∧ 1o ≺ 𝑦) ↔ (1o ≺ 𝐴 ∧ 1o ≺ 𝐵))) |
| 13 | uneq2 4125 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
| 14 | xpeq2 5659 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 × 𝑦) = (𝐴 × 𝐵)) | |
| 15 | 13, 14 | breq12d 5120 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∪ 𝑦) ≼ (𝐴 × 𝑦) ↔ (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵))) |
| 16 | 12, 15 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝐵 → (((1o ≺ 𝐴 ∧ 1o ≺ 𝑦) → (𝐴 ∪ 𝑦) ≼ (𝐴 × 𝑦)) ↔ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵)))) |
| 17 | eqid 2729 | . . . 4 ⊢ (𝑧 ∈ (𝑥 ∪ 𝑦) ↦ if(𝑧 ∈ 𝑥, 〈𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)〉, 〈if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧〉)) = (𝑧 ∈ (𝑥 ∪ 𝑦) ↦ if(𝑧 ∈ 𝑥, 〈𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)〉, 〈if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧〉)) | |
| 18 | eqid 2729 | . . . 4 ⊢ if(𝑧 ∈ 𝑥, 〈𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)〉, 〈if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧〉) = if(𝑧 ∈ 𝑥, 〈𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)〉, 〈if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧〉) | |
| 19 | 17, 18 | unxpdomlem3 9199 | . . 3 ⊢ ((1o ≺ 𝑥 ∧ 1o ≺ 𝑦) → (𝑥 ∪ 𝑦) ≼ (𝑥 × 𝑦)) |
| 20 | 10, 16, 19 | vtocl2g 3540 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵))) |
| 21 | 4, 20 | mpcom 38 | 1 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∪ cun 3912 ifcif 4488 〈cop 4595 class class class wbr 5107 ↦ cmpt 5188 × cxp 5636 1oc1o 8427 ≼ cdom 8916 ≺ csdm 8917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-1o 8434 df-2o 8435 df-en 8919 df-dom 8920 df-sdom 8921 |
| This theorem is referenced by: unxpdom2 9201 sucxpdom 9202 djuxpdom 10139 |
| Copyright terms: Public domain | W3C validator |