![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unxpdom | Structured version Visualization version GIF version |
Description: Cartesian product dominates union for sets with cardinality greater than 1. Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 13-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) |
Ref | Expression |
---|---|
unxpdom | ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom 8897 | . . . 4 ⊢ Rel ≺ | |
2 | 1 | brrelex2i 5694 | . . 3 ⊢ (1o ≺ 𝐴 → 𝐴 ∈ V) |
3 | 1 | brrelex2i 5694 | . . 3 ⊢ (1o ≺ 𝐵 → 𝐵 ∈ V) |
4 | 2, 3 | anim12i 614 | . 2 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
5 | breq2 5114 | . . . . 5 ⊢ (𝑥 = 𝐴 → (1o ≺ 𝑥 ↔ 1o ≺ 𝐴)) | |
6 | 5 | anbi1d 631 | . . . 4 ⊢ (𝑥 = 𝐴 → ((1o ≺ 𝑥 ∧ 1o ≺ 𝑦) ↔ (1o ≺ 𝐴 ∧ 1o ≺ 𝑦))) |
7 | uneq1 4121 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦)) | |
8 | xpeq1 5652 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 × 𝑦) = (𝐴 × 𝑦)) | |
9 | 7, 8 | breq12d 5123 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∪ 𝑦) ≼ (𝑥 × 𝑦) ↔ (𝐴 ∪ 𝑦) ≼ (𝐴 × 𝑦))) |
10 | 6, 9 | imbi12d 345 | . . 3 ⊢ (𝑥 = 𝐴 → (((1o ≺ 𝑥 ∧ 1o ≺ 𝑦) → (𝑥 ∪ 𝑦) ≼ (𝑥 × 𝑦)) ↔ ((1o ≺ 𝐴 ∧ 1o ≺ 𝑦) → (𝐴 ∪ 𝑦) ≼ (𝐴 × 𝑦)))) |
11 | breq2 5114 | . . . . 5 ⊢ (𝑦 = 𝐵 → (1o ≺ 𝑦 ↔ 1o ≺ 𝐵)) | |
12 | 11 | anbi2d 630 | . . . 4 ⊢ (𝑦 = 𝐵 → ((1o ≺ 𝐴 ∧ 1o ≺ 𝑦) ↔ (1o ≺ 𝐴 ∧ 1o ≺ 𝐵))) |
13 | uneq2 4122 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
14 | xpeq2 5659 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 × 𝑦) = (𝐴 × 𝐵)) | |
15 | 13, 14 | breq12d 5123 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∪ 𝑦) ≼ (𝐴 × 𝑦) ↔ (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵))) |
16 | 12, 15 | imbi12d 345 | . . 3 ⊢ (𝑦 = 𝐵 → (((1o ≺ 𝐴 ∧ 1o ≺ 𝑦) → (𝐴 ∪ 𝑦) ≼ (𝐴 × 𝑦)) ↔ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵)))) |
17 | eqid 2737 | . . . 4 ⊢ (𝑧 ∈ (𝑥 ∪ 𝑦) ↦ if(𝑧 ∈ 𝑥, ⟨𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)⟩, ⟨if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧⟩)) = (𝑧 ∈ (𝑥 ∪ 𝑦) ↦ if(𝑧 ∈ 𝑥, ⟨𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)⟩, ⟨if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧⟩)) | |
18 | eqid 2737 | . . . 4 ⊢ if(𝑧 ∈ 𝑥, ⟨𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)⟩, ⟨if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧⟩) = if(𝑧 ∈ 𝑥, ⟨𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)⟩, ⟨if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧⟩) | |
19 | 17, 18 | unxpdomlem3 9203 | . . 3 ⊢ ((1o ≺ 𝑥 ∧ 1o ≺ 𝑦) → (𝑥 ∪ 𝑦) ≼ (𝑥 × 𝑦)) |
20 | 10, 16, 19 | vtocl2g 3534 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵))) |
21 | 4, 20 | mpcom 38 | 1 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3448 ∪ cun 3913 ifcif 4491 ⟨cop 4597 class class class wbr 5110 ↦ cmpt 5193 × cxp 5636 1oc1o 8410 ≼ cdom 8888 ≺ csdm 8889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-1o 8417 df-2o 8418 df-en 8891 df-dom 8892 df-sdom 8893 |
This theorem is referenced by: unxpdom2 9205 sucxpdom 9206 djuxpdom 10128 |
Copyright terms: Public domain | W3C validator |