MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpdom Structured version   Visualization version   GIF version

Theorem unxpdom 9030
Description: Cartesian product dominates union for sets with cardinality greater than 1. Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 13-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
unxpdom ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵))

Proof of Theorem unxpdom
Dummy variables 𝑥 𝑦 𝑢 𝑡 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsdom 8740 . . . 4 Rel ≺
21brrelex2i 5644 . . 3 (1o𝐴𝐴 ∈ V)
31brrelex2i 5644 . . 3 (1o𝐵𝐵 ∈ V)
42, 3anim12i 613 . 2 ((1o𝐴 ∧ 1o𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
5 breq2 5078 . . . . 5 (𝑥 = 𝐴 → (1o𝑥 ↔ 1o𝐴))
65anbi1d 630 . . . 4 (𝑥 = 𝐴 → ((1o𝑥 ∧ 1o𝑦) ↔ (1o𝐴 ∧ 1o𝑦)))
7 uneq1 4090 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
8 xpeq1 5603 . . . . 5 (𝑥 = 𝐴 → (𝑥 × 𝑦) = (𝐴 × 𝑦))
97, 8breq12d 5087 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑦) ≼ (𝑥 × 𝑦) ↔ (𝐴𝑦) ≼ (𝐴 × 𝑦)))
106, 9imbi12d 345 . . 3 (𝑥 = 𝐴 → (((1o𝑥 ∧ 1o𝑦) → (𝑥𝑦) ≼ (𝑥 × 𝑦)) ↔ ((1o𝐴 ∧ 1o𝑦) → (𝐴𝑦) ≼ (𝐴 × 𝑦))))
11 breq2 5078 . . . . 5 (𝑦 = 𝐵 → (1o𝑦 ↔ 1o𝐵))
1211anbi2d 629 . . . 4 (𝑦 = 𝐵 → ((1o𝐴 ∧ 1o𝑦) ↔ (1o𝐴 ∧ 1o𝐵)))
13 uneq2 4091 . . . . 5 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
14 xpeq2 5610 . . . . 5 (𝑦 = 𝐵 → (𝐴 × 𝑦) = (𝐴 × 𝐵))
1513, 14breq12d 5087 . . . 4 (𝑦 = 𝐵 → ((𝐴𝑦) ≼ (𝐴 × 𝑦) ↔ (𝐴𝐵) ≼ (𝐴 × 𝐵)))
1612, 15imbi12d 345 . . 3 (𝑦 = 𝐵 → (((1o𝐴 ∧ 1o𝑦) → (𝐴𝑦) ≼ (𝐴 × 𝑦)) ↔ ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵))))
17 eqid 2738 . . . 4 (𝑧 ∈ (𝑥𝑦) ↦ if(𝑧𝑥, ⟨𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)⟩, ⟨if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧⟩)) = (𝑧 ∈ (𝑥𝑦) ↦ if(𝑧𝑥, ⟨𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)⟩, ⟨if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧⟩))
18 eqid 2738 . . . 4 if(𝑧𝑥, ⟨𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)⟩, ⟨if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧⟩) = if(𝑧𝑥, ⟨𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)⟩, ⟨if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧⟩)
1917, 18unxpdomlem3 9029 . . 3 ((1o𝑥 ∧ 1o𝑦) → (𝑥𝑦) ≼ (𝑥 × 𝑦))
2010, 16, 19vtocl2g 3510 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵)))
214, 20mpcom 38 1 ((1o𝐴 ∧ 1o𝐵) → (𝐴𝐵) ≼ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cun 3885  ifcif 4459  cop 4567   class class class wbr 5074  cmpt 5157   × cxp 5587  1oc1o 8290  cdom 8731  csdm 8732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-2o 8298  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737
This theorem is referenced by:  unxpdom2  9031  sucxpdom  9032  djuxpdom  9941
  Copyright terms: Public domain W3C validator