![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unxpdom | Structured version Visualization version GIF version |
Description: Cartesian product dominates union for sets with cardinality greater than 1. Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 13-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) |
Ref | Expression |
---|---|
unxpdom | ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom 9010 | . . . 4 ⊢ Rel ≺ | |
2 | 1 | brrelex2i 5757 | . . 3 ⊢ (1o ≺ 𝐴 → 𝐴 ∈ V) |
3 | 1 | brrelex2i 5757 | . . 3 ⊢ (1o ≺ 𝐵 → 𝐵 ∈ V) |
4 | 2, 3 | anim12i 612 | . 2 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
5 | breq2 5170 | . . . . 5 ⊢ (𝑥 = 𝐴 → (1o ≺ 𝑥 ↔ 1o ≺ 𝐴)) | |
6 | 5 | anbi1d 630 | . . . 4 ⊢ (𝑥 = 𝐴 → ((1o ≺ 𝑥 ∧ 1o ≺ 𝑦) ↔ (1o ≺ 𝐴 ∧ 1o ≺ 𝑦))) |
7 | uneq1 4184 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∪ 𝑦) = (𝐴 ∪ 𝑦)) | |
8 | xpeq1 5714 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 × 𝑦) = (𝐴 × 𝑦)) | |
9 | 7, 8 | breq12d 5179 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∪ 𝑦) ≼ (𝑥 × 𝑦) ↔ (𝐴 ∪ 𝑦) ≼ (𝐴 × 𝑦))) |
10 | 6, 9 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → (((1o ≺ 𝑥 ∧ 1o ≺ 𝑦) → (𝑥 ∪ 𝑦) ≼ (𝑥 × 𝑦)) ↔ ((1o ≺ 𝐴 ∧ 1o ≺ 𝑦) → (𝐴 ∪ 𝑦) ≼ (𝐴 × 𝑦)))) |
11 | breq2 5170 | . . . . 5 ⊢ (𝑦 = 𝐵 → (1o ≺ 𝑦 ↔ 1o ≺ 𝐵)) | |
12 | 11 | anbi2d 629 | . . . 4 ⊢ (𝑦 = 𝐵 → ((1o ≺ 𝐴 ∧ 1o ≺ 𝑦) ↔ (1o ≺ 𝐴 ∧ 1o ≺ 𝐵))) |
13 | uneq2 4185 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ∪ 𝑦) = (𝐴 ∪ 𝐵)) | |
14 | xpeq2 5721 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 × 𝑦) = (𝐴 × 𝐵)) | |
15 | 13, 14 | breq12d 5179 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∪ 𝑦) ≼ (𝐴 × 𝑦) ↔ (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵))) |
16 | 12, 15 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝐵 → (((1o ≺ 𝐴 ∧ 1o ≺ 𝑦) → (𝐴 ∪ 𝑦) ≼ (𝐴 × 𝑦)) ↔ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵)))) |
17 | eqid 2740 | . . . 4 ⊢ (𝑧 ∈ (𝑥 ∪ 𝑦) ↦ if(𝑧 ∈ 𝑥, 〈𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)〉, 〈if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧〉)) = (𝑧 ∈ (𝑥 ∪ 𝑦) ↦ if(𝑧 ∈ 𝑥, 〈𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)〉, 〈if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧〉)) | |
18 | eqid 2740 | . . . 4 ⊢ if(𝑧 ∈ 𝑥, 〈𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)〉, 〈if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧〉) = if(𝑧 ∈ 𝑥, 〈𝑧, if(𝑧 = 𝑣, 𝑤, 𝑡)〉, 〈if(𝑧 = 𝑤, 𝑢, 𝑣), 𝑧〉) | |
19 | 17, 18 | unxpdomlem3 9315 | . . 3 ⊢ ((1o ≺ 𝑥 ∧ 1o ≺ 𝑦) → (𝑥 ∪ 𝑦) ≼ (𝑥 × 𝑦)) |
20 | 10, 16, 19 | vtocl2g 3586 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵))) |
21 | 4, 20 | mpcom 38 | 1 ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 ifcif 4548 〈cop 4654 class class class wbr 5166 ↦ cmpt 5249 × cxp 5698 1oc1o 8515 ≼ cdom 9001 ≺ csdm 9002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-1o 8522 df-2o 8523 df-en 9004 df-dom 9005 df-sdom 9006 |
This theorem is referenced by: unxpdom2 9317 sucxpdom 9318 djuxpdom 10255 |
Copyright terms: Public domain | W3C validator |