MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgredg Structured version   Visualization version   GIF version

Theorem upgredg 26625
Description: For each edge in a pseudograph, there are two vertices which are connected by this edge. (Contributed by AV, 4-Nov-2020.) (Proof shortened by AV, 26-Nov-2021.)
Hypotheses
Ref Expression
upgredg.v 𝑉 = (Vtx‘𝐺)
upgredg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
upgredg ((𝐺 ∈ UPGraph ∧ 𝐶𝐸) → ∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏})
Distinct variable groups:   𝐶,𝑎,𝑏   𝐺,𝑎,𝑏   𝑉,𝑎,𝑏
Allowed substitution hints:   𝐸(𝑎,𝑏)

Proof of Theorem upgredg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 upgredg.e . . . . . 6 𝐸 = (Edg‘𝐺)
2 edgval 26537 . . . . . . 7 (Edg‘𝐺) = ran (iEdg‘𝐺)
32a1i 11 . . . . . 6 (𝐺 ∈ UPGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
41, 3syl5eq 2826 . . . . 5 (𝐺 ∈ UPGraph → 𝐸 = ran (iEdg‘𝐺))
54eleq2d 2851 . . . 4 (𝐺 ∈ UPGraph → (𝐶𝐸𝐶 ∈ ran (iEdg‘𝐺)))
6 upgredg.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
7 eqid 2778 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
86, 7upgrf 26574 . . . . . 6 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
98frnd 6351 . . . . 5 (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
109sseld 3857 . . . 4 (𝐺 ∈ UPGraph → (𝐶 ∈ ran (iEdg‘𝐺) → 𝐶 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
115, 10sylbid 232 . . 3 (𝐺 ∈ UPGraph → (𝐶𝐸𝐶 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
1211imp 398 . 2 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸) → 𝐶 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
13 fveq2 6499 . . . . 5 (𝑥 = 𝐶 → (♯‘𝑥) = (♯‘𝐶))
1413breq1d 4939 . . . 4 (𝑥 = 𝐶 → ((♯‘𝑥) ≤ 2 ↔ (♯‘𝐶) ≤ 2))
1514elrab 3595 . . 3 (𝐶 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (𝐶 ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘𝐶) ≤ 2))
16 hashle2prv 13647 . . . 4 (𝐶 ∈ (𝒫 𝑉 ∖ {∅}) → ((♯‘𝐶) ≤ 2 ↔ ∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏}))
1716biimpa 469 . . 3 ((𝐶 ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘𝐶) ≤ 2) → ∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏})
1815, 17sylbi 209 . 2 (𝐶 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → ∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏})
1912, 18syl 17 1 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸) → ∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  wrex 3089  {crab 3092  cdif 3826  c0 4178  𝒫 cpw 4422  {csn 4441  {cpr 4443   class class class wbr 4929  dom cdm 5407  ran crn 5408  cfv 6188  cle 10475  2c2 11495  chash 13505  Vtxcvtx 26484  iEdgciedg 26485  Edgcedg 26535  UPGraphcupgr 26568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-2o 7906  df-oadd 7909  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-dju 9124  df-card 9162  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-2 11503  df-n0 11708  df-xnn0 11780  df-z 11794  df-uz 12059  df-fz 12709  df-hash 13506  df-edg 26536  df-upgr 26570
This theorem is referenced by:  upgrpredgv  26627  upgredg2vtx  26629  upgredgpr  26630  edglnl  26631  numedglnl  26632  isomuspgrlem1  43366  isomuspgrlem2b  43368  isomuspgrlem2d  43370
  Copyright terms: Public domain W3C validator