MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgredg Structured version   Visualization version   GIF version

Theorem upgredg 28664
Description: For each edge in a pseudograph, there are two vertices which are connected by this edge. (Contributed by AV, 4-Nov-2020.) (Proof shortened by AV, 26-Nov-2021.)
Hypotheses
Ref Expression
upgredg.v 𝑉 = (Vtx‘𝐺)
upgredg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
upgredg ((𝐺 ∈ UPGraph ∧ 𝐶𝐸) → ∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏})
Distinct variable groups:   𝐶,𝑎,𝑏   𝐺,𝑎,𝑏   𝑉,𝑎,𝑏
Allowed substitution hints:   𝐸(𝑎,𝑏)

Proof of Theorem upgredg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 upgredg.e . . . . . 6 𝐸 = (Edg‘𝐺)
2 edgval 28576 . . . . . . 7 (Edg‘𝐺) = ran (iEdg‘𝐺)
32a1i 11 . . . . . 6 (𝐺 ∈ UPGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
41, 3eqtrid 2782 . . . . 5 (𝐺 ∈ UPGraph → 𝐸 = ran (iEdg‘𝐺))
54eleq2d 2817 . . . 4 (𝐺 ∈ UPGraph → (𝐶𝐸𝐶 ∈ ran (iEdg‘𝐺)))
6 upgredg.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
7 eqid 2730 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
86, 7upgrf 28613 . . . . . 6 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
98frnd 6724 . . . . 5 (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
109sseld 3980 . . . 4 (𝐺 ∈ UPGraph → (𝐶 ∈ ran (iEdg‘𝐺) → 𝐶 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
115, 10sylbid 239 . . 3 (𝐺 ∈ UPGraph → (𝐶𝐸𝐶 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
1211imp 405 . 2 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸) → 𝐶 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
13 fveq2 6890 . . . . 5 (𝑥 = 𝐶 → (♯‘𝑥) = (♯‘𝐶))
1413breq1d 5157 . . . 4 (𝑥 = 𝐶 → ((♯‘𝑥) ≤ 2 ↔ (♯‘𝐶) ≤ 2))
1514elrab 3682 . . 3 (𝐶 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (𝐶 ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘𝐶) ≤ 2))
16 hashle2prv 14443 . . . 4 (𝐶 ∈ (𝒫 𝑉 ∖ {∅}) → ((♯‘𝐶) ≤ 2 ↔ ∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏}))
1716biimpa 475 . . 3 ((𝐶 ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘𝐶) ≤ 2) → ∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏})
1815, 17sylbi 216 . 2 (𝐶 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → ∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏})
1912, 18syl 17 1 ((𝐺 ∈ UPGraph ∧ 𝐶𝐸) → ∃𝑎𝑉𝑏𝑉 𝐶 = {𝑎, 𝑏})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  wrex 3068  {crab 3430  cdif 3944  c0 4321  𝒫 cpw 4601  {csn 4627  {cpr 4629   class class class wbr 5147  dom cdm 5675  ran crn 5676  cfv 6542  cle 11253  2c2 12271  chash 14294  Vtxcvtx 28523  iEdgciedg 28524  Edgcedg 28574  UPGraphcupgr 28607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-fz 13489  df-hash 14295  df-edg 28575  df-upgr 28609
This theorem is referenced by:  upgrpredgv  28666  upgredg2vtx  28668  upgredgpr  28669  edglnl  28670  numedglnl  28671  isomuspgrlem1  46793  isomuspgrlem2b  46795  isomuspgrlem2d  46797
  Copyright terms: Public domain W3C validator