![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgredg | Structured version Visualization version GIF version |
Description: For each edge in a pseudograph, there are two vertices which are connected by this edge. (Contributed by AV, 4-Nov-2020.) (Proof shortened by AV, 26-Nov-2021.) |
Ref | Expression |
---|---|
upgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
upgredg | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgredg.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
2 | edgval 26537 | . . . . . . 7 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝐺 ∈ UPGraph → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
4 | 1, 3 | syl5eq 2826 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → 𝐸 = ran (iEdg‘𝐺)) |
5 | 4 | eleq2d 2851 | . . . 4 ⊢ (𝐺 ∈ UPGraph → (𝐶 ∈ 𝐸 ↔ 𝐶 ∈ ran (iEdg‘𝐺))) |
6 | upgredg.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
7 | eqid 2778 | . . . . . . 7 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
8 | 6, 7 | upgrf 26574 | . . . . . 6 ⊢ (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
9 | 8 | frnd 6351 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
10 | 9 | sseld 3857 | . . . 4 ⊢ (𝐺 ∈ UPGraph → (𝐶 ∈ ran (iEdg‘𝐺) → 𝐶 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
11 | 5, 10 | sylbid 232 | . . 3 ⊢ (𝐺 ∈ UPGraph → (𝐶 ∈ 𝐸 → 𝐶 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
12 | 11 | imp 398 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸) → 𝐶 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
13 | fveq2 6499 | . . . . 5 ⊢ (𝑥 = 𝐶 → (♯‘𝑥) = (♯‘𝐶)) | |
14 | 13 | breq1d 4939 | . . . 4 ⊢ (𝑥 = 𝐶 → ((♯‘𝑥) ≤ 2 ↔ (♯‘𝐶) ≤ 2)) |
15 | 14 | elrab 3595 | . . 3 ⊢ (𝐶 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (𝐶 ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘𝐶) ≤ 2)) |
16 | hashle2prv 13647 | . . . 4 ⊢ (𝐶 ∈ (𝒫 𝑉 ∖ {∅}) → ((♯‘𝐶) ≤ 2 ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏})) | |
17 | 16 | biimpa 469 | . . 3 ⊢ ((𝐶 ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘𝐶) ≤ 2) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏}) |
18 | 15, 17 | sylbi 209 | . 2 ⊢ (𝐶 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏}) |
19 | 12, 18 | syl 17 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∃wrex 3089 {crab 3092 ∖ cdif 3826 ∅c0 4178 𝒫 cpw 4422 {csn 4441 {cpr 4443 class class class wbr 4929 dom cdm 5407 ran crn 5408 ‘cfv 6188 ≤ cle 10475 2c2 11495 ♯chash 13505 Vtxcvtx 26484 iEdgciedg 26485 Edgcedg 26535 UPGraphcupgr 26568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-2o 7906 df-oadd 7909 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-dju 9124 df-card 9162 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-2 11503 df-n0 11708 df-xnn0 11780 df-z 11794 df-uz 12059 df-fz 12709 df-hash 13506 df-edg 26536 df-upgr 26570 |
This theorem is referenced by: upgrpredgv 26627 upgredg2vtx 26629 upgredgpr 26630 edglnl 26631 numedglnl 26632 isomuspgrlem1 43366 isomuspgrlem2b 43368 isomuspgrlem2d 43370 |
Copyright terms: Public domain | W3C validator |