![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgredg | Structured version Visualization version GIF version |
Description: For each edge in a pseudograph, there are two vertices which are connected by this edge. (Contributed by AV, 4-Nov-2020.) (Proof shortened by AV, 26-Nov-2021.) |
Ref | Expression |
---|---|
upgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
upgredg | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgredg.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
2 | edgval 28576 | . . . . . . 7 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝐺 ∈ UPGraph → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
4 | 1, 3 | eqtrid 2782 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → 𝐸 = ran (iEdg‘𝐺)) |
5 | 4 | eleq2d 2817 | . . . 4 ⊢ (𝐺 ∈ UPGraph → (𝐶 ∈ 𝐸 ↔ 𝐶 ∈ ran (iEdg‘𝐺))) |
6 | upgredg.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
7 | eqid 2730 | . . . . . . 7 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
8 | 6, 7 | upgrf 28613 | . . . . . 6 ⊢ (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
9 | 8 | frnd 6724 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
10 | 9 | sseld 3980 | . . . 4 ⊢ (𝐺 ∈ UPGraph → (𝐶 ∈ ran (iEdg‘𝐺) → 𝐶 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
11 | 5, 10 | sylbid 239 | . . 3 ⊢ (𝐺 ∈ UPGraph → (𝐶 ∈ 𝐸 → 𝐶 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
12 | 11 | imp 405 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸) → 𝐶 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
13 | fveq2 6890 | . . . . 5 ⊢ (𝑥 = 𝐶 → (♯‘𝑥) = (♯‘𝐶)) | |
14 | 13 | breq1d 5157 | . . . 4 ⊢ (𝑥 = 𝐶 → ((♯‘𝑥) ≤ 2 ↔ (♯‘𝐶) ≤ 2)) |
15 | 14 | elrab 3682 | . . 3 ⊢ (𝐶 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (𝐶 ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘𝐶) ≤ 2)) |
16 | hashle2prv 14443 | . . . 4 ⊢ (𝐶 ∈ (𝒫 𝑉 ∖ {∅}) → ((♯‘𝐶) ≤ 2 ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏})) | |
17 | 16 | biimpa 475 | . . 3 ⊢ ((𝐶 ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘𝐶) ≤ 2) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏}) |
18 | 15, 17 | sylbi 216 | . 2 ⊢ (𝐶 ∈ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏}) |
19 | 12, 18 | syl 17 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝐶 = {𝑎, 𝑏}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∃wrex 3068 {crab 3430 ∖ cdif 3944 ∅c0 4321 𝒫 cpw 4601 {csn 4627 {cpr 4629 class class class wbr 5147 dom cdm 5675 ran crn 5676 ‘cfv 6542 ≤ cle 11253 2c2 12271 ♯chash 14294 Vtxcvtx 28523 iEdgciedg 28524 Edgcedg 28574 UPGraphcupgr 28607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-oadd 8472 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-dju 9898 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-fz 13489 df-hash 14295 df-edg 28575 df-upgr 28609 |
This theorem is referenced by: upgrpredgv 28666 upgredg2vtx 28668 upgredgpr 28669 edglnl 28670 numedglnl 28671 isomuspgrlem1 46793 isomuspgrlem2b 46795 isomuspgrlem2d 46797 |
Copyright terms: Public domain | W3C validator |