MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrop Structured version   Visualization version   GIF version

Theorem upgrop 26887
Description: A pseudograph represented by an ordered pair. (Contributed by AV, 12-Dec-2021.)
Assertion
Ref Expression
upgrop (𝐺 ∈ UPGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph)

Proof of Theorem upgrop
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2798 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2upgrf 26879 . 2 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
4 fvex 6658 . . . 4 (Vtx‘𝐺) ∈ V
5 fvex 6658 . . . 4 (iEdg‘𝐺) ∈ V
64, 5pm3.2i 474 . . 3 ((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V)
7 opex 5321 . . . . 5 ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ V
8 eqid 2798 . . . . . 6 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
9 eqid 2798 . . . . . 6 (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
108, 9isupgr 26877 . . . . 5 (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ V → (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ↔ (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩):dom (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)⟶{𝑝 ∈ (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
117, 10mp1i 13 . . . 4 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ↔ (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩):dom (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)⟶{𝑝 ∈ (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
12 opiedgfv 26800 . . . . 5 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (iEdg‘𝐺))
1312dmeqd 5738 . . . . 5 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → dom (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = dom (iEdg‘𝐺))
14 opvtxfv 26797 . . . . . . . 8 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (Vtx‘𝐺))
1514pweqd 4516 . . . . . . 7 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → 𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = 𝒫 (Vtx‘𝐺))
1615difeq1d 4049 . . . . . 6 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) = (𝒫 (Vtx‘𝐺) ∖ {∅}))
1716rabeqdv 3432 . . . . 5 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → {𝑝 ∈ (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} = {𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
1812, 13, 17feq123d 6476 . . . 4 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → ((iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩):dom (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)⟶{𝑝 ∈ (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
1911, 18bitrd 282 . . 3 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
206, 19mp1i 13 . 2 (𝐺 ∈ UPGraph → (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
213, 20mpbird 260 1 (𝐺 ∈ UPGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2111  {crab 3110  Vcvv 3441  cdif 3878  c0 4243  𝒫 cpw 4497  {csn 4525  cop 4531   class class class wbr 5030  dom cdm 5519  wf 6320  cfv 6324  cle 10665  2c2 11680  chash 13686  Vtxcvtx 26789  iEdgciedg 26790  UPGraphcupgr 26873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-1st 7671  df-2nd 7672  df-vtx 26791  df-iedg 26792  df-upgr 26875
This theorem is referenced by:  finsumvtxdg2size  27340
  Copyright terms: Public domain W3C validator