MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrop Structured version   Visualization version   GIF version

Theorem upgrop 27367
Description: A pseudograph represented by an ordered pair. (Contributed by AV, 12-Dec-2021.)
Assertion
Ref Expression
upgrop (𝐺 ∈ UPGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph)

Proof of Theorem upgrop
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2738 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2upgrf 27359 . 2 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
4 fvex 6769 . . . 4 (Vtx‘𝐺) ∈ V
5 fvex 6769 . . . 4 (iEdg‘𝐺) ∈ V
64, 5pm3.2i 470 . . 3 ((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V)
7 opex 5373 . . . . 5 ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ V
8 eqid 2738 . . . . . 6 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
9 eqid 2738 . . . . . 6 (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
108, 9isupgr 27357 . . . . 5 (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ V → (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ↔ (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩):dom (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)⟶{𝑝 ∈ (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
117, 10mp1i 13 . . . 4 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ↔ (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩):dom (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)⟶{𝑝 ∈ (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
12 opiedgfv 27280 . . . . 5 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (iEdg‘𝐺))
1312dmeqd 5803 . . . . 5 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → dom (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = dom (iEdg‘𝐺))
14 opvtxfv 27277 . . . . . . . 8 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (Vtx‘𝐺))
1514pweqd 4549 . . . . . . 7 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → 𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = 𝒫 (Vtx‘𝐺))
1615difeq1d 4052 . . . . . 6 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) = (𝒫 (Vtx‘𝐺) ∖ {∅}))
1716rabeqdv 3409 . . . . 5 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → {𝑝 ∈ (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} = {𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
1812, 13, 17feq123d 6573 . . . 4 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → ((iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩):dom (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)⟶{𝑝 ∈ (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
1911, 18bitrd 278 . . 3 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
206, 19mp1i 13 . 2 (𝐺 ∈ UPGraph → (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
213, 20mpbird 256 1 (𝐺 ∈ UPGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  {crab 3067  Vcvv 3422  cdif 3880  c0 4253  𝒫 cpw 4530  {csn 4558  cop 4564   class class class wbr 5070  dom cdm 5580  wf 6414  cfv 6418  cle 10941  2c2 11958  chash 13972  Vtxcvtx 27269  iEdgciedg 27270  UPGraphcupgr 27353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-1st 7804  df-2nd 7805  df-vtx 27271  df-iedg 27272  df-upgr 27355
This theorem is referenced by:  finsumvtxdg2size  27820
  Copyright terms: Public domain W3C validator