Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
2 | | eqid 2738 |
. . 3
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
3 | 1, 2 | upgrf 27359 |
. 2
⊢ (𝐺 ∈ UPGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)⟶{𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣
(♯‘𝑝) ≤
2}) |
4 | | fvex 6769 |
. . . 4
⊢
(Vtx‘𝐺) ∈
V |
5 | | fvex 6769 |
. . . 4
⊢
(iEdg‘𝐺)
∈ V |
6 | 4, 5 | pm3.2i 470 |
. . 3
⊢
((Vtx‘𝐺)
∈ V ∧ (iEdg‘𝐺) ∈ V) |
7 | | opex 5373 |
. . . . 5
⊢
〈(Vtx‘𝐺),
(iEdg‘𝐺)〉 ∈
V |
8 | | eqid 2738 |
. . . . . 6
⊢
(Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) |
9 | | eqid 2738 |
. . . . . 6
⊢
(iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) =
(iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) |
10 | 8, 9 | isupgr 27357 |
. . . . 5
⊢
(〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ V →
(〈(Vtx‘𝐺),
(iEdg‘𝐺)〉 ∈
UPGraph ↔ (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉):dom
(iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉)⟶{𝑝 ∈ (𝒫
(Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) ∖ {∅}) ∣
(♯‘𝑝) ≤
2})) |
11 | 7, 10 | mp1i 13 |
. . . 4
⊢
(((Vtx‘𝐺)
∈ V ∧ (iEdg‘𝐺) ∈ V) → (〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ UPGraph ↔
(iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉):dom
(iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉)⟶{𝑝 ∈ (𝒫
(Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) ∖ {∅}) ∣
(♯‘𝑝) ≤
2})) |
12 | | opiedgfv 27280 |
. . . . 5
⊢
(((Vtx‘𝐺)
∈ V ∧ (iEdg‘𝐺) ∈ V) →
(iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (iEdg‘𝐺)) |
13 | 12 | dmeqd 5803 |
. . . . 5
⊢
(((Vtx‘𝐺)
∈ V ∧ (iEdg‘𝐺) ∈ V) → dom
(iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = dom (iEdg‘𝐺)) |
14 | | opvtxfv 27277 |
. . . . . . . 8
⊢
(((Vtx‘𝐺)
∈ V ∧ (iEdg‘𝐺) ∈ V) →
(Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (Vtx‘𝐺)) |
15 | 14 | pweqd 4549 |
. . . . . . 7
⊢
(((Vtx‘𝐺)
∈ V ∧ (iEdg‘𝐺) ∈ V) → 𝒫
(Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = 𝒫 (Vtx‘𝐺)) |
16 | 15 | difeq1d 4052 |
. . . . . 6
⊢
(((Vtx‘𝐺)
∈ V ∧ (iEdg‘𝐺) ∈ V) → (𝒫
(Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) ∖ {∅}) = (𝒫
(Vtx‘𝐺) ∖
{∅})) |
17 | 16 | rabeqdv 3409 |
. . . . 5
⊢
(((Vtx‘𝐺)
∈ V ∧ (iEdg‘𝐺) ∈ V) → {𝑝 ∈ (𝒫
(Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) ∖ {∅}) ∣
(♯‘𝑝) ≤ 2} =
{𝑝 ∈ (𝒫
(Vtx‘𝐺) ∖
{∅}) ∣ (♯‘𝑝) ≤ 2}) |
18 | 12, 13, 17 | feq123d 6573 |
. . . 4
⊢
(((Vtx‘𝐺)
∈ V ∧ (iEdg‘𝐺) ∈ V) →
((iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉):dom
(iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉)⟶{𝑝 ∈ (𝒫
(Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) ∖ {∅}) ∣
(♯‘𝑝) ≤ 2}
↔ (iEdg‘𝐺):dom
(iEdg‘𝐺)⟶{𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣
(♯‘𝑝) ≤
2})) |
19 | 11, 18 | bitrd 278 |
. . 3
⊢
(((Vtx‘𝐺)
∈ V ∧ (iEdg‘𝐺) ∈ V) → (〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ UPGraph ↔
(iEdg‘𝐺):dom
(iEdg‘𝐺)⟶{𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣
(♯‘𝑝) ≤
2})) |
20 | 6, 19 | mp1i 13 |
. 2
⊢ (𝐺 ∈ UPGraph →
(〈(Vtx‘𝐺),
(iEdg‘𝐺)〉 ∈
UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣
(♯‘𝑝) ≤
2})) |
21 | 3, 20 | mpbird 256 |
1
⊢ (𝐺 ∈ UPGraph →
〈(Vtx‘𝐺),
(iEdg‘𝐺)〉 ∈
UPGraph) |