MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrop Structured version   Visualization version   GIF version

Theorem upgrop 29057
Description: A pseudograph represented by an ordered pair. (Contributed by AV, 12-Dec-2021.)
Assertion
Ref Expression
upgrop (𝐺 ∈ UPGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph)

Proof of Theorem upgrop
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2729 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
31, 2upgrf 29049 . 2 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
4 fvex 6839 . . . 4 (Vtx‘𝐺) ∈ V
5 fvex 6839 . . . 4 (iEdg‘𝐺) ∈ V
64, 5pm3.2i 470 . . 3 ((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V)
7 opex 5411 . . . . 5 ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ V
8 eqid 2729 . . . . . 6 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
9 eqid 2729 . . . . . 6 (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
108, 9isupgr 29047 . . . . 5 (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ V → (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ↔ (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩):dom (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)⟶{𝑝 ∈ (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
117, 10mp1i 13 . . . 4 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ↔ (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩):dom (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)⟶{𝑝 ∈ (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
12 opiedgfv 28970 . . . . 5 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (iEdg‘𝐺))
1312dmeqd 5852 . . . . 5 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → dom (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = dom (iEdg‘𝐺))
14 opvtxfv 28967 . . . . . . . 8 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (Vtx‘𝐺))
1514pweqd 4570 . . . . . . 7 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → 𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = 𝒫 (Vtx‘𝐺))
1615difeq1d 4078 . . . . . 6 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) = (𝒫 (Vtx‘𝐺) ∖ {∅}))
1716rabeqdv 3412 . . . . 5 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → {𝑝 ∈ (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} = {𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
1812, 13, 17feq123d 6645 . . . 4 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → ((iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩):dom (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)⟶{𝑝 ∈ (𝒫 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
1911, 18bitrd 279 . . 3 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
206, 19mp1i 13 . 2 (𝐺 ∈ UPGraph → (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑝 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
213, 20mpbird 257 1 (𝐺 ∈ UPGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  {crab 3396  Vcvv 3438  cdif 3902  c0 4286  𝒫 cpw 4553  {csn 4579  cop 4585   class class class wbr 5095  dom cdm 5623  wf 6482  cfv 6486  cle 11169  2c2 12201  chash 14255  Vtxcvtx 28959  iEdgciedg 28960  UPGraphcupgr 29043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-1st 7931  df-2nd 7932  df-vtx 28961  df-iedg 28962  df-upgr 29045
This theorem is referenced by:  finsumvtxdg2size  29514
  Copyright terms: Public domain W3C validator