| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgruhgr | Structured version Visualization version GIF version | ||
| Description: An undirected pseudograph is an undirected hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 10-Oct-2020.) |
| Ref | Expression |
|---|---|
| upgruhgr | ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | eqid 2729 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 3 | 1, 2 | upgrf 29031 | . . 3 ⊢ (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 4 | ssrab2 4031 | . . 3 ⊢ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅}) | |
| 5 | fss 6668 | . . 3 ⊢ (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) | |
| 6 | 3, 4, 5 | sylancl 586 | . 2 ⊢ (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
| 7 | 1, 2 | isuhgr 29005 | . 2 ⊢ (𝐺 ∈ UPGraph → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
| 8 | 6, 7 | mpbird 257 | 1 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {crab 3394 ∖ cdif 3900 ⊆ wss 3903 ∅c0 4284 𝒫 cpw 4551 {csn 4577 class class class wbr 5092 dom cdm 5619 ⟶wf 6478 ‘cfv 6482 ≤ cle 11150 2c2 12183 ♯chash 14237 Vtxcvtx 28941 iEdgciedg 28942 UHGraphcuhgr 29001 UPGraphcupgr 29025 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5245 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-uhgr 29003 df-upgr 29027 |
| This theorem is referenced by: umgruhgr 29049 upgrle2 29050 edglnl 29088 numedglnl 29089 uspgruhgr 29129 usgruhgr 29131 subupgr 29232 upgrspan 29238 upgrreslem 29249 upgrres 29251 finsumvtxdg2ssteplem1 29491 finsumvtxdg2size 29496 upgrewlkle2 29552 upgredginwlk 29581 wlkiswwlks1 29812 wlkiswwlksupgr2 29822 eulerpathpr 30184 eulercrct 30186 upgracycumgr 35130 isubgrupgr 47858 |
| Copyright terms: Public domain | W3C validator |