Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgruhgr | Structured version Visualization version GIF version |
Description: An undirected pseudograph is an undirected hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 10-Oct-2020.) |
Ref | Expression |
---|---|
upgruhgr | ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2738 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | 1, 2 | upgrf 27359 | . . 3 ⊢ (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
4 | ssrab2 4009 | . . 3 ⊢ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅}) | |
5 | fss 6601 | . . 3 ⊢ (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) | |
6 | 3, 4, 5 | sylancl 585 | . 2 ⊢ (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
7 | 1, 2 | isuhgr 27333 | . 2 ⊢ (𝐺 ∈ UPGraph → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
8 | 6, 7 | mpbird 256 | 1 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 {crab 3067 ∖ cdif 3880 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 {csn 4558 class class class wbr 5070 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 ≤ cle 10941 2c2 11958 ♯chash 13972 Vtxcvtx 27269 iEdgciedg 27270 UHGraphcuhgr 27329 UPGraphcupgr 27353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-uhgr 27331 df-upgr 27355 |
This theorem is referenced by: umgruhgr 27377 upgrle2 27378 edglnl 27416 numedglnl 27417 usgruhgr 27456 subupgr 27557 upgrspan 27563 upgrreslem 27574 upgrres 27576 finsumvtxdg2ssteplem1 27815 finsumvtxdg2size 27820 upgrewlkle2 27876 upgredginwlk 27905 wlkiswwlks1 28133 wlkiswwlksupgr2 28143 eulerpathpr 28505 eulercrct 28507 upgracycumgr 33015 isomuspgrlem2c 45170 |
Copyright terms: Public domain | W3C validator |