![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgruhgr | Structured version Visualization version GIF version |
Description: An undirected pseudograph is an undirected hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 10-Oct-2020.) |
Ref | Expression |
---|---|
upgruhgr | ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2732 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | 1, 2 | upgrf 28384 | . . 3 ⊢ (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
4 | ssrab2 4077 | . . 3 ⊢ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅}) | |
5 | fss 6734 | . . 3 ⊢ (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) | |
6 | 3, 4, 5 | sylancl 586 | . 2 ⊢ (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
7 | 1, 2 | isuhgr 28358 | . 2 ⊢ (𝐺 ∈ UPGraph → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
8 | 6, 7 | mpbird 256 | 1 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 {crab 3432 ∖ cdif 3945 ⊆ wss 3948 ∅c0 4322 𝒫 cpw 4602 {csn 4628 class class class wbr 5148 dom cdm 5676 ⟶wf 6539 ‘cfv 6543 ≤ cle 11251 2c2 12269 ♯chash 14292 Vtxcvtx 28294 iEdgciedg 28295 UHGraphcuhgr 28354 UPGraphcupgr 28378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-uhgr 28356 df-upgr 28380 |
This theorem is referenced by: umgruhgr 28402 upgrle2 28403 edglnl 28441 numedglnl 28442 usgruhgr 28481 subupgr 28582 upgrspan 28588 upgrreslem 28599 upgrres 28601 finsumvtxdg2ssteplem1 28840 finsumvtxdg2size 28845 upgrewlkle2 28901 upgredginwlk 28931 wlkiswwlks1 29159 wlkiswwlksupgr2 29169 eulerpathpr 29531 eulercrct 29533 upgracycumgr 34213 isomuspgrlem2c 46577 |
Copyright terms: Public domain | W3C validator |