![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgruhgr | Structured version Visualization version GIF version |
Description: An undirected pseudograph is an undirected hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 10-Oct-2020.) |
Ref | Expression |
---|---|
upgruhgr | ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2728 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
3 | 1, 2 | upgrf 28893 | . . 3 ⊢ (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
4 | ssrab2 4074 | . . 3 ⊢ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅}) | |
5 | fss 6734 | . . 3 ⊢ (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ∧ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅})) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) | |
6 | 3, 4, 5 | sylancl 585 | . 2 ⊢ (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
7 | 1, 2 | isuhgr 28867 | . 2 ⊢ (𝐺 ∈ UPGraph → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
8 | 6, 7 | mpbird 257 | 1 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 {crab 3428 ∖ cdif 3942 ⊆ wss 3945 ∅c0 4319 𝒫 cpw 4599 {csn 4625 class class class wbr 5143 dom cdm 5673 ⟶wf 6539 ‘cfv 6543 ≤ cle 11274 2c2 12292 ♯chash 14316 Vtxcvtx 28803 iEdgciedg 28804 UHGraphcuhgr 28863 UPGraphcupgr 28887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-nul 5301 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2937 df-rab 3429 df-v 3472 df-sbc 3776 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-uhgr 28865 df-upgr 28889 |
This theorem is referenced by: umgruhgr 28911 upgrle2 28912 edglnl 28950 numedglnl 28951 uspgruhgr 28991 usgruhgr 28993 subupgr 29094 upgrspan 29100 upgrreslem 29111 upgrres 29113 finsumvtxdg2ssteplem1 29353 finsumvtxdg2size 29358 upgrewlkle2 29414 upgredginwlk 29444 wlkiswwlks1 29672 wlkiswwlksupgr2 29682 eulerpathpr 30044 eulercrct 30046 upgracycumgr 34758 |
Copyright terms: Public domain | W3C validator |