MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgredgss Structured version   Visualization version   GIF version

Theorem upgredgss 29095
Description: The set of edges of a pseudograph is a subset of the set of unordered pairs of vertices. (Contributed by AV, 29-Nov-2020.)
Assertion
Ref Expression
upgredgss (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
Distinct variable group:   𝑥,𝐺

Proof of Theorem upgredgss
StepHypRef Expression
1 edgval 29012 . 2 (Edg‘𝐺) = ran (iEdg‘𝐺)
2 eqid 2729 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2729 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3upgrf 29049 . . 3 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
54frnd 6664 . 2 (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
61, 5eqsstrid 3976 1 (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  {crab 3396  cdif 3902  wss 3905  c0 4286  𝒫 cpw 4553  {csn 4579   class class class wbr 5095  dom cdm 5623  ran crn 5624  cfv 6486  cle 11169  2c2 12201  chash 14255  Vtxcvtx 28959  iEdgciedg 28960  Edgcedg 29010  UPGraphcupgr 29043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-edg 29011  df-upgr 29045
This theorem is referenced by:  uspgrupgrushgr  29142  upgredgssspr  48128
  Copyright terms: Public domain W3C validator