MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgredgss Structured version   Visualization version   GIF version

Theorem upgredgss 29167
Description: The set of edges of a pseudograph is a subset of the set of unordered pairs of vertices. (Contributed by AV, 29-Nov-2020.)
Assertion
Ref Expression
upgredgss (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
Distinct variable group:   𝑥,𝐺

Proof of Theorem upgredgss
StepHypRef Expression
1 edgval 29084 . 2 (Edg‘𝐺) = ran (iEdg‘𝐺)
2 eqid 2740 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2740 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3upgrf 29121 . . 3 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
54frnd 6755 . 2 (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
61, 5eqsstrid 4057 1 (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  {crab 3443  cdif 3973  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   class class class wbr 5166  dom cdm 5700  ran crn 5701  cfv 6573  cle 11325  2c2 12348  chash 14379  Vtxcvtx 29031  iEdgciedg 29032  Edgcedg 29082  UPGraphcupgr 29115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-edg 29083  df-upgr 29117
This theorem is referenced by:  uspgrupgrushgr  29214  upgredgssspr  47866
  Copyright terms: Public domain W3C validator