![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgredgss | Structured version Visualization version GIF version |
Description: The set of edges of a pseudograph is a subset of the set of unordered pairs of vertices. (Contributed by AV, 29-Nov-2020.) |
Ref | Expression |
---|---|
upgredgss | ⊢ (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edgval 26276 | . 2 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
2 | eqid 2797 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | eqid 2797 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
4 | 2, 3 | upgrf 26313 | . . 3 ⊢ (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
5 | 4 | frnd 6261 | . 2 ⊢ (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
6 | 1, 5 | syl5eqss 3843 | 1 ⊢ (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 {crab 3091 ∖ cdif 3764 ⊆ wss 3767 ∅c0 4113 𝒫 cpw 4347 {csn 4366 class class class wbr 4841 dom cdm 5310 ran crn 5311 ‘cfv 6099 ≤ cle 10362 2c2 11364 ♯chash 13366 Vtxcvtx 26223 iEdgciedg 26224 Edgcedg 26274 UPGraphcupgr 26307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-fv 6107 df-edg 26275 df-upgr 26309 |
This theorem is referenced by: uspgrupgrushgr 26405 upgredgssspr 42538 |
Copyright terms: Public domain | W3C validator |