![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgredgss | Structured version Visualization version GIF version |
Description: The set of edges of a pseudograph is a subset of the set of unordered pairs of vertices. (Contributed by AV, 29-Nov-2020.) |
Ref | Expression |
---|---|
upgredgss | ⊢ (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edgval 28573 | . 2 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
2 | eqid 2731 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | eqid 2731 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
4 | 2, 3 | upgrf 28610 | . . 3 ⊢ (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
5 | 4 | frnd 6726 | . 2 ⊢ (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
6 | 1, 5 | eqsstrid 4031 | 1 ⊢ (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 {crab 3431 ∖ cdif 3946 ⊆ wss 3949 ∅c0 4323 𝒫 cpw 4603 {csn 4629 class class class wbr 5149 dom cdm 5677 ran crn 5678 ‘cfv 6544 ≤ cle 11254 2c2 12272 ♯chash 14295 Vtxcvtx 28520 iEdgciedg 28521 Edgcedg 28571 UPGraphcupgr 28604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-edg 28572 df-upgr 28606 |
This theorem is referenced by: uspgrupgrushgr 28701 upgredgssspr 46821 |
Copyright terms: Public domain | W3C validator |