| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgredgss | Structured version Visualization version GIF version | ||
| Description: The set of edges of a pseudograph is a subset of the set of unordered pairs of vertices. (Contributed by AV, 29-Nov-2020.) |
| Ref | Expression |
|---|---|
| upgredgss | ⊢ (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edgval 28982 | . 2 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 2 | eqid 2730 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 3 | eqid 2730 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 4 | 2, 3 | upgrf 29019 | . . 3 ⊢ (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 5 | 4 | frnd 6698 | . 2 ⊢ (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 6 | 1, 5 | eqsstrid 3987 | 1 ⊢ (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {crab 3408 ∖ cdif 3913 ⊆ wss 3916 ∅c0 4298 𝒫 cpw 4565 {csn 4591 class class class wbr 5109 dom cdm 5640 ran crn 5641 ‘cfv 6513 ≤ cle 11215 2c2 12242 ♯chash 14301 Vtxcvtx 28929 iEdgciedg 28930 Edgcedg 28980 UPGraphcupgr 29013 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-edg 28981 df-upgr 29015 |
| This theorem is referenced by: uspgrupgrushgr 29112 upgredgssspr 48121 |
| Copyright terms: Public domain | W3C validator |