MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgredgss Structured version   Visualization version   GIF version

Theorem upgredgss 29065
Description: The set of edges of a pseudograph is a subset of the set of unordered pairs of vertices. (Contributed by AV, 29-Nov-2020.)
Assertion
Ref Expression
upgredgss (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
Distinct variable group:   𝑥,𝐺

Proof of Theorem upgredgss
StepHypRef Expression
1 edgval 28982 . 2 (Edg‘𝐺) = ran (iEdg‘𝐺)
2 eqid 2730 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2730 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3upgrf 29019 . . 3 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
54frnd 6698 . 2 (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
61, 5eqsstrid 3987 1 (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  {crab 3408  cdif 3913  wss 3916  c0 4298  𝒫 cpw 4565  {csn 4591   class class class wbr 5109  dom cdm 5640  ran crn 5641  cfv 6513  cle 11215  2c2 12242  chash 14301  Vtxcvtx 28929  iEdgciedg 28930  Edgcedg 28980  UPGraphcupgr 29013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521  df-edg 28981  df-upgr 29015
This theorem is referenced by:  uspgrupgrushgr  29112  upgredgssspr  48121
  Copyright terms: Public domain W3C validator