MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edgupgr Structured version   Visualization version   GIF version

Theorem edgupgr 26930
Description: Properties of an edge of a pseudograph. (Contributed by AV, 8-Nov-2020.)
Assertion
Ref Expression
edgupgr ((𝐺 ∈ UPGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2))

Proof of Theorem edgupgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 edgval 26845 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
21a1i 11 . . . 4 (𝐺 ∈ UPGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
32eleq2d 2878 . . 3 (𝐺 ∈ UPGraph → (𝐸 ∈ (Edg‘𝐺) ↔ 𝐸 ∈ ran (iEdg‘𝐺)))
4 eqid 2801 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2801 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
64, 5upgrf 26882 . . . . . 6 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
76frnd 6498 . . . . 5 (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
87sseld 3917 . . . 4 (𝐺 ∈ UPGraph → (𝐸 ∈ ran (iEdg‘𝐺) → 𝐸 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
9 fveq2 6649 . . . . . . 7 (𝑥 = 𝐸 → (♯‘𝑥) = (♯‘𝐸))
109breq1d 5043 . . . . . 6 (𝑥 = 𝐸 → ((♯‘𝑥) ≤ 2 ↔ (♯‘𝐸) ≤ 2))
1110elrab 3631 . . . . 5 (𝐸 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝐸) ≤ 2))
12 eldifsn 4683 . . . . . . . . 9 (𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅))
1312biimpi 219 . . . . . . . 8 (𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅))
1413anim1i 617 . . . . . . 7 ((𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝐸) ≤ 2) → ((𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅) ∧ (♯‘𝐸) ≤ 2))
15 df-3an 1086 . . . . . . 7 ((𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2) ↔ ((𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅) ∧ (♯‘𝐸) ≤ 2))
1614, 15sylibr 237 . . . . . 6 ((𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝐸) ≤ 2) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2))
1716a1i 11 . . . . 5 (𝐺 ∈ UPGraph → ((𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝐸) ≤ 2) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2)))
1811, 17syl5bi 245 . . . 4 (𝐺 ∈ UPGraph → (𝐸 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2)))
198, 18syld 47 . . 3 (𝐺 ∈ UPGraph → (𝐸 ∈ ran (iEdg‘𝐺) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2)))
203, 19sylbid 243 . 2 (𝐺 ∈ UPGraph → (𝐸 ∈ (Edg‘𝐺) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2)))
2120imp 410 1 ((𝐺 ∈ UPGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  {crab 3113  cdif 3881  c0 4246  𝒫 cpw 4500  {csn 4528   class class class wbr 5033  dom cdm 5523  ran crn 5524  cfv 6328  cle 10669  2c2 11684  chash 13690  Vtxcvtx 26792  iEdgciedg 26793  Edgcedg 26843  UPGraphcupgr 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fv 6336  df-edg 26844  df-upgr 26878
This theorem is referenced by:  upgrres1  27106
  Copyright terms: Public domain W3C validator