MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edgupgr Structured version   Visualization version   GIF version

Theorem edgupgr 27179
Description: Properties of an edge of a pseudograph. (Contributed by AV, 8-Nov-2020.)
Assertion
Ref Expression
edgupgr ((𝐺 ∈ UPGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2))

Proof of Theorem edgupgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 edgval 27094 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
21a1i 11 . . . 4 (𝐺 ∈ UPGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
32eleq2d 2816 . . 3 (𝐺 ∈ UPGraph → (𝐸 ∈ (Edg‘𝐺) ↔ 𝐸 ∈ ran (iEdg‘𝐺)))
4 eqid 2736 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2736 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
64, 5upgrf 27131 . . . . . 6 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
76frnd 6531 . . . . 5 (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
87sseld 3886 . . . 4 (𝐺 ∈ UPGraph → (𝐸 ∈ ran (iEdg‘𝐺) → 𝐸 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
9 fveq2 6695 . . . . . . 7 (𝑥 = 𝐸 → (♯‘𝑥) = (♯‘𝐸))
109breq1d 5049 . . . . . 6 (𝑥 = 𝐸 → ((♯‘𝑥) ≤ 2 ↔ (♯‘𝐸) ≤ 2))
1110elrab 3591 . . . . 5 (𝐸 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝐸) ≤ 2))
12 eldifsn 4686 . . . . . . . . 9 (𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅))
1312biimpi 219 . . . . . . . 8 (𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅))
1413anim1i 618 . . . . . . 7 ((𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝐸) ≤ 2) → ((𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅) ∧ (♯‘𝐸) ≤ 2))
15 df-3an 1091 . . . . . . 7 ((𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2) ↔ ((𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅) ∧ (♯‘𝐸) ≤ 2))
1614, 15sylibr 237 . . . . . 6 ((𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝐸) ≤ 2) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2))
1716a1i 11 . . . . 5 (𝐺 ∈ UPGraph → ((𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝐸) ≤ 2) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2)))
1811, 17syl5bi 245 . . . 4 (𝐺 ∈ UPGraph → (𝐸 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2)))
198, 18syld 47 . . 3 (𝐺 ∈ UPGraph → (𝐸 ∈ ran (iEdg‘𝐺) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2)))
203, 19sylbid 243 . 2 (𝐺 ∈ UPGraph → (𝐸 ∈ (Edg‘𝐺) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2)))
2120imp 410 1 ((𝐺 ∈ UPGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2932  {crab 3055  cdif 3850  c0 4223  𝒫 cpw 4499  {csn 4527   class class class wbr 5039  dom cdm 5536  ran crn 5537  cfv 6358  cle 10833  2c2 11850  chash 13861  Vtxcvtx 27041  iEdgciedg 27042  Edgcedg 27092  UPGraphcupgr 27125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-fv 6366  df-edg 27093  df-upgr 27127
This theorem is referenced by:  upgrres1  27355
  Copyright terms: Public domain W3C validator