MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edgupgr Structured version   Visualization version   GIF version

Theorem edgupgr 27504
Description: Properties of an edge of a pseudograph. (Contributed by AV, 8-Nov-2020.)
Assertion
Ref Expression
edgupgr ((𝐺 ∈ UPGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2))

Proof of Theorem edgupgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 edgval 27419 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
21a1i 11 . . . 4 (𝐺 ∈ UPGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
32eleq2d 2824 . . 3 (𝐺 ∈ UPGraph → (𝐸 ∈ (Edg‘𝐺) ↔ 𝐸 ∈ ran (iEdg‘𝐺)))
4 eqid 2738 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2738 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
64, 5upgrf 27456 . . . . . 6 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
76frnd 6608 . . . . 5 (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
87sseld 3920 . . . 4 (𝐺 ∈ UPGraph → (𝐸 ∈ ran (iEdg‘𝐺) → 𝐸 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
9 fveq2 6774 . . . . . . 7 (𝑥 = 𝐸 → (♯‘𝑥) = (♯‘𝐸))
109breq1d 5084 . . . . . 6 (𝑥 = 𝐸 → ((♯‘𝑥) ≤ 2 ↔ (♯‘𝐸) ≤ 2))
1110elrab 3624 . . . . 5 (𝐸 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝐸) ≤ 2))
12 eldifsn 4720 . . . . . . . . 9 (𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅))
1312biimpi 215 . . . . . . . 8 (𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅))
1413anim1i 615 . . . . . . 7 ((𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝐸) ≤ 2) → ((𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅) ∧ (♯‘𝐸) ≤ 2))
15 df-3an 1088 . . . . . . 7 ((𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2) ↔ ((𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅) ∧ (♯‘𝐸) ≤ 2))
1614, 15sylibr 233 . . . . . 6 ((𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝐸) ≤ 2) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2))
1716a1i 11 . . . . 5 (𝐺 ∈ UPGraph → ((𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝐸) ≤ 2) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2)))
1811, 17syl5bi 241 . . . 4 (𝐺 ∈ UPGraph → (𝐸 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2)))
198, 18syld 47 . . 3 (𝐺 ∈ UPGraph → (𝐸 ∈ ran (iEdg‘𝐺) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2)))
203, 19sylbid 239 . 2 (𝐺 ∈ UPGraph → (𝐸 ∈ (Edg‘𝐺) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2)))
2120imp 407 1 ((𝐺 ∈ UPGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  {crab 3068  cdif 3884  c0 4256  𝒫 cpw 4533  {csn 4561   class class class wbr 5074  dom cdm 5589  ran crn 5590  cfv 6433  cle 11010  2c2 12028  chash 14044  Vtxcvtx 27366  iEdgciedg 27367  Edgcedg 27417  UPGraphcupgr 27450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-edg 27418  df-upgr 27452
This theorem is referenced by:  upgrres1  27680
  Copyright terms: Public domain W3C validator