MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edgupgr Structured version   Visualization version   GIF version

Theorem edgupgr 29112
Description: Properties of an edge of a pseudograph. (Contributed by AV, 8-Nov-2020.)
Assertion
Ref Expression
edgupgr ((𝐺 ∈ UPGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2))

Proof of Theorem edgupgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 edgval 29027 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
21a1i 11 . . . 4 (𝐺 ∈ UPGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
32eleq2d 2817 . . 3 (𝐺 ∈ UPGraph → (𝐸 ∈ (Edg‘𝐺) ↔ 𝐸 ∈ ran (iEdg‘𝐺)))
4 eqid 2731 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2731 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
64, 5upgrf 29064 . . . . . 6 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
76frnd 6659 . . . . 5 (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
87sseld 3928 . . . 4 (𝐺 ∈ UPGraph → (𝐸 ∈ ran (iEdg‘𝐺) → 𝐸 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
9 fveq2 6822 . . . . . . 7 (𝑥 = 𝐸 → (♯‘𝑥) = (♯‘𝐸))
109breq1d 5099 . . . . . 6 (𝑥 = 𝐸 → ((♯‘𝑥) ≤ 2 ↔ (♯‘𝐸) ≤ 2))
1110elrab 3642 . . . . 5 (𝐸 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ (𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝐸) ≤ 2))
12 eldifsn 4735 . . . . . . . . 9 (𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅))
1312biimpi 216 . . . . . . . 8 (𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅))
1413anim1i 615 . . . . . . 7 ((𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝐸) ≤ 2) → ((𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅) ∧ (♯‘𝐸) ≤ 2))
15 df-3an 1088 . . . . . . 7 ((𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2) ↔ ((𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅) ∧ (♯‘𝐸) ≤ 2))
1614, 15sylibr 234 . . . . . 6 ((𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝐸) ≤ 2) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2))
1716a1i 11 . . . . 5 (𝐺 ∈ UPGraph → ((𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (♯‘𝐸) ≤ 2) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2)))
1811, 17biimtrid 242 . . . 4 (𝐺 ∈ UPGraph → (𝐸 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2)))
198, 18syld 47 . . 3 (𝐺 ∈ UPGraph → (𝐸 ∈ ran (iEdg‘𝐺) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2)))
203, 19sylbid 240 . 2 (𝐺 ∈ UPGraph → (𝐸 ∈ (Edg‘𝐺) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2)))
2120imp 406 1 ((𝐺 ∈ UPGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  {crab 3395  cdif 3894  c0 4280  𝒫 cpw 4547  {csn 4573   class class class wbr 5089  dom cdm 5614  ran crn 5615  cfv 6481  cle 11147  2c2 12180  chash 14237  Vtxcvtx 28974  iEdgciedg 28975  Edgcedg 29025  UPGraphcupgr 29058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-edg 29026  df-upgr 29060
This theorem is referenced by:  upgrres1  29291  isuspgrim0  47933
  Copyright terms: Public domain W3C validator