Step | Hyp | Ref
| Expression |
1 | | edgval 27322 |
. . . . 5
⊢
(Edg‘𝐺) = ran
(iEdg‘𝐺) |
2 | 1 | a1i 11 |
. . . 4
⊢ (𝐺 ∈ UPGraph →
(Edg‘𝐺) = ran
(iEdg‘𝐺)) |
3 | 2 | eleq2d 2824 |
. . 3
⊢ (𝐺 ∈ UPGraph → (𝐸 ∈ (Edg‘𝐺) ↔ 𝐸 ∈ ran (iEdg‘𝐺))) |
4 | | eqid 2738 |
. . . . . . 7
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
5 | | eqid 2738 |
. . . . . . 7
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
6 | 4, 5 | upgrf 27359 |
. . . . . 6
⊢ (𝐺 ∈ UPGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣
(♯‘𝑥) ≤
2}) |
7 | 6 | frnd 6592 |
. . . . 5
⊢ (𝐺 ∈ UPGraph → ran
(iEdg‘𝐺) ⊆
{𝑥 ∈ (𝒫
(Vtx‘𝐺) ∖
{∅}) ∣ (♯‘𝑥) ≤ 2}) |
8 | 7 | sseld 3916 |
. . . 4
⊢ (𝐺 ∈ UPGraph → (𝐸 ∈ ran (iEdg‘𝐺) → 𝐸 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣
(♯‘𝑥) ≤
2})) |
9 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑥 = 𝐸 → (♯‘𝑥) = (♯‘𝐸)) |
10 | 9 | breq1d 5080 |
. . . . . 6
⊢ (𝑥 = 𝐸 → ((♯‘𝑥) ≤ 2 ↔ (♯‘𝐸) ≤ 2)) |
11 | 10 | elrab 3617 |
. . . . 5
⊢ (𝐸 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣
(♯‘𝑥) ≤ 2}
↔ (𝐸 ∈ (𝒫
(Vtx‘𝐺) ∖
{∅}) ∧ (♯‘𝐸) ≤ 2)) |
12 | | eldifsn 4717 |
. . . . . . . . 9
⊢ (𝐸 ∈ (𝒫
(Vtx‘𝐺) ∖
{∅}) ↔ (𝐸 ∈
𝒫 (Vtx‘𝐺)
∧ 𝐸 ≠
∅)) |
13 | 12 | biimpi 215 |
. . . . . . . 8
⊢ (𝐸 ∈ (𝒫
(Vtx‘𝐺) ∖
{∅}) → (𝐸 ∈
𝒫 (Vtx‘𝐺)
∧ 𝐸 ≠
∅)) |
14 | 13 | anim1i 614 |
. . . . . . 7
⊢ ((𝐸 ∈ (𝒫
(Vtx‘𝐺) ∖
{∅}) ∧ (♯‘𝐸) ≤ 2) → ((𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅) ∧ (♯‘𝐸) ≤ 2)) |
15 | | df-3an 1087 |
. . . . . . 7
⊢ ((𝐸 ∈ 𝒫
(Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧
(♯‘𝐸) ≤ 2)
↔ ((𝐸 ∈ 𝒫
(Vtx‘𝐺) ∧ 𝐸 ≠ ∅) ∧
(♯‘𝐸) ≤
2)) |
16 | 14, 15 | sylibr 233 |
. . . . . 6
⊢ ((𝐸 ∈ (𝒫
(Vtx‘𝐺) ∖
{∅}) ∧ (♯‘𝐸) ≤ 2) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2)) |
17 | 16 | a1i 11 |
. . . . 5
⊢ (𝐺 ∈ UPGraph → ((𝐸 ∈ (𝒫
(Vtx‘𝐺) ∖
{∅}) ∧ (♯‘𝐸) ≤ 2) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2))) |
18 | 11, 17 | syl5bi 241 |
. . . 4
⊢ (𝐺 ∈ UPGraph → (𝐸 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣
(♯‘𝑥) ≤ 2}
→ (𝐸 ∈ 𝒫
(Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧
(♯‘𝐸) ≤
2))) |
19 | 8, 18 | syld 47 |
. . 3
⊢ (𝐺 ∈ UPGraph → (𝐸 ∈ ran (iEdg‘𝐺) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2))) |
20 | 3, 19 | sylbid 239 |
. 2
⊢ (𝐺 ∈ UPGraph → (𝐸 ∈ (Edg‘𝐺) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2))) |
21 | 20 | imp 406 |
1
⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (♯‘𝐸) ≤ 2)) |