MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrex Structured version   Visualization version   GIF version

Theorem upgrex 29071
Description: An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v 𝑉 = (Vtx‘𝐺)
isupgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrex ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉   𝑥,𝐸   𝑥,𝐹   𝑥,𝐴,𝑦   𝑦,𝐸   𝑦,𝐹   𝑦,𝐺   𝑦,𝑉

Proof of Theorem upgrex
StepHypRef Expression
1 isupgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 isupgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
31, 2upgrn0 29068 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ≠ ∅)
4 n0 4303 . . . 4 ((𝐸𝐹) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐸𝐹))
53, 4sylib 218 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥 𝑥 ∈ (𝐸𝐹))
6 simp1 1136 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → 𝐺 ∈ UPGraph)
7 fndm 6584 . . . . . . . . . . . . 13 (𝐸 Fn 𝐴 → dom 𝐸 = 𝐴)
87eqcomd 2737 . . . . . . . . . . . 12 (𝐸 Fn 𝐴𝐴 = dom 𝐸)
98eleq2d 2817 . . . . . . . . . . 11 (𝐸 Fn 𝐴 → (𝐹𝐴𝐹 ∈ dom 𝐸))
109biimpd 229 . . . . . . . . . 10 (𝐸 Fn 𝐴 → (𝐹𝐴𝐹 ∈ dom 𝐸))
1110a1i 11 . . . . . . . . 9 (𝐺 ∈ UPGraph → (𝐸 Fn 𝐴 → (𝐹𝐴𝐹 ∈ dom 𝐸)))
12113imp 1110 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → 𝐹 ∈ dom 𝐸)
131, 2upgrss 29067 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ⊆ 𝑉)
146, 12, 13syl2anc 584 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ⊆ 𝑉)
1514sselda 3934 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → 𝑥𝑉)
1615adantr 480 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → 𝑥𝑉)
17 simpr 484 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → ((𝐸𝐹) ∖ {𝑥}) = ∅)
18 ssdif0 4316 . . . . . . . . . 10 ((𝐸𝐹) ⊆ {𝑥} ↔ ((𝐸𝐹) ∖ {𝑥}) = ∅)
1917, 18sylibr 234 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → (𝐸𝐹) ⊆ {𝑥})
20 simpr 484 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → 𝑥 ∈ (𝐸𝐹))
2120snssd 4761 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → {𝑥} ⊆ (𝐸𝐹))
2221adantr 480 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → {𝑥} ⊆ (𝐸𝐹))
2319, 22eqssd 3952 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → (𝐸𝐹) = {𝑥})
24 preq2 4687 . . . . . . . . . 10 (𝑦 = 𝑥 → {𝑥, 𝑦} = {𝑥, 𝑥})
25 dfsn2 4589 . . . . . . . . . 10 {𝑥} = {𝑥, 𝑥}
2624, 25eqtr4di 2784 . . . . . . . . 9 (𝑦 = 𝑥 → {𝑥, 𝑦} = {𝑥})
2726rspceeqv 3600 . . . . . . . 8 ((𝑥𝑉 ∧ (𝐸𝐹) = {𝑥}) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
2816, 23, 27syl2anc 584 . . . . . . 7 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
29 n0 4303 . . . . . . . 8 (((𝐸𝐹) ∖ {𝑥}) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))
3014adantr 480 . . . . . . . . . . . . . 14 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝐸𝐹) ⊆ 𝑉)
31 simprr 772 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))
3231eldifad 3914 . . . . . . . . . . . . . 14 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑦 ∈ (𝐸𝐹))
3330, 32sseldd 3935 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑦𝑉)
341, 2upgrfi 29070 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ∈ Fin)
3534adantr 480 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝐸𝐹) ∈ Fin)
36 simprl 770 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑥 ∈ (𝐸𝐹))
3736, 32prssd 4774 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → {𝑥, 𝑦} ⊆ (𝐸𝐹))
38 fvex 6835 . . . . . . . . . . . . . . . . 17 (𝐸𝐹) ∈ V
39 ssdomg 8922 . . . . . . . . . . . . . . . . 17 ((𝐸𝐹) ∈ V → ({𝑥, 𝑦} ⊆ (𝐸𝐹) → {𝑥, 𝑦} ≼ (𝐸𝐹)))
4038, 37, 39mpsyl 68 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → {𝑥, 𝑦} ≼ (𝐸𝐹))
411, 2upgrle 29069 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (♯‘(𝐸𝐹)) ≤ 2)
4241adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (♯‘(𝐸𝐹)) ≤ 2)
43 eldifsni 4742 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}) → 𝑦𝑥)
4443ad2antll 729 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑦𝑥)
4544necomd 2983 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑥𝑦)
46 hashprg 14302 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2))
4746el2v 3443 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2)
4845, 47sylib 218 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (♯‘{𝑥, 𝑦}) = 2)
4942, 48breqtrrd 5119 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (♯‘(𝐸𝐹)) ≤ (♯‘{𝑥, 𝑦}))
50 prfi 9208 . . . . . . . . . . . . . . . . . 18 {𝑥, 𝑦} ∈ Fin
51 hashdom 14286 . . . . . . . . . . . . . . . . . 18 (((𝐸𝐹) ∈ Fin ∧ {𝑥, 𝑦} ∈ Fin) → ((♯‘(𝐸𝐹)) ≤ (♯‘{𝑥, 𝑦}) ↔ (𝐸𝐹) ≼ {𝑥, 𝑦}))
5235, 50, 51sylancl 586 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → ((♯‘(𝐸𝐹)) ≤ (♯‘{𝑥, 𝑦}) ↔ (𝐸𝐹) ≼ {𝑥, 𝑦}))
5349, 52mpbid 232 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝐸𝐹) ≼ {𝑥, 𝑦})
54 sbth 9010 . . . . . . . . . . . . . . . 16 (({𝑥, 𝑦} ≼ (𝐸𝐹) ∧ (𝐸𝐹) ≼ {𝑥, 𝑦}) → {𝑥, 𝑦} ≈ (𝐸𝐹))
5540, 53, 54syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → {𝑥, 𝑦} ≈ (𝐸𝐹))
56 fisseneq 9147 . . . . . . . . . . . . . . 15 (((𝐸𝐹) ∈ Fin ∧ {𝑥, 𝑦} ⊆ (𝐸𝐹) ∧ {𝑥, 𝑦} ≈ (𝐸𝐹)) → {𝑥, 𝑦} = (𝐸𝐹))
5735, 37, 55, 56syl3anc 1373 . . . . . . . . . . . . . 14 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → {𝑥, 𝑦} = (𝐸𝐹))
5857eqcomd 2737 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝐸𝐹) = {𝑥, 𝑦})
5933, 58jca 511 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦}))
6059expr 456 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → (𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}) → (𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦})))
6160eximdv 1918 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → (∃𝑦 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}) → ∃𝑦(𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦})))
6261imp 406 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ∃𝑦 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥})) → ∃𝑦(𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦}))
63 df-rex 3057 . . . . . . . . 9 (∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦} ↔ ∃𝑦(𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦}))
6462, 63sylibr 234 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ∃𝑦 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥})) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
6529, 64sylan2b 594 . . . . . . 7 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) ≠ ∅) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
6628, 65pm2.61dane 3015 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
6715, 66jca 511 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → (𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦}))
6867ex 412 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝑥 ∈ (𝐸𝐹) → (𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})))
6968eximdv 1918 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (∃𝑥 𝑥 ∈ (𝐸𝐹) → ∃𝑥(𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})))
705, 69mpd 15 . 2 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥(𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦}))
71 df-rex 3057 . 2 (∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦} ↔ ∃𝑥(𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦}))
7270, 71sylibr 234 1 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wrex 3056  Vcvv 3436  cdif 3899  wss 3902  c0 4283  {csn 4576  {cpr 4578   class class class wbr 5091  dom cdm 5616   Fn wfn 6476  cfv 6481  cen 8866  cdom 8867  Fincfn 8869  cle 11147  2c2 12180  chash 14237  Vtxcvtx 28975  iEdgciedg 28976  UPGraphcupgr 29059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238  df-upgr 29061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator