MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrex Structured version   Visualization version   GIF version

Theorem upgrex 27365
Description: An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v 𝑉 = (Vtx‘𝐺)
isupgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrex ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉   𝑥,𝐸   𝑥,𝐹   𝑥,𝐴,𝑦   𝑦,𝐸   𝑦,𝐹   𝑦,𝐺   𝑦,𝑉

Proof of Theorem upgrex
StepHypRef Expression
1 isupgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 isupgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
31, 2upgrn0 27362 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ≠ ∅)
4 n0 4277 . . . 4 ((𝐸𝐹) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐸𝐹))
53, 4sylib 217 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥 𝑥 ∈ (𝐸𝐹))
6 simp1 1134 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → 𝐺 ∈ UPGraph)
7 fndm 6520 . . . . . . . . . . . . 13 (𝐸 Fn 𝐴 → dom 𝐸 = 𝐴)
87eqcomd 2744 . . . . . . . . . . . 12 (𝐸 Fn 𝐴𝐴 = dom 𝐸)
98eleq2d 2824 . . . . . . . . . . 11 (𝐸 Fn 𝐴 → (𝐹𝐴𝐹 ∈ dom 𝐸))
109biimpd 228 . . . . . . . . . 10 (𝐸 Fn 𝐴 → (𝐹𝐴𝐹 ∈ dom 𝐸))
1110a1i 11 . . . . . . . . 9 (𝐺 ∈ UPGraph → (𝐸 Fn 𝐴 → (𝐹𝐴𝐹 ∈ dom 𝐸)))
12113imp 1109 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → 𝐹 ∈ dom 𝐸)
131, 2upgrss 27361 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ⊆ 𝑉)
146, 12, 13syl2anc 583 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ⊆ 𝑉)
1514sselda 3917 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → 𝑥𝑉)
1615adantr 480 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → 𝑥𝑉)
17 simpr 484 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → ((𝐸𝐹) ∖ {𝑥}) = ∅)
18 ssdif0 4294 . . . . . . . . . 10 ((𝐸𝐹) ⊆ {𝑥} ↔ ((𝐸𝐹) ∖ {𝑥}) = ∅)
1917, 18sylibr 233 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → (𝐸𝐹) ⊆ {𝑥})
20 simpr 484 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → 𝑥 ∈ (𝐸𝐹))
2120snssd 4739 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → {𝑥} ⊆ (𝐸𝐹))
2221adantr 480 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → {𝑥} ⊆ (𝐸𝐹))
2319, 22eqssd 3934 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → (𝐸𝐹) = {𝑥})
24 preq2 4667 . . . . . . . . . 10 (𝑦 = 𝑥 → {𝑥, 𝑦} = {𝑥, 𝑥})
25 dfsn2 4571 . . . . . . . . . 10 {𝑥} = {𝑥, 𝑥}
2624, 25eqtr4di 2797 . . . . . . . . 9 (𝑦 = 𝑥 → {𝑥, 𝑦} = {𝑥})
2726rspceeqv 3567 . . . . . . . 8 ((𝑥𝑉 ∧ (𝐸𝐹) = {𝑥}) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
2816, 23, 27syl2anc 583 . . . . . . 7 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
29 n0 4277 . . . . . . . 8 (((𝐸𝐹) ∖ {𝑥}) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))
3014adantr 480 . . . . . . . . . . . . . 14 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝐸𝐹) ⊆ 𝑉)
31 simprr 769 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))
3231eldifad 3895 . . . . . . . . . . . . . 14 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑦 ∈ (𝐸𝐹))
3330, 32sseldd 3918 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑦𝑉)
341, 2upgrfi 27364 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ∈ Fin)
3534adantr 480 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝐸𝐹) ∈ Fin)
36 simprl 767 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑥 ∈ (𝐸𝐹))
3736, 32prssd 4752 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → {𝑥, 𝑦} ⊆ (𝐸𝐹))
38 fvex 6769 . . . . . . . . . . . . . . . . 17 (𝐸𝐹) ∈ V
39 ssdomg 8741 . . . . . . . . . . . . . . . . 17 ((𝐸𝐹) ∈ V → ({𝑥, 𝑦} ⊆ (𝐸𝐹) → {𝑥, 𝑦} ≼ (𝐸𝐹)))
4038, 37, 39mpsyl 68 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → {𝑥, 𝑦} ≼ (𝐸𝐹))
411, 2upgrle 27363 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (♯‘(𝐸𝐹)) ≤ 2)
4241adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (♯‘(𝐸𝐹)) ≤ 2)
43 eldifsni 4720 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}) → 𝑦𝑥)
4443ad2antll 725 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑦𝑥)
4544necomd 2998 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑥𝑦)
46 hashprg 14038 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2))
4746el2v 3430 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2)
4845, 47sylib 217 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (♯‘{𝑥, 𝑦}) = 2)
4942, 48breqtrrd 5098 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (♯‘(𝐸𝐹)) ≤ (♯‘{𝑥, 𝑦}))
50 prfi 9019 . . . . . . . . . . . . . . . . . 18 {𝑥, 𝑦} ∈ Fin
51 hashdom 14022 . . . . . . . . . . . . . . . . . 18 (((𝐸𝐹) ∈ Fin ∧ {𝑥, 𝑦} ∈ Fin) → ((♯‘(𝐸𝐹)) ≤ (♯‘{𝑥, 𝑦}) ↔ (𝐸𝐹) ≼ {𝑥, 𝑦}))
5235, 50, 51sylancl 585 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → ((♯‘(𝐸𝐹)) ≤ (♯‘{𝑥, 𝑦}) ↔ (𝐸𝐹) ≼ {𝑥, 𝑦}))
5349, 52mpbid 231 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝐸𝐹) ≼ {𝑥, 𝑦})
54 sbth 8833 . . . . . . . . . . . . . . . 16 (({𝑥, 𝑦} ≼ (𝐸𝐹) ∧ (𝐸𝐹) ≼ {𝑥, 𝑦}) → {𝑥, 𝑦} ≈ (𝐸𝐹))
5540, 53, 54syl2anc 583 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → {𝑥, 𝑦} ≈ (𝐸𝐹))
56 fisseneq 8963 . . . . . . . . . . . . . . 15 (((𝐸𝐹) ∈ Fin ∧ {𝑥, 𝑦} ⊆ (𝐸𝐹) ∧ {𝑥, 𝑦} ≈ (𝐸𝐹)) → {𝑥, 𝑦} = (𝐸𝐹))
5735, 37, 55, 56syl3anc 1369 . . . . . . . . . . . . . 14 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → {𝑥, 𝑦} = (𝐸𝐹))
5857eqcomd 2744 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝐸𝐹) = {𝑥, 𝑦})
5933, 58jca 511 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦}))
6059expr 456 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → (𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}) → (𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦})))
6160eximdv 1921 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → (∃𝑦 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}) → ∃𝑦(𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦})))
6261imp 406 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ∃𝑦 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥})) → ∃𝑦(𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦}))
63 df-rex 3069 . . . . . . . . 9 (∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦} ↔ ∃𝑦(𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦}))
6462, 63sylibr 233 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ∃𝑦 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥})) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
6529, 64sylan2b 593 . . . . . . 7 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) ≠ ∅) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
6628, 65pm2.61dane 3031 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
6715, 66jca 511 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → (𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦}))
6867ex 412 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝑥 ∈ (𝐸𝐹) → (𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})))
6968eximdv 1921 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (∃𝑥 𝑥 ∈ (𝐸𝐹) → ∃𝑥(𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})))
705, 69mpd 15 . 2 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥(𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦}))
71 df-rex 3069 . 2 (∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦} ↔ ∃𝑥(𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦}))
7270, 71sylibr 233 1 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  wrex 3064  Vcvv 3422  cdif 3880  wss 3883  c0 4253  {csn 4558  {cpr 4560   class class class wbr 5070  dom cdm 5580   Fn wfn 6413  cfv 6418  cen 8688  cdom 8689  Fincfn 8691  cle 10941  2c2 11958  chash 13972  Vtxcvtx 27269  iEdgciedg 27270  UPGraphcupgr 27353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-upgr 27355
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator