MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrex Structured version   Visualization version   GIF version

Theorem upgrex 28617
Description: An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v 𝑉 = (Vtx‘𝐺)
isupgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrex ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉   𝑥,𝐸   𝑥,𝐹   𝑥,𝐴,𝑦   𝑦,𝐸   𝑦,𝐹   𝑦,𝐺   𝑦,𝑉

Proof of Theorem upgrex
StepHypRef Expression
1 isupgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 isupgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
31, 2upgrn0 28614 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ≠ ∅)
4 n0 4347 . . . 4 ((𝐸𝐹) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐸𝐹))
53, 4sylib 217 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥 𝑥 ∈ (𝐸𝐹))
6 simp1 1134 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → 𝐺 ∈ UPGraph)
7 fndm 6653 . . . . . . . . . . . . 13 (𝐸 Fn 𝐴 → dom 𝐸 = 𝐴)
87eqcomd 2736 . . . . . . . . . . . 12 (𝐸 Fn 𝐴𝐴 = dom 𝐸)
98eleq2d 2817 . . . . . . . . . . 11 (𝐸 Fn 𝐴 → (𝐹𝐴𝐹 ∈ dom 𝐸))
109biimpd 228 . . . . . . . . . 10 (𝐸 Fn 𝐴 → (𝐹𝐴𝐹 ∈ dom 𝐸))
1110a1i 11 . . . . . . . . 9 (𝐺 ∈ UPGraph → (𝐸 Fn 𝐴 → (𝐹𝐴𝐹 ∈ dom 𝐸)))
12113imp 1109 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → 𝐹 ∈ dom 𝐸)
131, 2upgrss 28613 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ⊆ 𝑉)
146, 12, 13syl2anc 582 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ⊆ 𝑉)
1514sselda 3983 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → 𝑥𝑉)
1615adantr 479 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → 𝑥𝑉)
17 simpr 483 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → ((𝐸𝐹) ∖ {𝑥}) = ∅)
18 ssdif0 4364 . . . . . . . . . 10 ((𝐸𝐹) ⊆ {𝑥} ↔ ((𝐸𝐹) ∖ {𝑥}) = ∅)
1917, 18sylibr 233 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → (𝐸𝐹) ⊆ {𝑥})
20 simpr 483 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → 𝑥 ∈ (𝐸𝐹))
2120snssd 4813 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → {𝑥} ⊆ (𝐸𝐹))
2221adantr 479 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → {𝑥} ⊆ (𝐸𝐹))
2319, 22eqssd 4000 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → (𝐸𝐹) = {𝑥})
24 preq2 4739 . . . . . . . . . 10 (𝑦 = 𝑥 → {𝑥, 𝑦} = {𝑥, 𝑥})
25 dfsn2 4642 . . . . . . . . . 10 {𝑥} = {𝑥, 𝑥}
2624, 25eqtr4di 2788 . . . . . . . . 9 (𝑦 = 𝑥 → {𝑥, 𝑦} = {𝑥})
2726rspceeqv 3634 . . . . . . . 8 ((𝑥𝑉 ∧ (𝐸𝐹) = {𝑥}) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
2816, 23, 27syl2anc 582 . . . . . . 7 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
29 n0 4347 . . . . . . . 8 (((𝐸𝐹) ∖ {𝑥}) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))
3014adantr 479 . . . . . . . . . . . . . 14 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝐸𝐹) ⊆ 𝑉)
31 simprr 769 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))
3231eldifad 3961 . . . . . . . . . . . . . 14 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑦 ∈ (𝐸𝐹))
3330, 32sseldd 3984 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑦𝑉)
341, 2upgrfi 28616 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ∈ Fin)
3534adantr 479 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝐸𝐹) ∈ Fin)
36 simprl 767 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑥 ∈ (𝐸𝐹))
3736, 32prssd 4826 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → {𝑥, 𝑦} ⊆ (𝐸𝐹))
38 fvex 6905 . . . . . . . . . . . . . . . . 17 (𝐸𝐹) ∈ V
39 ssdomg 9000 . . . . . . . . . . . . . . . . 17 ((𝐸𝐹) ∈ V → ({𝑥, 𝑦} ⊆ (𝐸𝐹) → {𝑥, 𝑦} ≼ (𝐸𝐹)))
4038, 37, 39mpsyl 68 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → {𝑥, 𝑦} ≼ (𝐸𝐹))
411, 2upgrle 28615 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (♯‘(𝐸𝐹)) ≤ 2)
4241adantr 479 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (♯‘(𝐸𝐹)) ≤ 2)
43 eldifsni 4794 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}) → 𝑦𝑥)
4443ad2antll 725 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑦𝑥)
4544necomd 2994 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑥𝑦)
46 hashprg 14361 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2))
4746el2v 3480 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2)
4845, 47sylib 217 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (♯‘{𝑥, 𝑦}) = 2)
4942, 48breqtrrd 5177 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (♯‘(𝐸𝐹)) ≤ (♯‘{𝑥, 𝑦}))
50 prfi 9326 . . . . . . . . . . . . . . . . . 18 {𝑥, 𝑦} ∈ Fin
51 hashdom 14345 . . . . . . . . . . . . . . . . . 18 (((𝐸𝐹) ∈ Fin ∧ {𝑥, 𝑦} ∈ Fin) → ((♯‘(𝐸𝐹)) ≤ (♯‘{𝑥, 𝑦}) ↔ (𝐸𝐹) ≼ {𝑥, 𝑦}))
5235, 50, 51sylancl 584 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → ((♯‘(𝐸𝐹)) ≤ (♯‘{𝑥, 𝑦}) ↔ (𝐸𝐹) ≼ {𝑥, 𝑦}))
5349, 52mpbid 231 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝐸𝐹) ≼ {𝑥, 𝑦})
54 sbth 9097 . . . . . . . . . . . . . . . 16 (({𝑥, 𝑦} ≼ (𝐸𝐹) ∧ (𝐸𝐹) ≼ {𝑥, 𝑦}) → {𝑥, 𝑦} ≈ (𝐸𝐹))
5540, 53, 54syl2anc 582 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → {𝑥, 𝑦} ≈ (𝐸𝐹))
56 fisseneq 9261 . . . . . . . . . . . . . . 15 (((𝐸𝐹) ∈ Fin ∧ {𝑥, 𝑦} ⊆ (𝐸𝐹) ∧ {𝑥, 𝑦} ≈ (𝐸𝐹)) → {𝑥, 𝑦} = (𝐸𝐹))
5735, 37, 55, 56syl3anc 1369 . . . . . . . . . . . . . 14 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → {𝑥, 𝑦} = (𝐸𝐹))
5857eqcomd 2736 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝐸𝐹) = {𝑥, 𝑦})
5933, 58jca 510 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦}))
6059expr 455 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → (𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}) → (𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦})))
6160eximdv 1918 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → (∃𝑦 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}) → ∃𝑦(𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦})))
6261imp 405 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ∃𝑦 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥})) → ∃𝑦(𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦}))
63 df-rex 3069 . . . . . . . . 9 (∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦} ↔ ∃𝑦(𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦}))
6462, 63sylibr 233 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ∃𝑦 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥})) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
6529, 64sylan2b 592 . . . . . . 7 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) ≠ ∅) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
6628, 65pm2.61dane 3027 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
6715, 66jca 510 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → (𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦}))
6867ex 411 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝑥 ∈ (𝐸𝐹) → (𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})))
6968eximdv 1918 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (∃𝑥 𝑥 ∈ (𝐸𝐹) → ∃𝑥(𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})))
705, 69mpd 15 . 2 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥(𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦}))
71 df-rex 3069 . 2 (∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦} ↔ ∃𝑥(𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦}))
7270, 71sylibr 233 1 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wex 1779  wcel 2104  wne 2938  wrex 3068  Vcvv 3472  cdif 3946  wss 3949  c0 4323  {csn 4629  {cpr 4631   class class class wbr 5149  dom cdm 5677   Fn wfn 6539  cfv 6544  cen 8940  cdom 8941  Fincfn 8943  cle 11255  2c2 12273  chash 14296  Vtxcvtx 28521  iEdgciedg 28522  UPGraphcupgr 28605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-oadd 8474  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-dju 9900  df-card 9938  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-sub 11452  df-neg 11453  df-nn 12219  df-2 12281  df-n0 12479  df-xnn0 12551  df-z 12565  df-uz 12829  df-fz 13491  df-hash 14297  df-upgr 28607
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator