Proof of Theorem upgrex
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | isupgr.v | . . . . 5
⊢ 𝑉 = (Vtx‘𝐺) | 
| 2 |  | isupgr.e | . . . . 5
⊢ 𝐸 = (iEdg‘𝐺) | 
| 3 | 1, 2 | upgrn0 29106 | . . . 4
⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ≠ ∅) | 
| 4 |  | n0 4353 | . . . 4
⊢ ((𝐸‘𝐹) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐸‘𝐹)) | 
| 5 | 3, 4 | sylib 218 | . . 3
⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → ∃𝑥 𝑥 ∈ (𝐸‘𝐹)) | 
| 6 |  | simp1 1137 | . . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → 𝐺 ∈ UPGraph) | 
| 7 |  | fndm 6671 | . . . . . . . . . . . . 13
⊢ (𝐸 Fn 𝐴 → dom 𝐸 = 𝐴) | 
| 8 | 7 | eqcomd 2743 | . . . . . . . . . . . 12
⊢ (𝐸 Fn 𝐴 → 𝐴 = dom 𝐸) | 
| 9 | 8 | eleq2d 2827 | . . . . . . . . . . 11
⊢ (𝐸 Fn 𝐴 → (𝐹 ∈ 𝐴 ↔ 𝐹 ∈ dom 𝐸)) | 
| 10 | 9 | biimpd 229 | . . . . . . . . . 10
⊢ (𝐸 Fn 𝐴 → (𝐹 ∈ 𝐴 → 𝐹 ∈ dom 𝐸)) | 
| 11 | 10 | a1i 11 | . . . . . . . . 9
⊢ (𝐺 ∈ UPGraph → (𝐸 Fn 𝐴 → (𝐹 ∈ 𝐴 → 𝐹 ∈ dom 𝐸))) | 
| 12 | 11 | 3imp 1111 | . . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → 𝐹 ∈ dom 𝐸) | 
| 13 | 1, 2 | upgrss 29105 | . . . . . . . 8
⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸‘𝐹) ⊆ 𝑉) | 
| 14 | 6, 12, 13 | syl2anc 584 | . . . . . . 7
⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ⊆ 𝑉) | 
| 15 | 14 | sselda 3983 | . . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ 𝑥 ∈ (𝐸‘𝐹)) → 𝑥 ∈ 𝑉) | 
| 16 | 15 | adantr 480 | . . . . . . . 8
⊢ ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ 𝑥 ∈ (𝐸‘𝐹)) ∧ ((𝐸‘𝐹) ∖ {𝑥}) = ∅) → 𝑥 ∈ 𝑉) | 
| 17 |  | simpr 484 | . . . . . . . . . 10
⊢ ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ 𝑥 ∈ (𝐸‘𝐹)) ∧ ((𝐸‘𝐹) ∖ {𝑥}) = ∅) → ((𝐸‘𝐹) ∖ {𝑥}) = ∅) | 
| 18 |  | ssdif0 4366 | . . . . . . . . . 10
⊢ ((𝐸‘𝐹) ⊆ {𝑥} ↔ ((𝐸‘𝐹) ∖ {𝑥}) = ∅) | 
| 19 | 17, 18 | sylibr 234 | . . . . . . . . 9
⊢ ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ 𝑥 ∈ (𝐸‘𝐹)) ∧ ((𝐸‘𝐹) ∖ {𝑥}) = ∅) → (𝐸‘𝐹) ⊆ {𝑥}) | 
| 20 |  | simpr 484 | . . . . . . . . . . 11
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ 𝑥 ∈ (𝐸‘𝐹)) → 𝑥 ∈ (𝐸‘𝐹)) | 
| 21 | 20 | snssd 4809 | . . . . . . . . . 10
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ 𝑥 ∈ (𝐸‘𝐹)) → {𝑥} ⊆ (𝐸‘𝐹)) | 
| 22 | 21 | adantr 480 | . . . . . . . . 9
⊢ ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ 𝑥 ∈ (𝐸‘𝐹)) ∧ ((𝐸‘𝐹) ∖ {𝑥}) = ∅) → {𝑥} ⊆ (𝐸‘𝐹)) | 
| 23 | 19, 22 | eqssd 4001 | . . . . . . . 8
⊢ ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ 𝑥 ∈ (𝐸‘𝐹)) ∧ ((𝐸‘𝐹) ∖ {𝑥}) = ∅) → (𝐸‘𝐹) = {𝑥}) | 
| 24 |  | preq2 4734 | . . . . . . . . . 10
⊢ (𝑦 = 𝑥 → {𝑥, 𝑦} = {𝑥, 𝑥}) | 
| 25 |  | dfsn2 4639 | . . . . . . . . . 10
⊢ {𝑥} = {𝑥, 𝑥} | 
| 26 | 24, 25 | eqtr4di 2795 | . . . . . . . . 9
⊢ (𝑦 = 𝑥 → {𝑥, 𝑦} = {𝑥}) | 
| 27 | 26 | rspceeqv 3645 | . . . . . . . 8
⊢ ((𝑥 ∈ 𝑉 ∧ (𝐸‘𝐹) = {𝑥}) → ∃𝑦 ∈ 𝑉 (𝐸‘𝐹) = {𝑥, 𝑦}) | 
| 28 | 16, 23, 27 | syl2anc 584 | . . . . . . 7
⊢ ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ 𝑥 ∈ (𝐸‘𝐹)) ∧ ((𝐸‘𝐹) ∖ {𝑥}) = ∅) → ∃𝑦 ∈ 𝑉 (𝐸‘𝐹) = {𝑥, 𝑦}) | 
| 29 |  | n0 4353 | . . . . . . . 8
⊢ (((𝐸‘𝐹) ∖ {𝑥}) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥})) | 
| 30 | 14 | adantr 480 | . . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ (𝑥 ∈ (𝐸‘𝐹) ∧ 𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥}))) → (𝐸‘𝐹) ⊆ 𝑉) | 
| 31 |  | simprr 773 | . . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ (𝑥 ∈ (𝐸‘𝐹) ∧ 𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥}))) → 𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥})) | 
| 32 | 31 | eldifad 3963 | . . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ (𝑥 ∈ (𝐸‘𝐹) ∧ 𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥}))) → 𝑦 ∈ (𝐸‘𝐹)) | 
| 33 | 30, 32 | sseldd 3984 | . . . . . . . . . . . . 13
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ (𝑥 ∈ (𝐸‘𝐹) ∧ 𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥}))) → 𝑦 ∈ 𝑉) | 
| 34 | 1, 2 | upgrfi 29108 | . . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝐸‘𝐹) ∈ Fin) | 
| 35 | 34 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ (𝑥 ∈ (𝐸‘𝐹) ∧ 𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥}))) → (𝐸‘𝐹) ∈ Fin) | 
| 36 |  | simprl 771 | . . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ (𝑥 ∈ (𝐸‘𝐹) ∧ 𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥}))) → 𝑥 ∈ (𝐸‘𝐹)) | 
| 37 | 36, 32 | prssd 4822 | . . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ (𝑥 ∈ (𝐸‘𝐹) ∧ 𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥}))) → {𝑥, 𝑦} ⊆ (𝐸‘𝐹)) | 
| 38 |  | fvex 6919 | . . . . . . . . . . . . . . . . 17
⊢ (𝐸‘𝐹) ∈ V | 
| 39 |  | ssdomg 9040 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐸‘𝐹) ∈ V → ({𝑥, 𝑦} ⊆ (𝐸‘𝐹) → {𝑥, 𝑦} ≼ (𝐸‘𝐹))) | 
| 40 | 38, 37, 39 | mpsyl 68 | . . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ (𝑥 ∈ (𝐸‘𝐹) ∧ 𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥}))) → {𝑥, 𝑦} ≼ (𝐸‘𝐹)) | 
| 41 | 1, 2 | upgrle 29107 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (♯‘(𝐸‘𝐹)) ≤ 2) | 
| 42 | 41 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ (𝑥 ∈ (𝐸‘𝐹) ∧ 𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥}))) → (♯‘(𝐸‘𝐹)) ≤ 2) | 
| 43 |  | eldifsni 4790 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥}) → 𝑦 ≠ 𝑥) | 
| 44 | 43 | ad2antll 729 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ (𝑥 ∈ (𝐸‘𝐹) ∧ 𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥}))) → 𝑦 ≠ 𝑥) | 
| 45 | 44 | necomd 2996 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ (𝑥 ∈ (𝐸‘𝐹) ∧ 𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥}))) → 𝑥 ≠ 𝑦) | 
| 46 |  | hashprg 14434 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ≠ 𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2)) | 
| 47 | 46 | el2v 3487 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ≠ 𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2) | 
| 48 | 45, 47 | sylib 218 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ (𝑥 ∈ (𝐸‘𝐹) ∧ 𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥}))) → (♯‘{𝑥, 𝑦}) = 2) | 
| 49 | 42, 48 | breqtrrd 5171 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ (𝑥 ∈ (𝐸‘𝐹) ∧ 𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥}))) → (♯‘(𝐸‘𝐹)) ≤ (♯‘{𝑥, 𝑦})) | 
| 50 |  | prfi 9363 | . . . . . . . . . . . . . . . . . 18
⊢ {𝑥, 𝑦} ∈ Fin | 
| 51 |  | hashdom 14418 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐸‘𝐹) ∈ Fin ∧ {𝑥, 𝑦} ∈ Fin) → ((♯‘(𝐸‘𝐹)) ≤ (♯‘{𝑥, 𝑦}) ↔ (𝐸‘𝐹) ≼ {𝑥, 𝑦})) | 
| 52 | 35, 50, 51 | sylancl 586 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ (𝑥 ∈ (𝐸‘𝐹) ∧ 𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥}))) → ((♯‘(𝐸‘𝐹)) ≤ (♯‘{𝑥, 𝑦}) ↔ (𝐸‘𝐹) ≼ {𝑥, 𝑦})) | 
| 53 | 49, 52 | mpbid 232 | . . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ (𝑥 ∈ (𝐸‘𝐹) ∧ 𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥}))) → (𝐸‘𝐹) ≼ {𝑥, 𝑦}) | 
| 54 |  | sbth 9133 | . . . . . . . . . . . . . . . 16
⊢ (({𝑥, 𝑦} ≼ (𝐸‘𝐹) ∧ (𝐸‘𝐹) ≼ {𝑥, 𝑦}) → {𝑥, 𝑦} ≈ (𝐸‘𝐹)) | 
| 55 | 40, 53, 54 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ (𝑥 ∈ (𝐸‘𝐹) ∧ 𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥}))) → {𝑥, 𝑦} ≈ (𝐸‘𝐹)) | 
| 56 |  | fisseneq 9293 | . . . . . . . . . . . . . . 15
⊢ (((𝐸‘𝐹) ∈ Fin ∧ {𝑥, 𝑦} ⊆ (𝐸‘𝐹) ∧ {𝑥, 𝑦} ≈ (𝐸‘𝐹)) → {𝑥, 𝑦} = (𝐸‘𝐹)) | 
| 57 | 35, 37, 55, 56 | syl3anc 1373 | . . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ (𝑥 ∈ (𝐸‘𝐹) ∧ 𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥}))) → {𝑥, 𝑦} = (𝐸‘𝐹)) | 
| 58 | 57 | eqcomd 2743 | . . . . . . . . . . . . 13
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ (𝑥 ∈ (𝐸‘𝐹) ∧ 𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥}))) → (𝐸‘𝐹) = {𝑥, 𝑦}) | 
| 59 | 33, 58 | jca 511 | . . . . . . . . . . . 12
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ (𝑥 ∈ (𝐸‘𝐹) ∧ 𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥}))) → (𝑦 ∈ 𝑉 ∧ (𝐸‘𝐹) = {𝑥, 𝑦})) | 
| 60 | 59 | expr 456 | . . . . . . . . . . 11
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ 𝑥 ∈ (𝐸‘𝐹)) → (𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥}) → (𝑦 ∈ 𝑉 ∧ (𝐸‘𝐹) = {𝑥, 𝑦}))) | 
| 61 | 60 | eximdv 1917 | . . . . . . . . . 10
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ 𝑥 ∈ (𝐸‘𝐹)) → (∃𝑦 𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥}) → ∃𝑦(𝑦 ∈ 𝑉 ∧ (𝐸‘𝐹) = {𝑥, 𝑦}))) | 
| 62 | 61 | imp 406 | . . . . . . . . 9
⊢ ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ 𝑥 ∈ (𝐸‘𝐹)) ∧ ∃𝑦 𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥})) → ∃𝑦(𝑦 ∈ 𝑉 ∧ (𝐸‘𝐹) = {𝑥, 𝑦})) | 
| 63 |  | df-rex 3071 | . . . . . . . . 9
⊢
(∃𝑦 ∈
𝑉 (𝐸‘𝐹) = {𝑥, 𝑦} ↔ ∃𝑦(𝑦 ∈ 𝑉 ∧ (𝐸‘𝐹) = {𝑥, 𝑦})) | 
| 64 | 62, 63 | sylibr 234 | . . . . . . . 8
⊢ ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ 𝑥 ∈ (𝐸‘𝐹)) ∧ ∃𝑦 𝑦 ∈ ((𝐸‘𝐹) ∖ {𝑥})) → ∃𝑦 ∈ 𝑉 (𝐸‘𝐹) = {𝑥, 𝑦}) | 
| 65 | 29, 64 | sylan2b 594 | . . . . . . 7
⊢ ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ 𝑥 ∈ (𝐸‘𝐹)) ∧ ((𝐸‘𝐹) ∖ {𝑥}) ≠ ∅) → ∃𝑦 ∈ 𝑉 (𝐸‘𝐹) = {𝑥, 𝑦}) | 
| 66 | 28, 65 | pm2.61dane 3029 | . . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ 𝑥 ∈ (𝐸‘𝐹)) → ∃𝑦 ∈ 𝑉 (𝐸‘𝐹) = {𝑥, 𝑦}) | 
| 67 | 15, 66 | jca 511 | . . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) ∧ 𝑥 ∈ (𝐸‘𝐹)) → (𝑥 ∈ 𝑉 ∧ ∃𝑦 ∈ 𝑉 (𝐸‘𝐹) = {𝑥, 𝑦})) | 
| 68 | 67 | ex 412 | . . . 4
⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (𝑥 ∈ (𝐸‘𝐹) → (𝑥 ∈ 𝑉 ∧ ∃𝑦 ∈ 𝑉 (𝐸‘𝐹) = {𝑥, 𝑦}))) | 
| 69 | 68 | eximdv 1917 | . . 3
⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → (∃𝑥 𝑥 ∈ (𝐸‘𝐹) → ∃𝑥(𝑥 ∈ 𝑉 ∧ ∃𝑦 ∈ 𝑉 (𝐸‘𝐹) = {𝑥, 𝑦}))) | 
| 70 | 5, 69 | mpd 15 | . 2
⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → ∃𝑥(𝑥 ∈ 𝑉 ∧ ∃𝑦 ∈ 𝑉 (𝐸‘𝐹) = {𝑥, 𝑦})) | 
| 71 |  | df-rex 3071 | . 2
⊢
(∃𝑥 ∈
𝑉 ∃𝑦 ∈ 𝑉 (𝐸‘𝐹) = {𝑥, 𝑦} ↔ ∃𝑥(𝑥 ∈ 𝑉 ∧ ∃𝑦 ∈ 𝑉 (𝐸‘𝐹) = {𝑥, 𝑦})) | 
| 72 | 70, 71 | sylibr 234 | 1
⊢ ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴 ∧ 𝐹 ∈ 𝐴) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 (𝐸‘𝐹) = {𝑥, 𝑦}) |