MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrex Structured version   Visualization version   GIF version

Theorem upgrex 29071
Description: An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 10-Oct-2020.)
Hypotheses
Ref Expression
isupgr.v 𝑉 = (Vtx‘𝐺)
isupgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrex ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉   𝑥,𝐸   𝑥,𝐹   𝑥,𝐴,𝑦   𝑦,𝐸   𝑦,𝐹   𝑦,𝐺   𝑦,𝑉

Proof of Theorem upgrex
StepHypRef Expression
1 isupgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 isupgr.e . . . . 5 𝐸 = (iEdg‘𝐺)
31, 2upgrn0 29068 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ≠ ∅)
4 n0 4328 . . . 4 ((𝐸𝐹) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐸𝐹))
53, 4sylib 218 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥 𝑥 ∈ (𝐸𝐹))
6 simp1 1136 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → 𝐺 ∈ UPGraph)
7 fndm 6641 . . . . . . . . . . . . 13 (𝐸 Fn 𝐴 → dom 𝐸 = 𝐴)
87eqcomd 2741 . . . . . . . . . . . 12 (𝐸 Fn 𝐴𝐴 = dom 𝐸)
98eleq2d 2820 . . . . . . . . . . 11 (𝐸 Fn 𝐴 → (𝐹𝐴𝐹 ∈ dom 𝐸))
109biimpd 229 . . . . . . . . . 10 (𝐸 Fn 𝐴 → (𝐹𝐴𝐹 ∈ dom 𝐸))
1110a1i 11 . . . . . . . . 9 (𝐺 ∈ UPGraph → (𝐸 Fn 𝐴 → (𝐹𝐴𝐹 ∈ dom 𝐸)))
12113imp 1110 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → 𝐹 ∈ dom 𝐸)
131, 2upgrss 29067 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ dom 𝐸) → (𝐸𝐹) ⊆ 𝑉)
146, 12, 13syl2anc 584 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ⊆ 𝑉)
1514sselda 3958 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → 𝑥𝑉)
1615adantr 480 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → 𝑥𝑉)
17 simpr 484 . . . . . . . . . 10 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → ((𝐸𝐹) ∖ {𝑥}) = ∅)
18 ssdif0 4341 . . . . . . . . . 10 ((𝐸𝐹) ⊆ {𝑥} ↔ ((𝐸𝐹) ∖ {𝑥}) = ∅)
1917, 18sylibr 234 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → (𝐸𝐹) ⊆ {𝑥})
20 simpr 484 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → 𝑥 ∈ (𝐸𝐹))
2120snssd 4785 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → {𝑥} ⊆ (𝐸𝐹))
2221adantr 480 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → {𝑥} ⊆ (𝐸𝐹))
2319, 22eqssd 3976 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → (𝐸𝐹) = {𝑥})
24 preq2 4710 . . . . . . . . . 10 (𝑦 = 𝑥 → {𝑥, 𝑦} = {𝑥, 𝑥})
25 dfsn2 4614 . . . . . . . . . 10 {𝑥} = {𝑥, 𝑥}
2624, 25eqtr4di 2788 . . . . . . . . 9 (𝑦 = 𝑥 → {𝑥, 𝑦} = {𝑥})
2726rspceeqv 3624 . . . . . . . 8 ((𝑥𝑉 ∧ (𝐸𝐹) = {𝑥}) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
2816, 23, 27syl2anc 584 . . . . . . 7 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) = ∅) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
29 n0 4328 . . . . . . . 8 (((𝐸𝐹) ∖ {𝑥}) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))
3014adantr 480 . . . . . . . . . . . . . 14 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝐸𝐹) ⊆ 𝑉)
31 simprr 772 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))
3231eldifad 3938 . . . . . . . . . . . . . 14 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑦 ∈ (𝐸𝐹))
3330, 32sseldd 3959 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑦𝑉)
341, 2upgrfi 29070 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝐸𝐹) ∈ Fin)
3534adantr 480 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝐸𝐹) ∈ Fin)
36 simprl 770 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑥 ∈ (𝐸𝐹))
3736, 32prssd 4798 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → {𝑥, 𝑦} ⊆ (𝐸𝐹))
38 fvex 6889 . . . . . . . . . . . . . . . . 17 (𝐸𝐹) ∈ V
39 ssdomg 9014 . . . . . . . . . . . . . . . . 17 ((𝐸𝐹) ∈ V → ({𝑥, 𝑦} ⊆ (𝐸𝐹) → {𝑥, 𝑦} ≼ (𝐸𝐹)))
4038, 37, 39mpsyl 68 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → {𝑥, 𝑦} ≼ (𝐸𝐹))
411, 2upgrle 29069 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (♯‘(𝐸𝐹)) ≤ 2)
4241adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (♯‘(𝐸𝐹)) ≤ 2)
43 eldifsni 4766 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}) → 𝑦𝑥)
4443ad2antll 729 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑦𝑥)
4544necomd 2987 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → 𝑥𝑦)
46 hashprg 14413 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2))
4746el2v 3466 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2)
4845, 47sylib 218 . . . . . . . . . . . . . . . . . 18 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (♯‘{𝑥, 𝑦}) = 2)
4942, 48breqtrrd 5147 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (♯‘(𝐸𝐹)) ≤ (♯‘{𝑥, 𝑦}))
50 prfi 9335 . . . . . . . . . . . . . . . . . 18 {𝑥, 𝑦} ∈ Fin
51 hashdom 14397 . . . . . . . . . . . . . . . . . 18 (((𝐸𝐹) ∈ Fin ∧ {𝑥, 𝑦} ∈ Fin) → ((♯‘(𝐸𝐹)) ≤ (♯‘{𝑥, 𝑦}) ↔ (𝐸𝐹) ≼ {𝑥, 𝑦}))
5235, 50, 51sylancl 586 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → ((♯‘(𝐸𝐹)) ≤ (♯‘{𝑥, 𝑦}) ↔ (𝐸𝐹) ≼ {𝑥, 𝑦}))
5349, 52mpbid 232 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝐸𝐹) ≼ {𝑥, 𝑦})
54 sbth 9107 . . . . . . . . . . . . . . . 16 (({𝑥, 𝑦} ≼ (𝐸𝐹) ∧ (𝐸𝐹) ≼ {𝑥, 𝑦}) → {𝑥, 𝑦} ≈ (𝐸𝐹))
5540, 53, 54syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → {𝑥, 𝑦} ≈ (𝐸𝐹))
56 fisseneq 9265 . . . . . . . . . . . . . . 15 (((𝐸𝐹) ∈ Fin ∧ {𝑥, 𝑦} ⊆ (𝐸𝐹) ∧ {𝑥, 𝑦} ≈ (𝐸𝐹)) → {𝑥, 𝑦} = (𝐸𝐹))
5735, 37, 55, 56syl3anc 1373 . . . . . . . . . . . . . 14 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → {𝑥, 𝑦} = (𝐸𝐹))
5857eqcomd 2741 . . . . . . . . . . . . 13 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝐸𝐹) = {𝑥, 𝑦})
5933, 58jca 511 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ (𝑥 ∈ (𝐸𝐹) ∧ 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}))) → (𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦}))
6059expr 456 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → (𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}) → (𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦})))
6160eximdv 1917 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → (∃𝑦 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥}) → ∃𝑦(𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦})))
6261imp 406 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ∃𝑦 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥})) → ∃𝑦(𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦}))
63 df-rex 3061 . . . . . . . . 9 (∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦} ↔ ∃𝑦(𝑦𝑉 ∧ (𝐸𝐹) = {𝑥, 𝑦}))
6462, 63sylibr 234 . . . . . . . 8 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ∃𝑦 𝑦 ∈ ((𝐸𝐹) ∖ {𝑥})) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
6529, 64sylan2b 594 . . . . . . 7 ((((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) ∧ ((𝐸𝐹) ∖ {𝑥}) ≠ ∅) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
6628, 65pm2.61dane 3019 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
6715, 66jca 511 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) ∧ 𝑥 ∈ (𝐸𝐹)) → (𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦}))
6867ex 412 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (𝑥 ∈ (𝐸𝐹) → (𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})))
6968eximdv 1917 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → (∃𝑥 𝑥 ∈ (𝐸𝐹) → ∃𝑥(𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})))
705, 69mpd 15 . 2 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥(𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦}))
71 df-rex 3061 . 2 (∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦} ↔ ∃𝑥(𝑥𝑉 ∧ ∃𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦}))
7270, 71sylibr 234 1 ((𝐺 ∈ UPGraph ∧ 𝐸 Fn 𝐴𝐹𝐴) → ∃𝑥𝑉𝑦𝑉 (𝐸𝐹) = {𝑥, 𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  wne 2932  wrex 3060  Vcvv 3459  cdif 3923  wss 3926  c0 4308  {csn 4601  {cpr 4603   class class class wbr 5119  dom cdm 5654   Fn wfn 6526  cfv 6531  cen 8956  cdom 8957  Fincfn 8959  cle 11270  2c2 12295  chash 14348  Vtxcvtx 28975  iEdgciedg 28976  UPGraphcupgr 29059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349  df-upgr 29061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator