![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspgrloopiedg | Structured version Visualization version GIF version |
Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29049) is a singleton of a singleton. (Contributed by AV, 21-Feb-2021.) |
Ref | Expression |
---|---|
uspgrloopvtx.g | ⊢ 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩ |
Ref | Expression |
---|---|
uspgrloopiedg | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrloopvtx.g | . . 3 ⊢ 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩ | |
2 | 1 | fveq2i 6894 | . 2 ⊢ (iEdg‘𝐺) = (iEdg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) |
3 | snex 5427 | . . . 4 ⊢ {⟨𝐴, {𝑁}⟩} ∈ V | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑋 → {⟨𝐴, {𝑁}⟩} ∈ V) |
5 | opiedgfv 28807 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ {⟨𝐴, {𝑁}⟩} ∈ V) → (iEdg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) = {⟨𝐴, {𝑁}⟩}) | |
6 | 4, 5 | sylan2 592 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (iEdg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) = {⟨𝐴, {𝑁}⟩}) |
7 | 2, 6 | eqtrid 2779 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3469 {csn 4624 ⟨cop 4630 ‘cfv 6542 iEdgciedg 28797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6494 df-fun 6544 df-fv 6550 df-2nd 7988 df-iedg 28799 |
This theorem is referenced by: uspgrloopnb0 29320 uspgrloopvd2 29321 |
Copyright terms: Public domain | W3C validator |