MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrloopiedg Structured version   Visualization version   GIF version

Theorem uspgrloopiedg 29445
Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29176) is a singleton of a singleton. (Contributed by AV, 21-Feb-2021.)
Hypothesis
Ref Expression
uspgrloopvtx.g 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
Assertion
Ref Expression
uspgrloopiedg ((𝑉𝑊𝐴𝑋) → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})

Proof of Theorem uspgrloopiedg
StepHypRef Expression
1 uspgrloopvtx.g . . 3 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
21fveq2i 6861 . 2 (iEdg‘𝐺) = (iEdg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩)
3 snex 5391 . . . 4 {⟨𝐴, {𝑁}⟩} ∈ V
43a1i 11 . . 3 (𝐴𝑋 → {⟨𝐴, {𝑁}⟩} ∈ V)
5 opiedgfv 28934 . . 3 ((𝑉𝑊 ∧ {⟨𝐴, {𝑁}⟩} ∈ V) → (iEdg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) = {⟨𝐴, {𝑁}⟩})
64, 5sylan2 593 . 2 ((𝑉𝑊𝐴𝑋) → (iEdg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) = {⟨𝐴, {𝑁}⟩})
72, 6eqtrid 2776 1 ((𝑉𝑊𝐴𝑋) → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589  cop 4595  cfv 6511  iEdgciedg 28924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fv 6519  df-2nd 7969  df-iedg 28926
This theorem is referenced by:  uspgrloopnb0  29447  uspgrloopvd2  29448
  Copyright terms: Public domain W3C validator