| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uspgrloopiedg | Structured version Visualization version GIF version | ||
| Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29233) is a singleton of a singleton. (Contributed by AV, 21-Feb-2021.) |
| Ref | Expression |
|---|---|
| uspgrloopvtx.g | ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 |
| Ref | Expression |
|---|---|
| uspgrloopiedg | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrloopvtx.g | . . 3 ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 | |
| 2 | 1 | fveq2i 6884 | . 2 ⊢ (iEdg‘𝐺) = (iEdg‘〈𝑉, {〈𝐴, {𝑁}〉}〉) |
| 3 | snex 5411 | . . . 4 ⊢ {〈𝐴, {𝑁}〉} ∈ V | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑋 → {〈𝐴, {𝑁}〉} ∈ V) |
| 5 | opiedgfv 28991 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ {〈𝐴, {𝑁}〉} ∈ V) → (iEdg‘〈𝑉, {〈𝐴, {𝑁}〉}〉) = {〈𝐴, {𝑁}〉}) | |
| 6 | 4, 5 | sylan2 593 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (iEdg‘〈𝑉, {〈𝐴, {𝑁}〉}〉) = {〈𝐴, {𝑁}〉}) |
| 7 | 2, 6 | eqtrid 2783 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋) → (iEdg‘𝐺) = {〈𝐴, {𝑁}〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 {csn 4606 〈cop 4612 ‘cfv 6536 iEdgciedg 28981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fv 6544 df-2nd 7994 df-iedg 28983 |
| This theorem is referenced by: uspgrloopnb0 29504 uspgrloopvd2 29505 |
| Copyright terms: Public domain | W3C validator |