MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrloopiedg Structured version   Visualization version   GIF version

Theorem uspgrloopiedg 29502
Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29233) is a singleton of a singleton. (Contributed by AV, 21-Feb-2021.)
Hypothesis
Ref Expression
uspgrloopvtx.g 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
Assertion
Ref Expression
uspgrloopiedg ((𝑉𝑊𝐴𝑋) → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})

Proof of Theorem uspgrloopiedg
StepHypRef Expression
1 uspgrloopvtx.g . . 3 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
21fveq2i 6884 . 2 (iEdg‘𝐺) = (iEdg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩)
3 snex 5411 . . . 4 {⟨𝐴, {𝑁}⟩} ∈ V
43a1i 11 . . 3 (𝐴𝑋 → {⟨𝐴, {𝑁}⟩} ∈ V)
5 opiedgfv 28991 . . 3 ((𝑉𝑊 ∧ {⟨𝐴, {𝑁}⟩} ∈ V) → (iEdg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) = {⟨𝐴, {𝑁}⟩})
64, 5sylan2 593 . 2 ((𝑉𝑊𝐴𝑋) → (iEdg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) = {⟨𝐴, {𝑁}⟩})
72, 6eqtrid 2783 1 ((𝑉𝑊𝐴𝑋) → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  {csn 4606  cop 4612  cfv 6536  iEdgciedg 28981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fv 6544  df-2nd 7994  df-iedg 28983
This theorem is referenced by:  uspgrloopnb0  29504  uspgrloopvd2  29505
  Copyright terms: Public domain W3C validator