MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrloopiedg Structured version   Visualization version   GIF version

Theorem uspgrloopiedg 29403
Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29134) is a singleton of a singleton. (Contributed by AV, 21-Feb-2021.)
Hypothesis
Ref Expression
uspgrloopvtx.g 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
Assertion
Ref Expression
uspgrloopiedg ((𝑉𝑊𝐴𝑋) → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})

Proof of Theorem uspgrloopiedg
StepHypRef Expression
1 uspgrloopvtx.g . . 3 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
21fveq2i 6899 . 2 (iEdg‘𝐺) = (iEdg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩)
3 snex 5433 . . . 4 {⟨𝐴, {𝑁}⟩} ∈ V
43a1i 11 . . 3 (𝐴𝑋 → {⟨𝐴, {𝑁}⟩} ∈ V)
5 opiedgfv 28892 . . 3 ((𝑉𝑊 ∧ {⟨𝐴, {𝑁}⟩} ∈ V) → (iEdg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) = {⟨𝐴, {𝑁}⟩})
64, 5sylan2 591 . 2 ((𝑉𝑊𝐴𝑋) → (iEdg‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) = {⟨𝐴, {𝑁}⟩})
72, 6eqtrid 2777 1 ((𝑉𝑊𝐴𝑋) → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3461  {csn 4630  cop 4636  cfv 6549  iEdgciedg 28882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-iota 6501  df-fun 6551  df-fv 6557  df-2nd 7995  df-iedg 28884
This theorem is referenced by:  uspgrloopnb0  29405  uspgrloopvd2  29406
  Copyright terms: Public domain W3C validator