![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspgrloopvtxel | Structured version Visualization version GIF version |
Description: A vertex in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29056). (Contributed by AV, 17-Dec-2020.) |
Ref | Expression |
---|---|
uspgrloopvtx.g | ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 |
Ref | Expression |
---|---|
uspgrloopvtxel | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → 𝑁 ∈ (Vtx‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrloopvtx.g | . . 3 ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 | |
2 | 1 | uspgrloopvtx 29323 | . 2 ⊢ (𝑉 ∈ 𝑊 → (Vtx‘𝐺) = 𝑉) |
3 | eleq2 2818 | . . . . 5 ⊢ (𝑉 = (Vtx‘𝐺) → (𝑁 ∈ 𝑉 ↔ 𝑁 ∈ (Vtx‘𝐺))) | |
4 | 3 | biimpd 228 | . . . 4 ⊢ (𝑉 = (Vtx‘𝐺) → (𝑁 ∈ 𝑉 → 𝑁 ∈ (Vtx‘𝐺))) |
5 | 4 | eqcoms 2736 | . . 3 ⊢ ((Vtx‘𝐺) = 𝑉 → (𝑁 ∈ 𝑉 → 𝑁 ∈ (Vtx‘𝐺))) |
6 | 5 | com12 32 | . 2 ⊢ (𝑁 ∈ 𝑉 → ((Vtx‘𝐺) = 𝑉 → 𝑁 ∈ (Vtx‘𝐺))) |
7 | 2, 6 | mpan9 506 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → 𝑁 ∈ (Vtx‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {csn 4625 〈cop 4631 ‘cfv 6543 Vtxcvtx 28803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-iota 6495 df-fun 6545 df-fv 6551 df-1st 7988 df-vtx 28805 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |