Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uspgrloopvtxel | Structured version Visualization version GIF version |
Description: A vertex in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 27612). (Contributed by AV, 17-Dec-2020.) |
Ref | Expression |
---|---|
uspgrloopvtx.g | ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 |
Ref | Expression |
---|---|
uspgrloopvtxel | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → 𝑁 ∈ (Vtx‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrloopvtx.g | . . 3 ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 | |
2 | 1 | uspgrloopvtx 27878 | . 2 ⊢ (𝑉 ∈ 𝑊 → (Vtx‘𝐺) = 𝑉) |
3 | eleq2 2829 | . . . . 5 ⊢ (𝑉 = (Vtx‘𝐺) → (𝑁 ∈ 𝑉 ↔ 𝑁 ∈ (Vtx‘𝐺))) | |
4 | 3 | biimpd 228 | . . . 4 ⊢ (𝑉 = (Vtx‘𝐺) → (𝑁 ∈ 𝑉 → 𝑁 ∈ (Vtx‘𝐺))) |
5 | 4 | eqcoms 2748 | . . 3 ⊢ ((Vtx‘𝐺) = 𝑉 → (𝑁 ∈ 𝑉 → 𝑁 ∈ (Vtx‘𝐺))) |
6 | 5 | com12 32 | . 2 ⊢ (𝑁 ∈ 𝑉 → ((Vtx‘𝐺) = 𝑉 → 𝑁 ∈ (Vtx‘𝐺))) |
7 | 2, 6 | mpan9 507 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → 𝑁 ∈ (Vtx‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 {csn 4567 〈cop 4573 ‘cfv 6431 Vtxcvtx 27362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6389 df-fun 6433 df-fv 6439 df-1st 7822 df-vtx 27364 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |