MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrloopvtxel Structured version   Visualization version   GIF version

Theorem uspgrloopvtxel 29480
Description: A vertex in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29212). (Contributed by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
uspgrloopvtx.g 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
Assertion
Ref Expression
uspgrloopvtxel ((𝑉𝑊𝑁𝑉) → 𝑁 ∈ (Vtx‘𝐺))

Proof of Theorem uspgrloopvtxel
StepHypRef Expression
1 uspgrloopvtx.g . . 3 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
21uspgrloopvtx 29479 . 2 (𝑉𝑊 → (Vtx‘𝐺) = 𝑉)
3 eleq2 2817 . . . . 5 (𝑉 = (Vtx‘𝐺) → (𝑁𝑉𝑁 ∈ (Vtx‘𝐺)))
43biimpd 229 . . . 4 (𝑉 = (Vtx‘𝐺) → (𝑁𝑉𝑁 ∈ (Vtx‘𝐺)))
54eqcoms 2737 . . 3 ((Vtx‘𝐺) = 𝑉 → (𝑁𝑉𝑁 ∈ (Vtx‘𝐺)))
65com12 32 . 2 (𝑁𝑉 → ((Vtx‘𝐺) = 𝑉𝑁 ∈ (Vtx‘𝐺)))
72, 6mpan9 506 1 ((𝑉𝑊𝑁𝑉) → 𝑁 ∈ (Vtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4579  cop 4585  cfv 6486  Vtxcvtx 28959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fv 6494  df-1st 7931  df-vtx 28961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator