![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspgrloopvtxel | Structured version Visualization version GIF version |
Description: A vertex in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29292). (Contributed by AV, 17-Dec-2020.) |
Ref | Expression |
---|---|
uspgrloopvtx.g | ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 |
Ref | Expression |
---|---|
uspgrloopvtxel | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → 𝑁 ∈ (Vtx‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrloopvtx.g | . . 3 ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 | |
2 | 1 | uspgrloopvtx 29559 | . 2 ⊢ (𝑉 ∈ 𝑊 → (Vtx‘𝐺) = 𝑉) |
3 | eleq2 2830 | . . . . 5 ⊢ (𝑉 = (Vtx‘𝐺) → (𝑁 ∈ 𝑉 ↔ 𝑁 ∈ (Vtx‘𝐺))) | |
4 | 3 | biimpd 229 | . . . 4 ⊢ (𝑉 = (Vtx‘𝐺) → (𝑁 ∈ 𝑉 → 𝑁 ∈ (Vtx‘𝐺))) |
5 | 4 | eqcoms 2745 | . . 3 ⊢ ((Vtx‘𝐺) = 𝑉 → (𝑁 ∈ 𝑉 → 𝑁 ∈ (Vtx‘𝐺))) |
6 | 5 | com12 32 | . 2 ⊢ (𝑁 ∈ 𝑉 → ((Vtx‘𝐺) = 𝑉 → 𝑁 ∈ (Vtx‘𝐺))) |
7 | 2, 6 | mpan9 506 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → 𝑁 ∈ (Vtx‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4634 〈cop 4640 ‘cfv 6569 Vtxcvtx 29039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-iota 6522 df-fun 6571 df-fv 6577 df-1st 8022 df-vtx 29041 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |