MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrloopvtxel Structured version   Visualization version   GIF version

Theorem uspgrloopvtxel 29444
Description: A vertex in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29176). (Contributed by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
uspgrloopvtx.g 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
Assertion
Ref Expression
uspgrloopvtxel ((𝑉𝑊𝑁𝑉) → 𝑁 ∈ (Vtx‘𝐺))

Proof of Theorem uspgrloopvtxel
StepHypRef Expression
1 uspgrloopvtx.g . . 3 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
21uspgrloopvtx 29443 . 2 (𝑉𝑊 → (Vtx‘𝐺) = 𝑉)
3 eleq2 2817 . . . . 5 (𝑉 = (Vtx‘𝐺) → (𝑁𝑉𝑁 ∈ (Vtx‘𝐺)))
43biimpd 229 . . . 4 (𝑉 = (Vtx‘𝐺) → (𝑁𝑉𝑁 ∈ (Vtx‘𝐺)))
54eqcoms 2737 . . 3 ((Vtx‘𝐺) = 𝑉 → (𝑁𝑉𝑁 ∈ (Vtx‘𝐺)))
65com12 32 . 2 (𝑁𝑉 → ((Vtx‘𝐺) = 𝑉𝑁 ∈ (Vtx‘𝐺)))
72, 6mpan9 506 1 ((𝑉𝑊𝑁𝑉) → 𝑁 ∈ (Vtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4589  cop 4595  cfv 6511  Vtxcvtx 28923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fv 6519  df-1st 7968  df-vtx 28925
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator