MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrloopvtxel Structured version   Visualization version   GIF version

Theorem uspgrloopvtxel 29324
Description: A vertex in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29056). (Contributed by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
uspgrloopvtx.g 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
Assertion
Ref Expression
uspgrloopvtxel ((𝑉𝑊𝑁𝑉) → 𝑁 ∈ (Vtx‘𝐺))

Proof of Theorem uspgrloopvtxel
StepHypRef Expression
1 uspgrloopvtx.g . . 3 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
21uspgrloopvtx 29323 . 2 (𝑉𝑊 → (Vtx‘𝐺) = 𝑉)
3 eleq2 2818 . . . . 5 (𝑉 = (Vtx‘𝐺) → (𝑁𝑉𝑁 ∈ (Vtx‘𝐺)))
43biimpd 228 . . . 4 (𝑉 = (Vtx‘𝐺) → (𝑁𝑉𝑁 ∈ (Vtx‘𝐺)))
54eqcoms 2736 . . 3 ((Vtx‘𝐺) = 𝑉 → (𝑁𝑉𝑁 ∈ (Vtx‘𝐺)))
65com12 32 . 2 (𝑁𝑉 → ((Vtx‘𝐺) = 𝑉𝑁 ∈ (Vtx‘𝐺)))
72, 6mpan9 506 1 ((𝑉𝑊𝑁𝑉) → 𝑁 ∈ (Vtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  {csn 4625  cop 4631  cfv 6543  Vtxcvtx 28803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-iota 6495  df-fun 6545  df-fv 6551  df-1st 7988  df-vtx 28805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator