![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspgrloopvtx | Structured version Visualization version GIF version |
Description: The set of vertices in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29281). (Contributed by AV, 17-Dec-2020.) |
Ref | Expression |
---|---|
uspgrloopvtx.g | ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 |
Ref | Expression |
---|---|
uspgrloopvtx | ⊢ (𝑉 ∈ 𝑊 → (Vtx‘𝐺) = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrloopvtx.g | . . 3 ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 | |
2 | 1 | fveq2i 6910 | . 2 ⊢ (Vtx‘𝐺) = (Vtx‘〈𝑉, {〈𝐴, {𝑁}〉}〉) |
3 | snex 5442 | . . 3 ⊢ {〈𝐴, {𝑁}〉} ∈ V | |
4 | opvtxfv 29036 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ {〈𝐴, {𝑁}〉} ∈ V) → (Vtx‘〈𝑉, {〈𝐴, {𝑁}〉}〉) = 𝑉) | |
5 | 3, 4 | mpan2 691 | . 2 ⊢ (𝑉 ∈ 𝑊 → (Vtx‘〈𝑉, {〈𝐴, {𝑁}〉}〉) = 𝑉) |
6 | 2, 5 | eqtrid 2787 | 1 ⊢ (𝑉 ∈ 𝑊 → (Vtx‘𝐺) = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 {csn 4631 〈cop 4637 ‘cfv 6563 Vtxcvtx 29028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fv 6571 df-1st 8013 df-vtx 29030 |
This theorem is referenced by: uspgrloopvtxel 29549 uspgrloopnb0 29552 uspgrloopvd2 29553 |
Copyright terms: Public domain | W3C validator |