MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrloopvtx Structured version   Visualization version   GIF version

Theorem uspgrloopvtx 29450
Description: The set of vertices in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29183). (Contributed by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
uspgrloopvtx.g 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
Assertion
Ref Expression
uspgrloopvtx (𝑉𝑊 → (Vtx‘𝐺) = 𝑉)

Proof of Theorem uspgrloopvtx
StepHypRef Expression
1 uspgrloopvtx.g . . 3 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
21fveq2i 6864 . 2 (Vtx‘𝐺) = (Vtx‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩)
3 snex 5394 . . 3 {⟨𝐴, {𝑁}⟩} ∈ V
4 opvtxfv 28938 . . 3 ((𝑉𝑊 ∧ {⟨𝐴, {𝑁}⟩} ∈ V) → (Vtx‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) = 𝑉)
53, 4mpan2 691 . 2 (𝑉𝑊 → (Vtx‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) = 𝑉)
62, 5eqtrid 2777 1 (𝑉𝑊 → (Vtx‘𝐺) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  {csn 4592  cop 4598  cfv 6514  Vtxcvtx 28930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fv 6522  df-1st 7971  df-vtx 28932
This theorem is referenced by:  uspgrloopvtxel  29451  uspgrloopnb0  29454  uspgrloopvd2  29455
  Copyright terms: Public domain W3C validator