MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrloopvtx Structured version   Visualization version   GIF version

Theorem uspgrloopvtx 29495
Description: The set of vertices in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29228). (Contributed by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
uspgrloopvtx.g 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
Assertion
Ref Expression
uspgrloopvtx (𝑉𝑊 → (Vtx‘𝐺) = 𝑉)

Proof of Theorem uspgrloopvtx
StepHypRef Expression
1 uspgrloopvtx.g . . 3 𝐺 = ⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩
21fveq2i 6879 . 2 (Vtx‘𝐺) = (Vtx‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩)
3 snex 5406 . . 3 {⟨𝐴, {𝑁}⟩} ∈ V
4 opvtxfv 28983 . . 3 ((𝑉𝑊 ∧ {⟨𝐴, {𝑁}⟩} ∈ V) → (Vtx‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) = 𝑉)
53, 4mpan2 691 . 2 (𝑉𝑊 → (Vtx‘⟨𝑉, {⟨𝐴, {𝑁}⟩}⟩) = 𝑉)
62, 5eqtrid 2782 1 (𝑉𝑊 → (Vtx‘𝐺) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  {csn 4601  cop 4607  cfv 6531  Vtxcvtx 28975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fv 6539  df-1st 7988  df-vtx 28977
This theorem is referenced by:  uspgrloopvtxel  29496  uspgrloopnb0  29499  uspgrloopvd2  29500
  Copyright terms: Public domain W3C validator