| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uspgrloopvtx | Structured version Visualization version GIF version | ||
| Description: The set of vertices in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29176). (Contributed by AV, 17-Dec-2020.) |
| Ref | Expression |
|---|---|
| uspgrloopvtx.g | ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 |
| Ref | Expression |
|---|---|
| uspgrloopvtx | ⊢ (𝑉 ∈ 𝑊 → (Vtx‘𝐺) = 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrloopvtx.g | . . 3 ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 | |
| 2 | 1 | fveq2i 6861 | . 2 ⊢ (Vtx‘𝐺) = (Vtx‘〈𝑉, {〈𝐴, {𝑁}〉}〉) |
| 3 | snex 5391 | . . 3 ⊢ {〈𝐴, {𝑁}〉} ∈ V | |
| 4 | opvtxfv 28931 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ {〈𝐴, {𝑁}〉} ∈ V) → (Vtx‘〈𝑉, {〈𝐴, {𝑁}〉}〉) = 𝑉) | |
| 5 | 3, 4 | mpan2 691 | . 2 ⊢ (𝑉 ∈ 𝑊 → (Vtx‘〈𝑉, {〈𝐴, {𝑁}〉}〉) = 𝑉) |
| 6 | 2, 5 | eqtrid 2776 | 1 ⊢ (𝑉 ∈ 𝑊 → (Vtx‘𝐺) = 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 〈cop 4595 ‘cfv 6511 Vtxcvtx 28923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fv 6519 df-1st 7968 df-vtx 28925 |
| This theorem is referenced by: uspgrloopvtxel 29444 uspgrloopnb0 29447 uspgrloopvd2 29448 |
| Copyright terms: Public domain | W3C validator |