MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgrloopvtx Structured version   Visualization version   GIF version

Theorem uspgrloopvtx 29368
Description: The set of vertices in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29101). (Contributed by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
uspgrloopvtx.g 𝐺 = ⟚𝑉, {⟚𝐎, {𝑁}⟩}⟩
Assertion
Ref Expression
uspgrloopvtx (𝑉 ∈ 𝑊 → (Vtx‘𝐺) = 𝑉)

Proof of Theorem uspgrloopvtx
StepHypRef Expression
1 uspgrloopvtx.g . . 3 𝐺 = ⟚𝑉, {⟚𝐎, {𝑁}⟩}⟩
21fveq2i 6893 . 2 (Vtx‘𝐺) = (Vtx‘⟚𝑉, {⟚𝐎, {𝑁}⟩}⟩)
3 snex 5428 . . 3 {⟚𝐎, {𝑁}⟩} ∈ V
4 opvtxfv 28856 . . 3 ((𝑉 ∈ 𝑊 ∧ {⟚𝐎, {𝑁}⟩} ∈ V) → (Vtx‘⟚𝑉, {⟚𝐎, {𝑁}⟩}⟩) = 𝑉)
53, 4mpan2 689 . 2 (𝑉 ∈ 𝑊 → (Vtx‘⟚𝑉, {⟚𝐎, {𝑁}⟩}⟩) = 𝑉)
62, 5eqtrid 2777 1 (𝑉 ∈ 𝑊 → (Vtx‘𝐺) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:   → wi 4   = wceq 1533   ∈ wcel 2098  Vcvv 3463  {csn 4625  âŸšcop 4631  â€˜cfv 6543  Vtxcvtx 28848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-iota 6495  df-fun 6545  df-fv 6551  df-1st 7987  df-vtx 28850
This theorem is referenced by:  uspgrloopvtxel  29369  uspgrloopnb0  29372  uspgrloopvd2  29373
  Copyright terms: Public domain W3C validator