![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspgrloopvtx | Structured version Visualization version GIF version |
Description: The set of vertices in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 29101). (Contributed by AV, 17-Dec-2020.) |
Ref | Expression |
---|---|
uspgrloopvtx.g | ⢠ðº = âšð, {âšðŽ, {ð}â©}â© |
Ref | Expression |
---|---|
uspgrloopvtx | ⢠(ð â ð â (Vtxâðº) = ð) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrloopvtx.g | . . 3 ⢠ðº = âšð, {âšðŽ, {ð}â©}â© | |
2 | 1 | fveq2i 6893 | . 2 ⢠(Vtxâðº) = (Vtxââšð, {âšðŽ, {ð}â©}â©) |
3 | snex 5428 | . . 3 ⢠{âšðŽ, {ð}â©} â V | |
4 | opvtxfv 28856 | . . 3 ⢠((ð â ð â§ {âšðŽ, {ð}â©} â V) â (Vtxââšð, {âšðŽ, {ð}â©}â©) = ð) | |
5 | 3, 4 | mpan2 689 | . 2 ⢠(ð â ð â (Vtxââšð, {âšðŽ, {ð}â©}â©) = ð) |
6 | 2, 5 | eqtrid 2777 | 1 ⢠(ð â ð â (Vtxâðº) = ð) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 = wceq 1533 â wcel 2098 Vcvv 3463 {csn 4625 âšcop 4631 âcfv 6543 Vtxcvtx 28848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-iota 6495 df-fun 6545 df-fv 6551 df-1st 7987 df-vtx 28850 |
This theorem is referenced by: uspgrloopvtxel 29369 uspgrloopnb0 29372 uspgrloopvd2 29373 |
Copyright terms: Public domain | W3C validator |