Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvbr3 Structured version   Visualization version   GIF version

Theorem lcvbr3 38357
Description: The covers relation for a left vector space (or a left module). (Contributed by NM, 9-Jan-2015.)
Hypotheses
Ref Expression
lcvfbr.s 𝑆 = (LSubSp‘𝑊)
lcvfbr.c 𝐶 = ( ⋖L𝑊)
lcvfbr.w (𝜑𝑊𝑋)
lcvfbr.t (𝜑𝑇𝑆)
lcvfbr.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lcvbr3 (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → (𝑠 = 𝑇𝑠 = 𝑈)))))
Distinct variable groups:   𝑆,𝑠   𝑊,𝑠   𝑇,𝑠   𝑈,𝑠
Allowed substitution hints:   𝜑(𝑠)   𝐶(𝑠)   𝑋(𝑠)

Proof of Theorem lcvbr3
StepHypRef Expression
1 lcvfbr.s . . 3 𝑆 = (LSubSp‘𝑊)
2 lcvfbr.c . . 3 𝐶 = ( ⋖L𝑊)
3 lcvfbr.w . . 3 (𝜑𝑊𝑋)
4 lcvfbr.t . . 3 (𝜑𝑇𝑆)
5 lcvfbr.u . . 3 (𝜑𝑈𝑆)
61, 2, 3, 4, 5lcvbr 38355 . 2 (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
7 iman 401 . . . . . 6 (((𝑇𝑠𝑠𝑈) → (𝑠 = 𝑇𝑠 = 𝑈)) ↔ ¬ ((𝑇𝑠𝑠𝑈) ∧ ¬ (𝑠 = 𝑇𝑠 = 𝑈)))
8 df-pss 3967 . . . . . . . . 9 (𝑇𝑠 ↔ (𝑇𝑠𝑇𝑠))
9 necom 2993 . . . . . . . . . 10 (𝑇𝑠𝑠𝑇)
109anbi2i 622 . . . . . . . . 9 ((𝑇𝑠𝑇𝑠) ↔ (𝑇𝑠𝑠𝑇))
118, 10bitri 275 . . . . . . . 8 (𝑇𝑠 ↔ (𝑇𝑠𝑠𝑇))
12 df-pss 3967 . . . . . . . 8 (𝑠𝑈 ↔ (𝑠𝑈𝑠𝑈))
1311, 12anbi12i 626 . . . . . . 7 ((𝑇𝑠𝑠𝑈) ↔ ((𝑇𝑠𝑠𝑇) ∧ (𝑠𝑈𝑠𝑈)))
14 an4 653 . . . . . . . 8 (((𝑇𝑠𝑠𝑇) ∧ (𝑠𝑈𝑠𝑈)) ↔ ((𝑇𝑠𝑠𝑈) ∧ (𝑠𝑇𝑠𝑈)))
15 neanior 3034 . . . . . . . . 9 ((𝑠𝑇𝑠𝑈) ↔ ¬ (𝑠 = 𝑇𝑠 = 𝑈))
1615anbi2i 622 . . . . . . . 8 (((𝑇𝑠𝑠𝑈) ∧ (𝑠𝑇𝑠𝑈)) ↔ ((𝑇𝑠𝑠𝑈) ∧ ¬ (𝑠 = 𝑇𝑠 = 𝑈)))
1714, 16bitri 275 . . . . . . 7 (((𝑇𝑠𝑠𝑇) ∧ (𝑠𝑈𝑠𝑈)) ↔ ((𝑇𝑠𝑠𝑈) ∧ ¬ (𝑠 = 𝑇𝑠 = 𝑈)))
1813, 17bitri 275 . . . . . 6 ((𝑇𝑠𝑠𝑈) ↔ ((𝑇𝑠𝑠𝑈) ∧ ¬ (𝑠 = 𝑇𝑠 = 𝑈)))
197, 18xchbinxr 335 . . . . 5 (((𝑇𝑠𝑠𝑈) → (𝑠 = 𝑇𝑠 = 𝑈)) ↔ ¬ (𝑇𝑠𝑠𝑈))
2019ralbii 3092 . . . 4 (∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → (𝑠 = 𝑇𝑠 = 𝑈)) ↔ ∀𝑠𝑆 ¬ (𝑇𝑠𝑠𝑈))
21 ralnex 3071 . . . 4 (∀𝑠𝑆 ¬ (𝑇𝑠𝑠𝑈) ↔ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))
2220, 21bitri 275 . . 3 (∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → (𝑠 = 𝑇𝑠 = 𝑈)) ↔ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))
2322anbi2i 622 . 2 ((𝑇𝑈 ∧ ∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → (𝑠 = 𝑇𝑠 = 𝑈))) ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))
246, 23bitr4di 289 1 (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → (𝑠 = 𝑇𝑠 = 𝑈)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844   = wceq 1540  wcel 2105  wne 2939  wral 3060  wrex 3069  wss 3948  wpss 3949   class class class wbr 5148  cfv 6543  LSubSpclss 20774  L clcv 38352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-lcv 38353
This theorem is referenced by:  lcvexchlem4  38371  lcvexchlem5  38372
  Copyright terms: Public domain W3C validator