Proof of Theorem lcvbr3
| Step | Hyp | Ref
| Expression |
| 1 | | lcvfbr.s |
. . 3
⊢ 𝑆 = (LSubSp‘𝑊) |
| 2 | | lcvfbr.c |
. . 3
⊢ 𝐶 = ( ⋖L
‘𝑊) |
| 3 | | lcvfbr.w |
. . 3
⊢ (𝜑 → 𝑊 ∈ 𝑋) |
| 4 | | lcvfbr.t |
. . 3
⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| 5 | | lcvfbr.u |
. . 3
⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| 6 | 1, 2, 3, 4, 5 | lcvbr 39022 |
. 2
⊢ (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)))) |
| 7 | | iman 401 |
. . . . . 6
⊢ (((𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈) → (𝑠 = 𝑇 ∨ 𝑠 = 𝑈)) ↔ ¬ ((𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈) ∧ ¬ (𝑠 = 𝑇 ∨ 𝑠 = 𝑈))) |
| 8 | | df-pss 3971 |
. . . . . . . . 9
⊢ (𝑇 ⊊ 𝑠 ↔ (𝑇 ⊆ 𝑠 ∧ 𝑇 ≠ 𝑠)) |
| 9 | | necom 2994 |
. . . . . . . . . 10
⊢ (𝑇 ≠ 𝑠 ↔ 𝑠 ≠ 𝑇) |
| 10 | 9 | anbi2i 623 |
. . . . . . . . 9
⊢ ((𝑇 ⊆ 𝑠 ∧ 𝑇 ≠ 𝑠) ↔ (𝑇 ⊆ 𝑠 ∧ 𝑠 ≠ 𝑇)) |
| 11 | 8, 10 | bitri 275 |
. . . . . . . 8
⊢ (𝑇 ⊊ 𝑠 ↔ (𝑇 ⊆ 𝑠 ∧ 𝑠 ≠ 𝑇)) |
| 12 | | df-pss 3971 |
. . . . . . . 8
⊢ (𝑠 ⊊ 𝑈 ↔ (𝑠 ⊆ 𝑈 ∧ 𝑠 ≠ 𝑈)) |
| 13 | 11, 12 | anbi12i 628 |
. . . . . . 7
⊢ ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈) ↔ ((𝑇 ⊆ 𝑠 ∧ 𝑠 ≠ 𝑇) ∧ (𝑠 ⊆ 𝑈 ∧ 𝑠 ≠ 𝑈))) |
| 14 | | an4 656 |
. . . . . . . 8
⊢ (((𝑇 ⊆ 𝑠 ∧ 𝑠 ≠ 𝑇) ∧ (𝑠 ⊆ 𝑈 ∧ 𝑠 ≠ 𝑈)) ↔ ((𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈) ∧ (𝑠 ≠ 𝑇 ∧ 𝑠 ≠ 𝑈))) |
| 15 | | neanior 3035 |
. . . . . . . . 9
⊢ ((𝑠 ≠ 𝑇 ∧ 𝑠 ≠ 𝑈) ↔ ¬ (𝑠 = 𝑇 ∨ 𝑠 = 𝑈)) |
| 16 | 15 | anbi2i 623 |
. . . . . . . 8
⊢ (((𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈) ∧ (𝑠 ≠ 𝑇 ∧ 𝑠 ≠ 𝑈)) ↔ ((𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈) ∧ ¬ (𝑠 = 𝑇 ∨ 𝑠 = 𝑈))) |
| 17 | 14, 16 | bitri 275 |
. . . . . . 7
⊢ (((𝑇 ⊆ 𝑠 ∧ 𝑠 ≠ 𝑇) ∧ (𝑠 ⊆ 𝑈 ∧ 𝑠 ≠ 𝑈)) ↔ ((𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈) ∧ ¬ (𝑠 = 𝑇 ∨ 𝑠 = 𝑈))) |
| 18 | 13, 17 | bitri 275 |
. . . . . 6
⊢ ((𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈) ↔ ((𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈) ∧ ¬ (𝑠 = 𝑇 ∨ 𝑠 = 𝑈))) |
| 19 | 7, 18 | xchbinxr 335 |
. . . . 5
⊢ (((𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈) → (𝑠 = 𝑇 ∨ 𝑠 = 𝑈)) ↔ ¬ (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)) |
| 20 | 19 | ralbii 3093 |
. . . 4
⊢
(∀𝑠 ∈
𝑆 ((𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈) → (𝑠 = 𝑇 ∨ 𝑠 = 𝑈)) ↔ ∀𝑠 ∈ 𝑆 ¬ (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)) |
| 21 | | ralnex 3072 |
. . . 4
⊢
(∀𝑠 ∈
𝑆 ¬ (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈) ↔ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)) |
| 22 | 20, 21 | bitri 275 |
. . 3
⊢
(∀𝑠 ∈
𝑆 ((𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈) → (𝑠 = 𝑇 ∨ 𝑠 = 𝑈)) ↔ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)) |
| 23 | 22 | anbi2i 623 |
. 2
⊢ ((𝑇 ⊊ 𝑈 ∧ ∀𝑠 ∈ 𝑆 ((𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈) → (𝑠 = 𝑇 ∨ 𝑠 = 𝑈))) ↔ (𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈))) |
| 24 | 6, 23 | bitr4di 289 |
1
⊢ (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇 ⊊ 𝑈 ∧ ∀𝑠 ∈ 𝑆 ((𝑇 ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑈) → (𝑠 = 𝑇 ∨ 𝑠 = 𝑈))))) |