Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvbr3 Structured version   Visualization version   GIF version

Theorem lcvbr3 38979
Description: The covers relation for a left vector space (or a left module). (Contributed by NM, 9-Jan-2015.)
Hypotheses
Ref Expression
lcvfbr.s 𝑆 = (LSubSp‘𝑊)
lcvfbr.c 𝐶 = ( ⋖L𝑊)
lcvfbr.w (𝜑𝑊𝑋)
lcvfbr.t (𝜑𝑇𝑆)
lcvfbr.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lcvbr3 (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → (𝑠 = 𝑇𝑠 = 𝑈)))))
Distinct variable groups:   𝑆,𝑠   𝑊,𝑠   𝑇,𝑠   𝑈,𝑠
Allowed substitution hints:   𝜑(𝑠)   𝐶(𝑠)   𝑋(𝑠)

Proof of Theorem lcvbr3
StepHypRef Expression
1 lcvfbr.s . . 3 𝑆 = (LSubSp‘𝑊)
2 lcvfbr.c . . 3 𝐶 = ( ⋖L𝑊)
3 lcvfbr.w . . 3 (𝜑𝑊𝑋)
4 lcvfbr.t . . 3 (𝜑𝑇𝑆)
5 lcvfbr.u . . 3 (𝜑𝑈𝑆)
61, 2, 3, 4, 5lcvbr 38977 . 2 (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
7 iman 401 . . . . . 6 (((𝑇𝑠𝑠𝑈) → (𝑠 = 𝑇𝑠 = 𝑈)) ↔ ¬ ((𝑇𝑠𝑠𝑈) ∧ ¬ (𝑠 = 𝑇𝑠 = 𝑈)))
8 df-pss 3996 . . . . . . . . 9 (𝑇𝑠 ↔ (𝑇𝑠𝑇𝑠))
9 necom 3000 . . . . . . . . . 10 (𝑇𝑠𝑠𝑇)
109anbi2i 622 . . . . . . . . 9 ((𝑇𝑠𝑇𝑠) ↔ (𝑇𝑠𝑠𝑇))
118, 10bitri 275 . . . . . . . 8 (𝑇𝑠 ↔ (𝑇𝑠𝑠𝑇))
12 df-pss 3996 . . . . . . . 8 (𝑠𝑈 ↔ (𝑠𝑈𝑠𝑈))
1311, 12anbi12i 627 . . . . . . 7 ((𝑇𝑠𝑠𝑈) ↔ ((𝑇𝑠𝑠𝑇) ∧ (𝑠𝑈𝑠𝑈)))
14 an4 655 . . . . . . . 8 (((𝑇𝑠𝑠𝑇) ∧ (𝑠𝑈𝑠𝑈)) ↔ ((𝑇𝑠𝑠𝑈) ∧ (𝑠𝑇𝑠𝑈)))
15 neanior 3041 . . . . . . . . 9 ((𝑠𝑇𝑠𝑈) ↔ ¬ (𝑠 = 𝑇𝑠 = 𝑈))
1615anbi2i 622 . . . . . . . 8 (((𝑇𝑠𝑠𝑈) ∧ (𝑠𝑇𝑠𝑈)) ↔ ((𝑇𝑠𝑠𝑈) ∧ ¬ (𝑠 = 𝑇𝑠 = 𝑈)))
1714, 16bitri 275 . . . . . . 7 (((𝑇𝑠𝑠𝑇) ∧ (𝑠𝑈𝑠𝑈)) ↔ ((𝑇𝑠𝑠𝑈) ∧ ¬ (𝑠 = 𝑇𝑠 = 𝑈)))
1813, 17bitri 275 . . . . . 6 ((𝑇𝑠𝑠𝑈) ↔ ((𝑇𝑠𝑠𝑈) ∧ ¬ (𝑠 = 𝑇𝑠 = 𝑈)))
197, 18xchbinxr 335 . . . . 5 (((𝑇𝑠𝑠𝑈) → (𝑠 = 𝑇𝑠 = 𝑈)) ↔ ¬ (𝑇𝑠𝑠𝑈))
2019ralbii 3099 . . . 4 (∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → (𝑠 = 𝑇𝑠 = 𝑈)) ↔ ∀𝑠𝑆 ¬ (𝑇𝑠𝑠𝑈))
21 ralnex 3078 . . . 4 (∀𝑠𝑆 ¬ (𝑇𝑠𝑠𝑈) ↔ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))
2220, 21bitri 275 . . 3 (∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → (𝑠 = 𝑇𝑠 = 𝑈)) ↔ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))
2322anbi2i 622 . 2 ((𝑇𝑈 ∧ ∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → (𝑠 = 𝑇𝑠 = 𝑈))) ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))
246, 23bitr4di 289 1 (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → (𝑠 = 𝑇𝑠 = 𝑈)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  wss 3976  wpss 3977   class class class wbr 5166  cfv 6573  LSubSpclss 20952  L clcv 38974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-lcv 38975
This theorem is referenced by:  lcvexchlem4  38993  lcvexchlem5  38994
  Copyright terms: Public domain W3C validator