Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval2 Structured version   Visualization version   GIF version

Theorem cvrval2 39213
Description: Binary relation expressing 𝑌 covers 𝑋. Definition of covers in [Kalmbach] p. 15. (cvbr2 32196 analog.) (Contributed by NM, 16-Nov-2011.)
Hypotheses
Ref Expression
cvrletr.b 𝐵 = (Base‘𝐾)
cvrletr.l = (le‘𝐾)
cvrletr.s < = (lt‘𝐾)
cvrletr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrval2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐾   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝐶(𝑧)   < (𝑧)   (𝑧)

Proof of Theorem cvrval2
StepHypRef Expression
1 cvrletr.b . . 3 𝐵 = (Base‘𝐾)
2 cvrletr.s . . 3 < = (lt‘𝐾)
3 cvrletr.c . . 3 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrval 39208 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
5 iman 401 . . . . . . . 8 (((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ¬ ((𝑋 < 𝑧𝑧 𝑌) ∧ ¬ 𝑧 = 𝑌))
6 df-ne 2932 . . . . . . . . 9 (𝑧𝑌 ↔ ¬ 𝑧 = 𝑌)
76anbi2i 623 . . . . . . . 8 (((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌) ↔ ((𝑋 < 𝑧𝑧 𝑌) ∧ ¬ 𝑧 = 𝑌))
85, 7xchbinxr 335 . . . . . . 7 (((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ¬ ((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌))
9 anass 468 . . . . . . . . 9 (((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌) ↔ (𝑋 < 𝑧 ∧ (𝑧 𝑌𝑧𝑌)))
10 cvrletr.l . . . . . . . . . . . . 13 = (le‘𝐾)
1110, 2pltval 18327 . . . . . . . . . . . 12 ((𝐾𝐴𝑧𝐵𝑌𝐵) → (𝑧 < 𝑌 ↔ (𝑧 𝑌𝑧𝑌)))
12113com23 1126 . . . . . . . . . . 11 ((𝐾𝐴𝑌𝐵𝑧𝐵) → (𝑧 < 𝑌 ↔ (𝑧 𝑌𝑧𝑌)))
13123expa 1118 . . . . . . . . . 10 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → (𝑧 < 𝑌 ↔ (𝑧 𝑌𝑧𝑌)))
1413anbi2d 630 . . . . . . . . 9 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → ((𝑋 < 𝑧𝑧 < 𝑌) ↔ (𝑋 < 𝑧 ∧ (𝑧 𝑌𝑧𝑌))))
159, 14bitr4id 290 . . . . . . . 8 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → (((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌) ↔ (𝑋 < 𝑧𝑧 < 𝑌)))
1615notbid 318 . . . . . . 7 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → (¬ ((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌) ↔ ¬ (𝑋 < 𝑧𝑧 < 𝑌)))
178, 16bitrid 283 . . . . . 6 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → (((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ¬ (𝑋 < 𝑧𝑧 < 𝑌)))
1817ralbidva 3159 . . . . 5 ((𝐾𝐴𝑌𝐵) → (∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ∀𝑧𝐵 ¬ (𝑋 < 𝑧𝑧 < 𝑌)))
19 ralnex 3061 . . . . 5 (∀𝑧𝐵 ¬ (𝑋 < 𝑧𝑧 < 𝑌) ↔ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))
2018, 19bitrdi 287 . . . 4 ((𝐾𝐴𝑌𝐵) → (∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌)))
2120anbi2d 630 . . 3 ((𝐾𝐴𝑌𝐵) → ((𝑋 < 𝑌 ∧ ∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌)) ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
22213adant2 1131 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → ((𝑋 < 𝑌 ∧ ∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌)) ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
234, 22bitr4d 282 1 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wral 3050  wrex 3059   class class class wbr 5116  cfv 6527  Basecbs 17213  lecple 17263  ltcplt 18305  ccvr 39201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-iota 6480  df-fun 6529  df-fv 6535  df-plt 18325  df-covers 39205
This theorem is referenced by:  isat3  39246  cvlcvr1  39278
  Copyright terms: Public domain W3C validator