Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval2 Structured version   Visualization version   GIF version

Theorem cvrval2 37288
Description: Binary relation expressing 𝑌 covers 𝑋. Definition of covers in [Kalmbach] p. 15. (cvbr2 30645 analog.) (Contributed by NM, 16-Nov-2011.)
Hypotheses
Ref Expression
cvrletr.b 𝐵 = (Base‘𝐾)
cvrletr.l = (le‘𝐾)
cvrletr.s < = (lt‘𝐾)
cvrletr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrval2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐾   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝐶(𝑧)   < (𝑧)   (𝑧)

Proof of Theorem cvrval2
StepHypRef Expression
1 cvrletr.b . . 3 𝐵 = (Base‘𝐾)
2 cvrletr.s . . 3 < = (lt‘𝐾)
3 cvrletr.c . . 3 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrval 37283 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
5 iman 402 . . . . . . . 8 (((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ¬ ((𝑋 < 𝑧𝑧 𝑌) ∧ ¬ 𝑧 = 𝑌))
6 df-ne 2944 . . . . . . . . 9 (𝑧𝑌 ↔ ¬ 𝑧 = 𝑌)
76anbi2i 623 . . . . . . . 8 (((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌) ↔ ((𝑋 < 𝑧𝑧 𝑌) ∧ ¬ 𝑧 = 𝑌))
85, 7xchbinxr 335 . . . . . . 7 (((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ¬ ((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌))
9 anass 469 . . . . . . . . 9 (((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌) ↔ (𝑋 < 𝑧 ∧ (𝑧 𝑌𝑧𝑌)))
10 cvrletr.l . . . . . . . . . . . . 13 = (le‘𝐾)
1110, 2pltval 18050 . . . . . . . . . . . 12 ((𝐾𝐴𝑧𝐵𝑌𝐵) → (𝑧 < 𝑌 ↔ (𝑧 𝑌𝑧𝑌)))
12113com23 1125 . . . . . . . . . . 11 ((𝐾𝐴𝑌𝐵𝑧𝐵) → (𝑧 < 𝑌 ↔ (𝑧 𝑌𝑧𝑌)))
13123expa 1117 . . . . . . . . . 10 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → (𝑧 < 𝑌 ↔ (𝑧 𝑌𝑧𝑌)))
1413anbi2d 629 . . . . . . . . 9 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → ((𝑋 < 𝑧𝑧 < 𝑌) ↔ (𝑋 < 𝑧 ∧ (𝑧 𝑌𝑧𝑌))))
159, 14bitr4id 290 . . . . . . . 8 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → (((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌) ↔ (𝑋 < 𝑧𝑧 < 𝑌)))
1615notbid 318 . . . . . . 7 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → (¬ ((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌) ↔ ¬ (𝑋 < 𝑧𝑧 < 𝑌)))
178, 16syl5bb 283 . . . . . 6 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → (((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ¬ (𝑋 < 𝑧𝑧 < 𝑌)))
1817ralbidva 3111 . . . . 5 ((𝐾𝐴𝑌𝐵) → (∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ∀𝑧𝐵 ¬ (𝑋 < 𝑧𝑧 < 𝑌)))
19 ralnex 3167 . . . . 5 (∀𝑧𝐵 ¬ (𝑋 < 𝑧𝑧 < 𝑌) ↔ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))
2018, 19bitrdi 287 . . . 4 ((𝐾𝐴𝑌𝐵) → (∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌)))
2120anbi2d 629 . . 3 ((𝐾𝐴𝑌𝐵) → ((𝑋 < 𝑌 ∧ ∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌)) ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
22213adant2 1130 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → ((𝑋 < 𝑌 ∧ ∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌)) ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
234, 22bitr4d 281 1 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065   class class class wbr 5074  cfv 6433  Basecbs 16912  lecple 16969  ltcplt 18026  ccvr 37276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-plt 18048  df-covers 37280
This theorem is referenced by:  isat3  37321  cvlcvr1  37353
  Copyright terms: Public domain W3C validator