Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval2 Structured version   Visualization version   GIF version

Theorem cvrval2 38607
Description: Binary relation expressing 𝑌 covers 𝑋. Definition of covers in [Kalmbach] p. 15. (cvbr2 31968 analog.) (Contributed by NM, 16-Nov-2011.)
Hypotheses
Ref Expression
cvrletr.b 𝐵 = (Base‘𝐾)
cvrletr.l = (le‘𝐾)
cvrletr.s < = (lt‘𝐾)
cvrletr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrval2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐾   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝐶(𝑧)   < (𝑧)   (𝑧)

Proof of Theorem cvrval2
StepHypRef Expression
1 cvrletr.b . . 3 𝐵 = (Base‘𝐾)
2 cvrletr.s . . 3 < = (lt‘𝐾)
3 cvrletr.c . . 3 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrval 38602 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
5 iman 401 . . . . . . . 8 (((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ¬ ((𝑋 < 𝑧𝑧 𝑌) ∧ ¬ 𝑧 = 𝑌))
6 df-ne 2940 . . . . . . . . 9 (𝑧𝑌 ↔ ¬ 𝑧 = 𝑌)
76anbi2i 622 . . . . . . . 8 (((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌) ↔ ((𝑋 < 𝑧𝑧 𝑌) ∧ ¬ 𝑧 = 𝑌))
85, 7xchbinxr 335 . . . . . . 7 (((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ¬ ((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌))
9 anass 468 . . . . . . . . 9 (((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌) ↔ (𝑋 < 𝑧 ∧ (𝑧 𝑌𝑧𝑌)))
10 cvrletr.l . . . . . . . . . . . . 13 = (le‘𝐾)
1110, 2pltval 18295 . . . . . . . . . . . 12 ((𝐾𝐴𝑧𝐵𝑌𝐵) → (𝑧 < 𝑌 ↔ (𝑧 𝑌𝑧𝑌)))
12113com23 1125 . . . . . . . . . . 11 ((𝐾𝐴𝑌𝐵𝑧𝐵) → (𝑧 < 𝑌 ↔ (𝑧 𝑌𝑧𝑌)))
13123expa 1117 . . . . . . . . . 10 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → (𝑧 < 𝑌 ↔ (𝑧 𝑌𝑧𝑌)))
1413anbi2d 628 . . . . . . . . 9 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → ((𝑋 < 𝑧𝑧 < 𝑌) ↔ (𝑋 < 𝑧 ∧ (𝑧 𝑌𝑧𝑌))))
159, 14bitr4id 290 . . . . . . . 8 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → (((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌) ↔ (𝑋 < 𝑧𝑧 < 𝑌)))
1615notbid 318 . . . . . . 7 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → (¬ ((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌) ↔ ¬ (𝑋 < 𝑧𝑧 < 𝑌)))
178, 16bitrid 283 . . . . . 6 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → (((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ¬ (𝑋 < 𝑧𝑧 < 𝑌)))
1817ralbidva 3174 . . . . 5 ((𝐾𝐴𝑌𝐵) → (∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ∀𝑧𝐵 ¬ (𝑋 < 𝑧𝑧 < 𝑌)))
19 ralnex 3071 . . . . 5 (∀𝑧𝐵 ¬ (𝑋 < 𝑧𝑧 < 𝑌) ↔ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))
2018, 19bitrdi 287 . . . 4 ((𝐾𝐴𝑌𝐵) → (∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌)))
2120anbi2d 628 . . 3 ((𝐾𝐴𝑌𝐵) → ((𝑋 < 𝑌 ∧ ∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌)) ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
22213adant2 1130 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → ((𝑋 < 𝑌 ∧ ∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌)) ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
234, 22bitr4d 282 1 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939  wral 3060  wrex 3069   class class class wbr 5148  cfv 6543  Basecbs 17151  lecple 17211  ltcplt 18271  ccvr 38595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-plt 18293  df-covers 38599
This theorem is referenced by:  isat3  38640  cvlcvr1  38672
  Copyright terms: Public domain W3C validator