Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval2 Structured version   Visualization version   GIF version

Theorem cvrval2 37215
Description: Binary relation expressing 𝑌 covers 𝑋. Definition of covers in [Kalmbach] p. 15. (cvbr2 30546 analog.) (Contributed by NM, 16-Nov-2011.)
Hypotheses
Ref Expression
cvrletr.b 𝐵 = (Base‘𝐾)
cvrletr.l = (le‘𝐾)
cvrletr.s < = (lt‘𝐾)
cvrletr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrval2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐾   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝐶(𝑧)   < (𝑧)   (𝑧)

Proof of Theorem cvrval2
StepHypRef Expression
1 cvrletr.b . . 3 𝐵 = (Base‘𝐾)
2 cvrletr.s . . 3 < = (lt‘𝐾)
3 cvrletr.c . . 3 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrval 37210 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
5 iman 401 . . . . . . . 8 (((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ¬ ((𝑋 < 𝑧𝑧 𝑌) ∧ ¬ 𝑧 = 𝑌))
6 df-ne 2943 . . . . . . . . 9 (𝑧𝑌 ↔ ¬ 𝑧 = 𝑌)
76anbi2i 622 . . . . . . . 8 (((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌) ↔ ((𝑋 < 𝑧𝑧 𝑌) ∧ ¬ 𝑧 = 𝑌))
85, 7xchbinxr 334 . . . . . . 7 (((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ¬ ((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌))
9 anass 468 . . . . . . . . 9 (((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌) ↔ (𝑋 < 𝑧 ∧ (𝑧 𝑌𝑧𝑌)))
10 cvrletr.l . . . . . . . . . . . . 13 = (le‘𝐾)
1110, 2pltval 17965 . . . . . . . . . . . 12 ((𝐾𝐴𝑧𝐵𝑌𝐵) → (𝑧 < 𝑌 ↔ (𝑧 𝑌𝑧𝑌)))
12113com23 1124 . . . . . . . . . . 11 ((𝐾𝐴𝑌𝐵𝑧𝐵) → (𝑧 < 𝑌 ↔ (𝑧 𝑌𝑧𝑌)))
13123expa 1116 . . . . . . . . . 10 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → (𝑧 < 𝑌 ↔ (𝑧 𝑌𝑧𝑌)))
1413anbi2d 628 . . . . . . . . 9 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → ((𝑋 < 𝑧𝑧 < 𝑌) ↔ (𝑋 < 𝑧 ∧ (𝑧 𝑌𝑧𝑌))))
159, 14bitr4id 289 . . . . . . . 8 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → (((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌) ↔ (𝑋 < 𝑧𝑧 < 𝑌)))
1615notbid 317 . . . . . . 7 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → (¬ ((𝑋 < 𝑧𝑧 𝑌) ∧ 𝑧𝑌) ↔ ¬ (𝑋 < 𝑧𝑧 < 𝑌)))
178, 16syl5bb 282 . . . . . 6 (((𝐾𝐴𝑌𝐵) ∧ 𝑧𝐵) → (((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ¬ (𝑋 < 𝑧𝑧 < 𝑌)))
1817ralbidva 3119 . . . . 5 ((𝐾𝐴𝑌𝐵) → (∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ∀𝑧𝐵 ¬ (𝑋 < 𝑧𝑧 < 𝑌)))
19 ralnex 3163 . . . . 5 (∀𝑧𝐵 ¬ (𝑋 < 𝑧𝑧 < 𝑌) ↔ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))
2018, 19bitrdi 286 . . . 4 ((𝐾𝐴𝑌𝐵) → (∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌) ↔ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌)))
2120anbi2d 628 . . 3 ((𝐾𝐴𝑌𝐵) → ((𝑋 < 𝑌 ∧ ∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌)) ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
22213adant2 1129 . 2 ((𝐾𝐴𝑋𝐵𝑌𝐵) → ((𝑋 < 𝑌 ∧ ∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌)) ↔ (𝑋 < 𝑌 ∧ ¬ ∃𝑧𝐵 (𝑋 < 𝑧𝑧 < 𝑌))))
234, 22bitr4d 281 1 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 < 𝑌 ∧ ∀𝑧𝐵 ((𝑋 < 𝑧𝑧 𝑌) → 𝑧 = 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064   class class class wbr 5070  cfv 6418  Basecbs 16840  lecple 16895  ltcplt 17941  ccvr 37203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-plt 17963  df-covers 37207
This theorem is referenced by:  isat3  37248  cvlcvr1  37280
  Copyright terms: Public domain W3C validator