MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrfi Structured version   Visualization version   GIF version

Theorem dchrfi 27182
Description: The group of Dirichlet characters is a finite group. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
dchrabl.g 𝐺 = (DChr‘𝑁)
dchrfi.b 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
dchrfi (𝑁 ∈ ℕ → 𝐷 ∈ Fin)

Proof of Theorem dchrfi
Dummy variables 𝑥 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snfi 8975 . . . 4 {0} ∈ Fin
2 cnex 11109 . . . . . . . . 9 ℂ ∈ V
32a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → ℂ ∈ V)
4 ovexd 7388 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℂ) → (𝑧↑(ϕ‘𝑁)) ∈ V)
5 1cnd 11129 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℂ) → 1 ∈ ℂ)
6 eqidd 2730 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) = (𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))))
7 fconstmpt 5685 . . . . . . . . 9 (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1)
87a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1))
93, 4, 5, 6, 8offval2 7637 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∘f − (ℂ × {1})) = (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)))
10 ssid 3960 . . . . . . . . . 10 ℂ ⊆ ℂ
1110a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → ℂ ⊆ ℂ)
12 1cnd 11129 . . . . . . . . 9 (𝑁 ∈ ℕ → 1 ∈ ℂ)
13 phicl 16698 . . . . . . . . . 10 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ)
1413nnnn0d 12463 . . . . . . . . 9 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ0)
15 plypow 26126 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ ∧ (ϕ‘𝑁) ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∈ (Poly‘ℂ))
1611, 12, 14, 15syl3anc 1373 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∈ (Poly‘ℂ))
17 ax-1cn 11086 . . . . . . . . 9 1 ∈ ℂ
18 plyconst 26127 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ) → (ℂ × {1}) ∈ (Poly‘ℂ))
1910, 17, 18mp2an 692 . . . . . . . 8 (ℂ × {1}) ∈ (Poly‘ℂ)
20 plysubcl 26143 . . . . . . . 8 (((𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∈ (Poly‘ℂ) ∧ (ℂ × {1}) ∈ (Poly‘ℂ)) → ((𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∘f − (ℂ × {1})) ∈ (Poly‘ℂ))
2116, 19, 20sylancl 586 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∘f − (ℂ × {1})) ∈ (Poly‘ℂ))
229, 21eqeltrrd 2829 . . . . . 6 (𝑁 ∈ ℕ → (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ∈ (Poly‘ℂ))
23 0cn 11126 . . . . . . 7 0 ∈ ℂ
24 neg1ne0 12133 . . . . . . . 8 -1 ≠ 0
25130expd 14064 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0↑(ϕ‘𝑁)) = 0)
2625oveq1d 7368 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((0↑(ϕ‘𝑁)) − 1) = (0 − 1))
27 oveq1 7360 . . . . . . . . . . . . 13 (𝑧 = 0 → (𝑧↑(ϕ‘𝑁)) = (0↑(ϕ‘𝑁)))
2827oveq1d 7368 . . . . . . . . . . . 12 (𝑧 = 0 → ((𝑧↑(ϕ‘𝑁)) − 1) = ((0↑(ϕ‘𝑁)) − 1))
29 eqid 2729 . . . . . . . . . . . 12 (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) = (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))
30 ovex 7386 . . . . . . . . . . . 12 ((0↑(ϕ‘𝑁)) − 1) ∈ V
3128, 29, 30fvmpt 6934 . . . . . . . . . . 11 (0 ∈ ℂ → ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) = ((0↑(ϕ‘𝑁)) − 1))
3223, 31ax-mp 5 . . . . . . . . . 10 ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) = ((0↑(ϕ‘𝑁)) − 1)
33 df-neg 11368 . . . . . . . . . 10 -1 = (0 − 1)
3426, 32, 333eqtr4g 2789 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) = -1)
3534neeq1d 2984 . . . . . . . 8 (𝑁 ∈ ℕ → (((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) ≠ 0 ↔ -1 ≠ 0))
3624, 35mpbiri 258 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) ≠ 0)
37 ne0p 26128 . . . . . . 7 ((0 ∈ ℂ ∧ ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) ≠ 0) → (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ≠ 0𝑝)
3823, 36, 37sylancr 587 . . . . . 6 (𝑁 ∈ ℕ → (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ≠ 0𝑝)
3929mptiniseg 6192 . . . . . . . . 9 (0 ∈ ℂ → ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) “ {0}) = {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})
4023, 39ax-mp 5 . . . . . . . 8 ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) “ {0}) = {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}
4140eqcomi 2738 . . . . . . 7 {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} = ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) “ {0})
4241fta1 26232 . . . . . 6 (((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ∈ (Poly‘ℂ) ∧ (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ≠ 0𝑝) → ({𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} ∈ Fin ∧ (♯‘{𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ≤ (deg‘(𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)))))
4322, 38, 42syl2anc 584 . . . . 5 (𝑁 ∈ ℕ → ({𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} ∈ Fin ∧ (♯‘{𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ≤ (deg‘(𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)))))
4443simpld 494 . . . 4 (𝑁 ∈ ℕ → {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} ∈ Fin)
45 unfi 9095 . . . 4 (({0} ∈ Fin ∧ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} ∈ Fin) → ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ∈ Fin)
461, 44, 45sylancr 587 . . 3 (𝑁 ∈ ℕ → ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ∈ Fin)
47 eqid 2729 . . . 4 (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁)
48 eqid 2729 . . . 4 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(ℤ/nℤ‘𝑁))
4947, 48znfi 21484 . . 3 (𝑁 ∈ ℕ → (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin)
50 mapfi 9257 . . 3 ((({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ∈ Fin ∧ (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin) → (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁))) ∈ Fin)
5146, 49, 50syl2anc 584 . 2 (𝑁 ∈ ℕ → (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁))) ∈ Fin)
52 dchrabl.g . . . . . . . 8 𝐺 = (DChr‘𝑁)
53 dchrfi.b . . . . . . . 8 𝐷 = (Base‘𝐺)
54 simpr 484 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → 𝑓𝐷)
5552, 47, 53, 48, 54dchrf 27169 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → 𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
5655ffnd 6657 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → 𝑓 Fn (Base‘(ℤ/nℤ‘𝑁)))
57 df-ne 2926 . . . . . . . . . . 11 ((𝑓𝑥) ≠ 0 ↔ ¬ (𝑓𝑥) = 0)
58 fvex 6839 . . . . . . . . . . . 12 (𝑓𝑥) ∈ V
5958elsn 4594 . . . . . . . . . . 11 ((𝑓𝑥) ∈ {0} ↔ (𝑓𝑥) = 0)
6057, 59xchbinxr 335 . . . . . . . . . 10 ((𝑓𝑥) ≠ 0 ↔ ¬ (𝑓𝑥) ∈ {0})
61 oveq1 7360 . . . . . . . . . . . . . 14 (𝑧 = (𝑓𝑥) → (𝑧↑(ϕ‘𝑁)) = ((𝑓𝑥)↑(ϕ‘𝑁)))
6261oveq1d 7368 . . . . . . . . . . . . 13 (𝑧 = (𝑓𝑥) → ((𝑧↑(ϕ‘𝑁)) − 1) = (((𝑓𝑥)↑(ϕ‘𝑁)) − 1))
6362eqeq1d 2731 . . . . . . . . . . . 12 (𝑧 = (𝑓𝑥) → (((𝑧↑(ϕ‘𝑁)) − 1) = 0 ↔ (((𝑓𝑥)↑(ϕ‘𝑁)) − 1) = 0))
64 simpl 482 . . . . . . . . . . . . 13 ((𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
65 ffvelcdm 7019 . . . . . . . . . . . . 13 ((𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑓𝑥) ∈ ℂ)
6655, 64, 65syl2an 596 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓𝑥) ∈ ℂ)
6752, 47, 53dchrmhm 27168 . . . . . . . . . . . . . . . . . 18 𝐷 ⊆ ((mulGrp‘(ℤ/nℤ‘𝑁)) MndHom (mulGrp‘ℂfld))
68 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → 𝑓𝐷)
6967, 68sselid 3935 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → 𝑓 ∈ ((mulGrp‘(ℤ/nℤ‘𝑁)) MndHom (mulGrp‘ℂfld)))
7014ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (ϕ‘𝑁) ∈ ℕ0)
71 simprl 770 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
72 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (mulGrp‘(ℤ/nℤ‘𝑁)) = (mulGrp‘(ℤ/nℤ‘𝑁))
7372, 48mgpbas 20048 . . . . . . . . . . . . . . . . . 18 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(mulGrp‘(ℤ/nℤ‘𝑁)))
74 eqid 2729 . . . . . . . . . . . . . . . . . 18 (.g‘(mulGrp‘(ℤ/nℤ‘𝑁))) = (.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))
75 eqid 2729 . . . . . . . . . . . . . . . . . 18 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
7673, 74, 75mhmmulg 19012 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ ((mulGrp‘(ℤ/nℤ‘𝑁)) MndHom (mulGrp‘ℂfld)) ∧ (ϕ‘𝑁) ∈ ℕ0𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑓‘((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥)) = ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)))
7769, 70, 71, 76syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓‘((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥)) = ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)))
78 nnnn0 12409 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
7947zncrng 21469 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) ∈ CRing)
8078, 79syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (ℤ/nℤ‘𝑁) ∈ CRing)
81 crngring 20148 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ℤ/nℤ‘𝑁) ∈ CRing → (ℤ/nℤ‘𝑁) ∈ Ring)
8280, 81syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (ℤ/nℤ‘𝑁) ∈ Ring)
8382ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (ℤ/nℤ‘𝑁) ∈ Ring)
84 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . 23 (Unit‘(ℤ/nℤ‘𝑁)) = (Unit‘(ℤ/nℤ‘𝑁))
85 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . 23 ((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) = ((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))
8684, 85unitgrp 20286 . . . . . . . . . . . . . . . . . . . . . 22 ((ℤ/nℤ‘𝑁) ∈ Ring → ((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) ∈ Grp)
8783, 86syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) ∈ Grp)
8847, 84znunithash 21489 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (♯‘(Unit‘(ℤ/nℤ‘𝑁))) = (ϕ‘𝑁))
8988, 14eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (♯‘(Unit‘(ℤ/nℤ‘𝑁))) ∈ ℕ0)
90 fvex 6839 . . . . . . . . . . . . . . . . . . . . . . . 24 (Unit‘(ℤ/nℤ‘𝑁)) ∈ V
91 hashclb 14283 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Unit‘(ℤ/nℤ‘𝑁)) ∈ V → ((Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin ↔ (♯‘(Unit‘(ℤ/nℤ‘𝑁))) ∈ ℕ0))
9290, 91ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 ((Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin ↔ (♯‘(Unit‘(ℤ/nℤ‘𝑁))) ∈ ℕ0)
9389, 92sylibr 234 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → (Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin)
9493ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin)
95 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓𝑥) ≠ 0)
9652, 47, 53, 48, 84, 68, 71dchrn0 27177 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((𝑓𝑥) ≠ 0 ↔ 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))))
9795, 96mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))
9884, 85unitgrpbas 20285 . . . . . . . . . . . . . . . . . . . . . 22 (Unit‘(ℤ/nℤ‘𝑁)) = (Base‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))
99 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))) = (od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))
10098, 99oddvds2 19463 . . . . . . . . . . . . . . . . . . . . 21 ((((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) ∈ Grp ∧ (Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin ∧ 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (♯‘(Unit‘(ℤ/nℤ‘𝑁))))
10187, 94, 97, 100syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (♯‘(Unit‘(ℤ/nℤ‘𝑁))))
10288ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (♯‘(Unit‘(ℤ/nℤ‘𝑁))) = (ϕ‘𝑁))
103101, 102breqtrd 5121 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (ϕ‘𝑁))
10413ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (ϕ‘𝑁) ∈ ℕ)
105104nnzd 12516 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (ϕ‘𝑁) ∈ ℤ)
106 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))) = (.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))
107 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))
10898, 99, 106, 107oddvds 19444 . . . . . . . . . . . . . . . . . . . 20 ((((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) ∈ Grp ∧ 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ (ϕ‘𝑁) ∈ ℤ) → (((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (ϕ‘𝑁) ↔ ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))))
10987, 97, 105, 108syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (ϕ‘𝑁) ↔ ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))))
110103, 109mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))))
11184, 72unitsubm 20289 . . . . . . . . . . . . . . . . . . . 20 ((ℤ/nℤ‘𝑁) ∈ Ring → (Unit‘(ℤ/nℤ‘𝑁)) ∈ (SubMnd‘(mulGrp‘(ℤ/nℤ‘𝑁))))
11283, 111syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (Unit‘(ℤ/nℤ‘𝑁)) ∈ (SubMnd‘(mulGrp‘(ℤ/nℤ‘𝑁))))
11374, 85, 106submmulg 19015 . . . . . . . . . . . . . . . . . . 19 (((Unit‘(ℤ/nℤ‘𝑁)) ∈ (SubMnd‘(mulGrp‘(ℤ/nℤ‘𝑁))) ∧ (ϕ‘𝑁) ∈ ℕ0𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥) = ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥))
114112, 70, 97, 113syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥) = ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥))
115 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (1r‘(ℤ/nℤ‘𝑁)) = (1r‘(ℤ/nℤ‘𝑁))
11672, 115ringidval 20086 . . . . . . . . . . . . . . . . . . . 20 (1r‘(ℤ/nℤ‘𝑁)) = (0g‘(mulGrp‘(ℤ/nℤ‘𝑁)))
11785, 116subm0 18707 . . . . . . . . . . . . . . . . . . 19 ((Unit‘(ℤ/nℤ‘𝑁)) ∈ (SubMnd‘(mulGrp‘(ℤ/nℤ‘𝑁))) → (1r‘(ℤ/nℤ‘𝑁)) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))))
118112, 117syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (1r‘(ℤ/nℤ‘𝑁)) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))))
119110, 114, 1183eqtr4d 2774 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥) = (1r‘(ℤ/nℤ‘𝑁)))
120119fveq2d 6830 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓‘((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥)) = (𝑓‘(1r‘(ℤ/nℤ‘𝑁))))
12177, 120eqtr3d 2766 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)) = (𝑓‘(1r‘(ℤ/nℤ‘𝑁))))
122 cnfldexp 21329 . . . . . . . . . . . . . . . 16 (((𝑓𝑥) ∈ ℂ ∧ (ϕ‘𝑁) ∈ ℕ0) → ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)) = ((𝑓𝑥)↑(ϕ‘𝑁)))
12366, 70, 122syl2anc 584 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)) = ((𝑓𝑥)↑(ϕ‘𝑁)))
124 eqid 2729 . . . . . . . . . . . . . . . . . 18 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
125 cnfld1 21318 . . . . . . . . . . . . . . . . . 18 1 = (1r‘ℂfld)
126124, 125ringidval 20086 . . . . . . . . . . . . . . . . 17 1 = (0g‘(mulGrp‘ℂfld))
127116, 126mhm0 18686 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ((mulGrp‘(ℤ/nℤ‘𝑁)) MndHom (mulGrp‘ℂfld)) → (𝑓‘(1r‘(ℤ/nℤ‘𝑁))) = 1)
12869, 127syl 17 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓‘(1r‘(ℤ/nℤ‘𝑁))) = 1)
129121, 123, 1283eqtr3d 2772 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((𝑓𝑥)↑(ϕ‘𝑁)) = 1)
130129oveq1d 7368 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (((𝑓𝑥)↑(ϕ‘𝑁)) − 1) = (1 − 1))
131 1m1e0 12218 . . . . . . . . . . . . 13 (1 − 1) = 0
132130, 131eqtrdi 2780 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (((𝑓𝑥)↑(ϕ‘𝑁)) − 1) = 0)
13363, 66, 132elrabd 3652 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})
134133expr 456 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((𝑓𝑥) ≠ 0 → (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
13560, 134biimtrrid 243 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (¬ (𝑓𝑥) ∈ {0} → (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
136135orrd 863 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((𝑓𝑥) ∈ {0} ∨ (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
137 elun 4106 . . . . . . . 8 ((𝑓𝑥) ∈ ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↔ ((𝑓𝑥) ∈ {0} ∨ (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
138136, 137sylibr 234 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑓𝑥) ∈ ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
139138ralrimiva 3121 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑓𝑥) ∈ ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
140 ffnfv 7057 . . . . . 6 (𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↔ (𝑓 Fn (Base‘(ℤ/nℤ‘𝑁)) ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑓𝑥) ∈ ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})))
14156, 139, 140sylanbrc 583 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → 𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
142141ex 412 . . . 4 (𝑁 ∈ ℕ → (𝑓𝐷𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})))
14346, 49elmapd 8774 . . . 4 (𝑁 ∈ ℕ → (𝑓 ∈ (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁))) ↔ 𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})))
144142, 143sylibrd 259 . . 3 (𝑁 ∈ ℕ → (𝑓𝐷𝑓 ∈ (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁)))))
145144ssrdv 3943 . 2 (𝑁 ∈ ℕ → 𝐷 ⊆ (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁))))
14651, 145ssfid 9170 1 (𝑁 ∈ ℕ → 𝐷 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3396  Vcvv 3438  cun 3903  wss 3905  {csn 4579   class class class wbr 5095  cmpt 5176   × cxp 5621  ccnv 5622  cima 5626   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  f cof 7615  m cmap 8760  Fincfn 8879  cc 11026  0cc0 11028  1c1 11029  cle 11169  cmin 11365  -cneg 11366  cn 12146  0cn0 12402  cz 12489  cexp 13986  chash 14255  cdvds 16181  ϕcphi 16693  Basecbs 17138  s cress 17159  0gc0g 17361   MndHom cmhm 18673  SubMndcsubmnd 18674  Grpcgrp 18830  .gcmg 18964  odcod 19421  mulGrpcmgp 20043  1rcur 20084  Ringcrg 20136  CRingccrg 20137  Unitcui 20258  fldccnfld 21279  ℤ/nczn 21427  0𝑝c0p 25586  Polycply 26105  degcdgr 26108  DChrcdchr 27159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-omul 8400  df-er 8632  df-ec 8634  df-qs 8638  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-dvds 16182  df-gcd 16424  df-phi 16695  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-0g 17363  df-imas 17430  df-qus 17431  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-nsg 19021  df-eqg 19022  df-ghm 19110  df-od 19425  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-rhm 20375  df-subrng 20449  df-subrg 20473  df-lmod 20783  df-lss 20853  df-lsp 20893  df-sra 21095  df-rgmod 21096  df-lidl 21133  df-rsp 21134  df-2idl 21175  df-cnfld 21280  df-zring 21372  df-zrh 21428  df-zn 21431  df-0p 25587  df-ply 26109  df-idp 26110  df-coe 26111  df-dgr 26112  df-quot 26215  df-dchr 27160
This theorem is referenced by:  sumdchr2  27197  dchrhash  27198  rpvmasum2  27439  dchrisum0re  27440
  Copyright terms: Public domain W3C validator