MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrfi Structured version   Visualization version   GIF version

Theorem dchrfi 27172
Description: The group of Dirichlet characters is a finite group. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
dchrabl.g 𝐺 = (DChr‘𝑁)
dchrfi.b 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
dchrfi (𝑁 ∈ ℕ → 𝐷 ∈ Fin)

Proof of Theorem dchrfi
Dummy variables 𝑥 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snfi 9016 . . . 4 {0} ∈ Fin
2 cnex 11155 . . . . . . . . 9 ℂ ∈ V
32a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → ℂ ∈ V)
4 ovexd 7424 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℂ) → (𝑧↑(ϕ‘𝑁)) ∈ V)
5 1cnd 11175 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℂ) → 1 ∈ ℂ)
6 eqidd 2731 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) = (𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))))
7 fconstmpt 5702 . . . . . . . . 9 (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1)
87a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1))
93, 4, 5, 6, 8offval2 7675 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∘f − (ℂ × {1})) = (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)))
10 ssid 3971 . . . . . . . . . 10 ℂ ⊆ ℂ
1110a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → ℂ ⊆ ℂ)
12 1cnd 11175 . . . . . . . . 9 (𝑁 ∈ ℕ → 1 ∈ ℂ)
13 phicl 16745 . . . . . . . . . 10 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ)
1413nnnn0d 12509 . . . . . . . . 9 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ0)
15 plypow 26116 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ ∧ (ϕ‘𝑁) ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∈ (Poly‘ℂ))
1611, 12, 14, 15syl3anc 1373 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∈ (Poly‘ℂ))
17 ax-1cn 11132 . . . . . . . . 9 1 ∈ ℂ
18 plyconst 26117 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ) → (ℂ × {1}) ∈ (Poly‘ℂ))
1910, 17, 18mp2an 692 . . . . . . . 8 (ℂ × {1}) ∈ (Poly‘ℂ)
20 plysubcl 26133 . . . . . . . 8 (((𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∈ (Poly‘ℂ) ∧ (ℂ × {1}) ∈ (Poly‘ℂ)) → ((𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∘f − (ℂ × {1})) ∈ (Poly‘ℂ))
2116, 19, 20sylancl 586 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∘f − (ℂ × {1})) ∈ (Poly‘ℂ))
229, 21eqeltrrd 2830 . . . . . 6 (𝑁 ∈ ℕ → (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ∈ (Poly‘ℂ))
23 0cn 11172 . . . . . . 7 0 ∈ ℂ
24 neg1ne0 12303 . . . . . . . 8 -1 ≠ 0
25130expd 14110 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0↑(ϕ‘𝑁)) = 0)
2625oveq1d 7404 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((0↑(ϕ‘𝑁)) − 1) = (0 − 1))
27 oveq1 7396 . . . . . . . . . . . . 13 (𝑧 = 0 → (𝑧↑(ϕ‘𝑁)) = (0↑(ϕ‘𝑁)))
2827oveq1d 7404 . . . . . . . . . . . 12 (𝑧 = 0 → ((𝑧↑(ϕ‘𝑁)) − 1) = ((0↑(ϕ‘𝑁)) − 1))
29 eqid 2730 . . . . . . . . . . . 12 (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) = (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))
30 ovex 7422 . . . . . . . . . . . 12 ((0↑(ϕ‘𝑁)) − 1) ∈ V
3128, 29, 30fvmpt 6970 . . . . . . . . . . 11 (0 ∈ ℂ → ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) = ((0↑(ϕ‘𝑁)) − 1))
3223, 31ax-mp 5 . . . . . . . . . 10 ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) = ((0↑(ϕ‘𝑁)) − 1)
33 df-neg 11414 . . . . . . . . . 10 -1 = (0 − 1)
3426, 32, 333eqtr4g 2790 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) = -1)
3534neeq1d 2985 . . . . . . . 8 (𝑁 ∈ ℕ → (((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) ≠ 0 ↔ -1 ≠ 0))
3624, 35mpbiri 258 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) ≠ 0)
37 ne0p 26118 . . . . . . 7 ((0 ∈ ℂ ∧ ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) ≠ 0) → (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ≠ 0𝑝)
3823, 36, 37sylancr 587 . . . . . 6 (𝑁 ∈ ℕ → (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ≠ 0𝑝)
3929mptiniseg 6214 . . . . . . . . 9 (0 ∈ ℂ → ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) “ {0}) = {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})
4023, 39ax-mp 5 . . . . . . . 8 ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) “ {0}) = {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}
4140eqcomi 2739 . . . . . . 7 {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} = ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) “ {0})
4241fta1 26222 . . . . . 6 (((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ∈ (Poly‘ℂ) ∧ (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ≠ 0𝑝) → ({𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} ∈ Fin ∧ (♯‘{𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ≤ (deg‘(𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)))))
4322, 38, 42syl2anc 584 . . . . 5 (𝑁 ∈ ℕ → ({𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} ∈ Fin ∧ (♯‘{𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ≤ (deg‘(𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)))))
4443simpld 494 . . . 4 (𝑁 ∈ ℕ → {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} ∈ Fin)
45 unfi 9140 . . . 4 (({0} ∈ Fin ∧ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} ∈ Fin) → ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ∈ Fin)
461, 44, 45sylancr 587 . . 3 (𝑁 ∈ ℕ → ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ∈ Fin)
47 eqid 2730 . . . 4 (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁)
48 eqid 2730 . . . 4 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(ℤ/nℤ‘𝑁))
4947, 48znfi 21475 . . 3 (𝑁 ∈ ℕ → (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin)
50 mapfi 9305 . . 3 ((({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ∈ Fin ∧ (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin) → (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁))) ∈ Fin)
5146, 49, 50syl2anc 584 . 2 (𝑁 ∈ ℕ → (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁))) ∈ Fin)
52 dchrabl.g . . . . . . . 8 𝐺 = (DChr‘𝑁)
53 dchrfi.b . . . . . . . 8 𝐷 = (Base‘𝐺)
54 simpr 484 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → 𝑓𝐷)
5552, 47, 53, 48, 54dchrf 27159 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → 𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
5655ffnd 6691 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → 𝑓 Fn (Base‘(ℤ/nℤ‘𝑁)))
57 df-ne 2927 . . . . . . . . . . 11 ((𝑓𝑥) ≠ 0 ↔ ¬ (𝑓𝑥) = 0)
58 fvex 6873 . . . . . . . . . . . 12 (𝑓𝑥) ∈ V
5958elsn 4606 . . . . . . . . . . 11 ((𝑓𝑥) ∈ {0} ↔ (𝑓𝑥) = 0)
6057, 59xchbinxr 335 . . . . . . . . . 10 ((𝑓𝑥) ≠ 0 ↔ ¬ (𝑓𝑥) ∈ {0})
61 oveq1 7396 . . . . . . . . . . . . . 14 (𝑧 = (𝑓𝑥) → (𝑧↑(ϕ‘𝑁)) = ((𝑓𝑥)↑(ϕ‘𝑁)))
6261oveq1d 7404 . . . . . . . . . . . . 13 (𝑧 = (𝑓𝑥) → ((𝑧↑(ϕ‘𝑁)) − 1) = (((𝑓𝑥)↑(ϕ‘𝑁)) − 1))
6362eqeq1d 2732 . . . . . . . . . . . 12 (𝑧 = (𝑓𝑥) → (((𝑧↑(ϕ‘𝑁)) − 1) = 0 ↔ (((𝑓𝑥)↑(ϕ‘𝑁)) − 1) = 0))
64 simpl 482 . . . . . . . . . . . . 13 ((𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
65 ffvelcdm 7055 . . . . . . . . . . . . 13 ((𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑓𝑥) ∈ ℂ)
6655, 64, 65syl2an 596 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓𝑥) ∈ ℂ)
6752, 47, 53dchrmhm 27158 . . . . . . . . . . . . . . . . . 18 𝐷 ⊆ ((mulGrp‘(ℤ/nℤ‘𝑁)) MndHom (mulGrp‘ℂfld))
68 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → 𝑓𝐷)
6967, 68sselid 3946 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → 𝑓 ∈ ((mulGrp‘(ℤ/nℤ‘𝑁)) MndHom (mulGrp‘ℂfld)))
7014ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (ϕ‘𝑁) ∈ ℕ0)
71 simprl 770 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
72 eqid 2730 . . . . . . . . . . . . . . . . . . 19 (mulGrp‘(ℤ/nℤ‘𝑁)) = (mulGrp‘(ℤ/nℤ‘𝑁))
7372, 48mgpbas 20060 . . . . . . . . . . . . . . . . . 18 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(mulGrp‘(ℤ/nℤ‘𝑁)))
74 eqid 2730 . . . . . . . . . . . . . . . . . 18 (.g‘(mulGrp‘(ℤ/nℤ‘𝑁))) = (.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))
75 eqid 2730 . . . . . . . . . . . . . . . . . 18 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
7673, 74, 75mhmmulg 19053 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ ((mulGrp‘(ℤ/nℤ‘𝑁)) MndHom (mulGrp‘ℂfld)) ∧ (ϕ‘𝑁) ∈ ℕ0𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑓‘((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥)) = ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)))
7769, 70, 71, 76syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓‘((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥)) = ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)))
78 nnnn0 12455 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
7947zncrng 21460 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) ∈ CRing)
8078, 79syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (ℤ/nℤ‘𝑁) ∈ CRing)
81 crngring 20160 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ℤ/nℤ‘𝑁) ∈ CRing → (ℤ/nℤ‘𝑁) ∈ Ring)
8280, 81syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (ℤ/nℤ‘𝑁) ∈ Ring)
8382ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (ℤ/nℤ‘𝑁) ∈ Ring)
84 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . 23 (Unit‘(ℤ/nℤ‘𝑁)) = (Unit‘(ℤ/nℤ‘𝑁))
85 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . 23 ((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) = ((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))
8684, 85unitgrp 20298 . . . . . . . . . . . . . . . . . . . . . 22 ((ℤ/nℤ‘𝑁) ∈ Ring → ((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) ∈ Grp)
8783, 86syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) ∈ Grp)
8847, 84znunithash 21480 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (♯‘(Unit‘(ℤ/nℤ‘𝑁))) = (ϕ‘𝑁))
8988, 14eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (♯‘(Unit‘(ℤ/nℤ‘𝑁))) ∈ ℕ0)
90 fvex 6873 . . . . . . . . . . . . . . . . . . . . . . . 24 (Unit‘(ℤ/nℤ‘𝑁)) ∈ V
91 hashclb 14329 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Unit‘(ℤ/nℤ‘𝑁)) ∈ V → ((Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin ↔ (♯‘(Unit‘(ℤ/nℤ‘𝑁))) ∈ ℕ0))
9290, 91ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 ((Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin ↔ (♯‘(Unit‘(ℤ/nℤ‘𝑁))) ∈ ℕ0)
9389, 92sylibr 234 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → (Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin)
9493ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin)
95 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓𝑥) ≠ 0)
9652, 47, 53, 48, 84, 68, 71dchrn0 27167 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((𝑓𝑥) ≠ 0 ↔ 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))))
9795, 96mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))
9884, 85unitgrpbas 20297 . . . . . . . . . . . . . . . . . . . . . 22 (Unit‘(ℤ/nℤ‘𝑁)) = (Base‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))
99 eqid 2730 . . . . . . . . . . . . . . . . . . . . . 22 (od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))) = (od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))
10098, 99oddvds2 19502 . . . . . . . . . . . . . . . . . . . . 21 ((((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) ∈ Grp ∧ (Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin ∧ 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (♯‘(Unit‘(ℤ/nℤ‘𝑁))))
10187, 94, 97, 100syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (♯‘(Unit‘(ℤ/nℤ‘𝑁))))
10288ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (♯‘(Unit‘(ℤ/nℤ‘𝑁))) = (ϕ‘𝑁))
103101, 102breqtrd 5135 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (ϕ‘𝑁))
10413ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (ϕ‘𝑁) ∈ ℕ)
105104nnzd 12562 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (ϕ‘𝑁) ∈ ℤ)
106 eqid 2730 . . . . . . . . . . . . . . . . . . . . 21 (.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))) = (.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))
107 eqid 2730 . . . . . . . . . . . . . . . . . . . . 21 (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))
10898, 99, 106, 107oddvds 19483 . . . . . . . . . . . . . . . . . . . 20 ((((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) ∈ Grp ∧ 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ (ϕ‘𝑁) ∈ ℤ) → (((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (ϕ‘𝑁) ↔ ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))))
10987, 97, 105, 108syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (ϕ‘𝑁) ↔ ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))))
110103, 109mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))))
11184, 72unitsubm 20301 . . . . . . . . . . . . . . . . . . . 20 ((ℤ/nℤ‘𝑁) ∈ Ring → (Unit‘(ℤ/nℤ‘𝑁)) ∈ (SubMnd‘(mulGrp‘(ℤ/nℤ‘𝑁))))
11283, 111syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (Unit‘(ℤ/nℤ‘𝑁)) ∈ (SubMnd‘(mulGrp‘(ℤ/nℤ‘𝑁))))
11374, 85, 106submmulg 19056 . . . . . . . . . . . . . . . . . . 19 (((Unit‘(ℤ/nℤ‘𝑁)) ∈ (SubMnd‘(mulGrp‘(ℤ/nℤ‘𝑁))) ∧ (ϕ‘𝑁) ∈ ℕ0𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥) = ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥))
114112, 70, 97, 113syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥) = ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥))
115 eqid 2730 . . . . . . . . . . . . . . . . . . . . 21 (1r‘(ℤ/nℤ‘𝑁)) = (1r‘(ℤ/nℤ‘𝑁))
11672, 115ringidval 20098 . . . . . . . . . . . . . . . . . . . 20 (1r‘(ℤ/nℤ‘𝑁)) = (0g‘(mulGrp‘(ℤ/nℤ‘𝑁)))
11785, 116subm0 18748 . . . . . . . . . . . . . . . . . . 19 ((Unit‘(ℤ/nℤ‘𝑁)) ∈ (SubMnd‘(mulGrp‘(ℤ/nℤ‘𝑁))) → (1r‘(ℤ/nℤ‘𝑁)) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))))
118112, 117syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (1r‘(ℤ/nℤ‘𝑁)) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))))
119110, 114, 1183eqtr4d 2775 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥) = (1r‘(ℤ/nℤ‘𝑁)))
120119fveq2d 6864 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓‘((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥)) = (𝑓‘(1r‘(ℤ/nℤ‘𝑁))))
12177, 120eqtr3d 2767 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)) = (𝑓‘(1r‘(ℤ/nℤ‘𝑁))))
122 cnfldexp 21322 . . . . . . . . . . . . . . . 16 (((𝑓𝑥) ∈ ℂ ∧ (ϕ‘𝑁) ∈ ℕ0) → ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)) = ((𝑓𝑥)↑(ϕ‘𝑁)))
12366, 70, 122syl2anc 584 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)) = ((𝑓𝑥)↑(ϕ‘𝑁)))
124 eqid 2730 . . . . . . . . . . . . . . . . . 18 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
125 cnfld1 21311 . . . . . . . . . . . . . . . . . 18 1 = (1r‘ℂfld)
126124, 125ringidval 20098 . . . . . . . . . . . . . . . . 17 1 = (0g‘(mulGrp‘ℂfld))
127116, 126mhm0 18727 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ((mulGrp‘(ℤ/nℤ‘𝑁)) MndHom (mulGrp‘ℂfld)) → (𝑓‘(1r‘(ℤ/nℤ‘𝑁))) = 1)
12869, 127syl 17 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓‘(1r‘(ℤ/nℤ‘𝑁))) = 1)
129121, 123, 1283eqtr3d 2773 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((𝑓𝑥)↑(ϕ‘𝑁)) = 1)
130129oveq1d 7404 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (((𝑓𝑥)↑(ϕ‘𝑁)) − 1) = (1 − 1))
131 1m1e0 12259 . . . . . . . . . . . . 13 (1 − 1) = 0
132130, 131eqtrdi 2781 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (((𝑓𝑥)↑(ϕ‘𝑁)) − 1) = 0)
13363, 66, 132elrabd 3663 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})
134133expr 456 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((𝑓𝑥) ≠ 0 → (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
13560, 134biimtrrid 243 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (¬ (𝑓𝑥) ∈ {0} → (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
136135orrd 863 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((𝑓𝑥) ∈ {0} ∨ (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
137 elun 4118 . . . . . . . 8 ((𝑓𝑥) ∈ ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↔ ((𝑓𝑥) ∈ {0} ∨ (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
138136, 137sylibr 234 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑓𝑥) ∈ ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
139138ralrimiva 3126 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑓𝑥) ∈ ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
140 ffnfv 7093 . . . . . 6 (𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↔ (𝑓 Fn (Base‘(ℤ/nℤ‘𝑁)) ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑓𝑥) ∈ ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})))
14156, 139, 140sylanbrc 583 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → 𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
142141ex 412 . . . 4 (𝑁 ∈ ℕ → (𝑓𝐷𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})))
14346, 49elmapd 8815 . . . 4 (𝑁 ∈ ℕ → (𝑓 ∈ (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁))) ↔ 𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})))
144142, 143sylibrd 259 . . 3 (𝑁 ∈ ℕ → (𝑓𝐷𝑓 ∈ (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁)))))
145144ssrdv 3954 . 2 (𝑁 ∈ ℕ → 𝐷 ⊆ (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁))))
14651, 145ssfid 9218 1 (𝑁 ∈ ℕ → 𝐷 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wral 3045  {crab 3408  Vcvv 3450  cun 3914  wss 3916  {csn 4591   class class class wbr 5109  cmpt 5190   × cxp 5638  ccnv 5639  cima 5643   Fn wfn 6508  wf 6509  cfv 6513  (class class class)co 7389  f cof 7653  m cmap 8801  Fincfn 8920  cc 11072  0cc0 11074  1c1 11075  cle 11215  cmin 11411  -cneg 11412  cn 12187  0cn0 12448  cz 12535  cexp 14032  chash 14301  cdvds 16228  ϕcphi 16740  Basecbs 17185  s cress 17206  0gc0g 17408   MndHom cmhm 18714  SubMndcsubmnd 18715  Grpcgrp 18871  .gcmg 19005  odcod 19460  mulGrpcmgp 20055  1rcur 20096  Ringcrg 20148  CRingccrg 20149  Unitcui 20270  fldccnfld 21270  ℤ/nczn 21418  0𝑝c0p 25576  Polycply 26095  degcdgr 26098  DChrcdchr 27149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152  ax-addf 11153  ax-mulf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-disj 5077  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-oadd 8440  df-omul 8441  df-er 8673  df-ec 8675  df-qs 8679  df-map 8803  df-pm 8804  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-oi 9469  df-dju 9860  df-card 9898  df-acn 9901  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-xnn0 12522  df-z 12536  df-dec 12656  df-uz 12800  df-rp 12958  df-fz 13475  df-fzo 13622  df-fl 13760  df-mod 13838  df-seq 13973  df-exp 14033  df-hash 14302  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-clim 15460  df-rlim 15461  df-sum 15659  df-dvds 16229  df-gcd 16471  df-phi 16742  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-0g 17410  df-imas 17477  df-qus 17478  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-nsg 19062  df-eqg 19063  df-ghm 19151  df-od 19464  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-cring 20151  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-rhm 20387  df-subrng 20461  df-subrg 20485  df-lmod 20774  df-lss 20844  df-lsp 20884  df-sra 21086  df-rgmod 21087  df-lidl 21124  df-rsp 21125  df-2idl 21166  df-cnfld 21271  df-zring 21363  df-zrh 21419  df-zn 21422  df-0p 25577  df-ply 26099  df-idp 26100  df-coe 26101  df-dgr 26102  df-quot 26205  df-dchr 27150
This theorem is referenced by:  sumdchr2  27187  dchrhash  27188  rpvmasum2  27429  dchrisum0re  27430
  Copyright terms: Public domain W3C validator