MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrfi Structured version   Visualization version   GIF version

Theorem dchrfi 26603
Description: The group of Dirichlet characters is a finite group. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
dchrabl.g 𝐺 = (DChr‘𝑁)
dchrfi.b 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
dchrfi (𝑁 ∈ ℕ → 𝐷 ∈ Fin)

Proof of Theorem dchrfi
Dummy variables 𝑥 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snfi 8988 . . . 4 {0} ∈ Fin
2 cnex 11132 . . . . . . . . 9 ℂ ∈ V
32a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → ℂ ∈ V)
4 ovexd 7392 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℂ) → (𝑧↑(ϕ‘𝑁)) ∈ V)
5 1cnd 11150 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℂ) → 1 ∈ ℂ)
6 eqidd 2737 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) = (𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))))
7 fconstmpt 5694 . . . . . . . . 9 (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1)
87a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1))
93, 4, 5, 6, 8offval2 7637 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∘f − (ℂ × {1})) = (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)))
10 ssid 3966 . . . . . . . . . 10 ℂ ⊆ ℂ
1110a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → ℂ ⊆ ℂ)
12 1cnd 11150 . . . . . . . . 9 (𝑁 ∈ ℕ → 1 ∈ ℂ)
13 phicl 16641 . . . . . . . . . 10 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ)
1413nnnn0d 12473 . . . . . . . . 9 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ0)
15 plypow 25566 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ ∧ (ϕ‘𝑁) ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∈ (Poly‘ℂ))
1611, 12, 14, 15syl3anc 1371 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∈ (Poly‘ℂ))
17 ax-1cn 11109 . . . . . . . . 9 1 ∈ ℂ
18 plyconst 25567 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ) → (ℂ × {1}) ∈ (Poly‘ℂ))
1910, 17, 18mp2an 690 . . . . . . . 8 (ℂ × {1}) ∈ (Poly‘ℂ)
20 plysubcl 25583 . . . . . . . 8 (((𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∈ (Poly‘ℂ) ∧ (ℂ × {1}) ∈ (Poly‘ℂ)) → ((𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∘f − (ℂ × {1})) ∈ (Poly‘ℂ))
2116, 19, 20sylancl 586 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∘f − (ℂ × {1})) ∈ (Poly‘ℂ))
229, 21eqeltrrd 2839 . . . . . 6 (𝑁 ∈ ℕ → (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ∈ (Poly‘ℂ))
23 0cn 11147 . . . . . . 7 0 ∈ ℂ
24 neg1ne0 12269 . . . . . . . 8 -1 ≠ 0
25130expd 14044 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0↑(ϕ‘𝑁)) = 0)
2625oveq1d 7372 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((0↑(ϕ‘𝑁)) − 1) = (0 − 1))
27 oveq1 7364 . . . . . . . . . . . . 13 (𝑧 = 0 → (𝑧↑(ϕ‘𝑁)) = (0↑(ϕ‘𝑁)))
2827oveq1d 7372 . . . . . . . . . . . 12 (𝑧 = 0 → ((𝑧↑(ϕ‘𝑁)) − 1) = ((0↑(ϕ‘𝑁)) − 1))
29 eqid 2736 . . . . . . . . . . . 12 (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) = (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))
30 ovex 7390 . . . . . . . . . . . 12 ((0↑(ϕ‘𝑁)) − 1) ∈ V
3128, 29, 30fvmpt 6948 . . . . . . . . . . 11 (0 ∈ ℂ → ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) = ((0↑(ϕ‘𝑁)) − 1))
3223, 31ax-mp 5 . . . . . . . . . 10 ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) = ((0↑(ϕ‘𝑁)) − 1)
33 df-neg 11388 . . . . . . . . . 10 -1 = (0 − 1)
3426, 32, 333eqtr4g 2801 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) = -1)
3534neeq1d 3003 . . . . . . . 8 (𝑁 ∈ ℕ → (((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) ≠ 0 ↔ -1 ≠ 0))
3624, 35mpbiri 257 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) ≠ 0)
37 ne0p 25568 . . . . . . 7 ((0 ∈ ℂ ∧ ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) ≠ 0) → (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ≠ 0𝑝)
3823, 36, 37sylancr 587 . . . . . 6 (𝑁 ∈ ℕ → (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ≠ 0𝑝)
3929mptiniseg 6191 . . . . . . . . 9 (0 ∈ ℂ → ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) “ {0}) = {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})
4023, 39ax-mp 5 . . . . . . . 8 ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) “ {0}) = {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}
4140eqcomi 2745 . . . . . . 7 {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} = ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) “ {0})
4241fta1 25668 . . . . . 6 (((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ∈ (Poly‘ℂ) ∧ (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ≠ 0𝑝) → ({𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} ∈ Fin ∧ (♯‘{𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ≤ (deg‘(𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)))))
4322, 38, 42syl2anc 584 . . . . 5 (𝑁 ∈ ℕ → ({𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} ∈ Fin ∧ (♯‘{𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ≤ (deg‘(𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)))))
4443simpld 495 . . . 4 (𝑁 ∈ ℕ → {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} ∈ Fin)
45 unfi 9116 . . . 4 (({0} ∈ Fin ∧ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} ∈ Fin) → ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ∈ Fin)
461, 44, 45sylancr 587 . . 3 (𝑁 ∈ ℕ → ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ∈ Fin)
47 eqid 2736 . . . 4 (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁)
48 eqid 2736 . . . 4 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(ℤ/nℤ‘𝑁))
4947, 48znfi 20966 . . 3 (𝑁 ∈ ℕ → (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin)
50 mapfi 9292 . . 3 ((({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ∈ Fin ∧ (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin) → (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁))) ∈ Fin)
5146, 49, 50syl2anc 584 . 2 (𝑁 ∈ ℕ → (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁))) ∈ Fin)
52 dchrabl.g . . . . . . . 8 𝐺 = (DChr‘𝑁)
53 dchrfi.b . . . . . . . 8 𝐷 = (Base‘𝐺)
54 simpr 485 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → 𝑓𝐷)
5552, 47, 53, 48, 54dchrf 26590 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → 𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
5655ffnd 6669 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → 𝑓 Fn (Base‘(ℤ/nℤ‘𝑁)))
57 df-ne 2944 . . . . . . . . . . 11 ((𝑓𝑥) ≠ 0 ↔ ¬ (𝑓𝑥) = 0)
58 fvex 6855 . . . . . . . . . . . 12 (𝑓𝑥) ∈ V
5958elsn 4601 . . . . . . . . . . 11 ((𝑓𝑥) ∈ {0} ↔ (𝑓𝑥) = 0)
6057, 59xchbinxr 334 . . . . . . . . . 10 ((𝑓𝑥) ≠ 0 ↔ ¬ (𝑓𝑥) ∈ {0})
61 oveq1 7364 . . . . . . . . . . . . . 14 (𝑧 = (𝑓𝑥) → (𝑧↑(ϕ‘𝑁)) = ((𝑓𝑥)↑(ϕ‘𝑁)))
6261oveq1d 7372 . . . . . . . . . . . . 13 (𝑧 = (𝑓𝑥) → ((𝑧↑(ϕ‘𝑁)) − 1) = (((𝑓𝑥)↑(ϕ‘𝑁)) − 1))
6362eqeq1d 2738 . . . . . . . . . . . 12 (𝑧 = (𝑓𝑥) → (((𝑧↑(ϕ‘𝑁)) − 1) = 0 ↔ (((𝑓𝑥)↑(ϕ‘𝑁)) − 1) = 0))
64 simpl 483 . . . . . . . . . . . . 13 ((𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
65 ffvelcdm 7032 . . . . . . . . . . . . 13 ((𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑓𝑥) ∈ ℂ)
6655, 64, 65syl2an 596 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓𝑥) ∈ ℂ)
6752, 47, 53dchrmhm 26589 . . . . . . . . . . . . . . . . . 18 𝐷 ⊆ ((mulGrp‘(ℤ/nℤ‘𝑁)) MndHom (mulGrp‘ℂfld))
68 simplr 767 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → 𝑓𝐷)
6967, 68sselid 3942 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → 𝑓 ∈ ((mulGrp‘(ℤ/nℤ‘𝑁)) MndHom (mulGrp‘ℂfld)))
7014ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (ϕ‘𝑁) ∈ ℕ0)
71 simprl 769 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
72 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (mulGrp‘(ℤ/nℤ‘𝑁)) = (mulGrp‘(ℤ/nℤ‘𝑁))
7372, 48mgpbas 19902 . . . . . . . . . . . . . . . . . 18 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(mulGrp‘(ℤ/nℤ‘𝑁)))
74 eqid 2736 . . . . . . . . . . . . . . . . . 18 (.g‘(mulGrp‘(ℤ/nℤ‘𝑁))) = (.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))
75 eqid 2736 . . . . . . . . . . . . . . . . . 18 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
7673, 74, 75mhmmulg 18917 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ ((mulGrp‘(ℤ/nℤ‘𝑁)) MndHom (mulGrp‘ℂfld)) ∧ (ϕ‘𝑁) ∈ ℕ0𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑓‘((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥)) = ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)))
7769, 70, 71, 76syl3anc 1371 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓‘((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥)) = ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)))
78 nnnn0 12420 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
7947zncrng 20951 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) ∈ CRing)
8078, 79syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (ℤ/nℤ‘𝑁) ∈ CRing)
81 crngring 19976 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ℤ/nℤ‘𝑁) ∈ CRing → (ℤ/nℤ‘𝑁) ∈ Ring)
8280, 81syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (ℤ/nℤ‘𝑁) ∈ Ring)
8382ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (ℤ/nℤ‘𝑁) ∈ Ring)
84 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . 23 (Unit‘(ℤ/nℤ‘𝑁)) = (Unit‘(ℤ/nℤ‘𝑁))
85 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . 23 ((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) = ((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))
8684, 85unitgrp 20096 . . . . . . . . . . . . . . . . . . . . . 22 ((ℤ/nℤ‘𝑁) ∈ Ring → ((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) ∈ Grp)
8783, 86syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) ∈ Grp)
8847, 84znunithash 20971 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (♯‘(Unit‘(ℤ/nℤ‘𝑁))) = (ϕ‘𝑁))
8988, 14eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (♯‘(Unit‘(ℤ/nℤ‘𝑁))) ∈ ℕ0)
90 fvex 6855 . . . . . . . . . . . . . . . . . . . . . . . 24 (Unit‘(ℤ/nℤ‘𝑁)) ∈ V
91 hashclb 14258 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Unit‘(ℤ/nℤ‘𝑁)) ∈ V → ((Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin ↔ (♯‘(Unit‘(ℤ/nℤ‘𝑁))) ∈ ℕ0))
9290, 91ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 ((Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin ↔ (♯‘(Unit‘(ℤ/nℤ‘𝑁))) ∈ ℕ0)
9389, 92sylibr 233 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → (Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin)
9493ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin)
95 simprr 771 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓𝑥) ≠ 0)
9652, 47, 53, 48, 84, 68, 71dchrn0 26598 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((𝑓𝑥) ≠ 0 ↔ 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))))
9795, 96mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))
9884, 85unitgrpbas 20095 . . . . . . . . . . . . . . . . . . . . . 22 (Unit‘(ℤ/nℤ‘𝑁)) = (Base‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))
99 eqid 2736 . . . . . . . . . . . . . . . . . . . . . 22 (od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))) = (od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))
10098, 99oddvds2 19348 . . . . . . . . . . . . . . . . . . . . 21 ((((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) ∈ Grp ∧ (Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin ∧ 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (♯‘(Unit‘(ℤ/nℤ‘𝑁))))
10187, 94, 97, 100syl3anc 1371 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (♯‘(Unit‘(ℤ/nℤ‘𝑁))))
10288ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (♯‘(Unit‘(ℤ/nℤ‘𝑁))) = (ϕ‘𝑁))
103101, 102breqtrd 5131 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (ϕ‘𝑁))
10413ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (ϕ‘𝑁) ∈ ℕ)
105104nnzd 12526 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (ϕ‘𝑁) ∈ ℤ)
106 eqid 2736 . . . . . . . . . . . . . . . . . . . . 21 (.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))) = (.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))
107 eqid 2736 . . . . . . . . . . . . . . . . . . . . 21 (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))
10898, 99, 106, 107oddvds 19329 . . . . . . . . . . . . . . . . . . . 20 ((((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) ∈ Grp ∧ 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ (ϕ‘𝑁) ∈ ℤ) → (((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (ϕ‘𝑁) ↔ ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))))
10987, 97, 105, 108syl3anc 1371 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (ϕ‘𝑁) ↔ ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))))
110103, 109mpbid 231 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))))
11184, 72unitsubm 20099 . . . . . . . . . . . . . . . . . . . 20 ((ℤ/nℤ‘𝑁) ∈ Ring → (Unit‘(ℤ/nℤ‘𝑁)) ∈ (SubMnd‘(mulGrp‘(ℤ/nℤ‘𝑁))))
11283, 111syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (Unit‘(ℤ/nℤ‘𝑁)) ∈ (SubMnd‘(mulGrp‘(ℤ/nℤ‘𝑁))))
11374, 85, 106submmulg 18920 . . . . . . . . . . . . . . . . . . 19 (((Unit‘(ℤ/nℤ‘𝑁)) ∈ (SubMnd‘(mulGrp‘(ℤ/nℤ‘𝑁))) ∧ (ϕ‘𝑁) ∈ ℕ0𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥) = ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥))
114112, 70, 97, 113syl3anc 1371 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥) = ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥))
115 eqid 2736 . . . . . . . . . . . . . . . . . . . . 21 (1r‘(ℤ/nℤ‘𝑁)) = (1r‘(ℤ/nℤ‘𝑁))
11672, 115ringidval 19915 . . . . . . . . . . . . . . . . . . . 20 (1r‘(ℤ/nℤ‘𝑁)) = (0g‘(mulGrp‘(ℤ/nℤ‘𝑁)))
11785, 116subm0 18626 . . . . . . . . . . . . . . . . . . 19 ((Unit‘(ℤ/nℤ‘𝑁)) ∈ (SubMnd‘(mulGrp‘(ℤ/nℤ‘𝑁))) → (1r‘(ℤ/nℤ‘𝑁)) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))))
118112, 117syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (1r‘(ℤ/nℤ‘𝑁)) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))))
119110, 114, 1183eqtr4d 2786 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥) = (1r‘(ℤ/nℤ‘𝑁)))
120119fveq2d 6846 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓‘((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥)) = (𝑓‘(1r‘(ℤ/nℤ‘𝑁))))
12177, 120eqtr3d 2778 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)) = (𝑓‘(1r‘(ℤ/nℤ‘𝑁))))
122 cnfldexp 20830 . . . . . . . . . . . . . . . 16 (((𝑓𝑥) ∈ ℂ ∧ (ϕ‘𝑁) ∈ ℕ0) → ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)) = ((𝑓𝑥)↑(ϕ‘𝑁)))
12366, 70, 122syl2anc 584 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)) = ((𝑓𝑥)↑(ϕ‘𝑁)))
124 eqid 2736 . . . . . . . . . . . . . . . . . 18 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
125 cnfld1 20822 . . . . . . . . . . . . . . . . . 18 1 = (1r‘ℂfld)
126124, 125ringidval 19915 . . . . . . . . . . . . . . . . 17 1 = (0g‘(mulGrp‘ℂfld))
127116, 126mhm0 18610 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ((mulGrp‘(ℤ/nℤ‘𝑁)) MndHom (mulGrp‘ℂfld)) → (𝑓‘(1r‘(ℤ/nℤ‘𝑁))) = 1)
12869, 127syl 17 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓‘(1r‘(ℤ/nℤ‘𝑁))) = 1)
129121, 123, 1283eqtr3d 2784 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((𝑓𝑥)↑(ϕ‘𝑁)) = 1)
130129oveq1d 7372 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (((𝑓𝑥)↑(ϕ‘𝑁)) − 1) = (1 − 1))
131 1m1e0 12225 . . . . . . . . . . . . 13 (1 − 1) = 0
132130, 131eqtrdi 2792 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (((𝑓𝑥)↑(ϕ‘𝑁)) − 1) = 0)
13363, 66, 132elrabd 3647 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})
134133expr 457 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((𝑓𝑥) ≠ 0 → (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
13560, 134biimtrrid 242 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (¬ (𝑓𝑥) ∈ {0} → (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
136135orrd 861 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((𝑓𝑥) ∈ {0} ∨ (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
137 elun 4108 . . . . . . . 8 ((𝑓𝑥) ∈ ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↔ ((𝑓𝑥) ∈ {0} ∨ (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
138136, 137sylibr 233 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑓𝑥) ∈ ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
139138ralrimiva 3143 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑓𝑥) ∈ ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
140 ffnfv 7066 . . . . . 6 (𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↔ (𝑓 Fn (Base‘(ℤ/nℤ‘𝑁)) ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑓𝑥) ∈ ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})))
14156, 139, 140sylanbrc 583 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → 𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
142141ex 413 . . . 4 (𝑁 ∈ ℕ → (𝑓𝐷𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})))
14346, 49elmapd 8779 . . . 4 (𝑁 ∈ ℕ → (𝑓 ∈ (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁))) ↔ 𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})))
144142, 143sylibrd 258 . . 3 (𝑁 ∈ ℕ → (𝑓𝐷𝑓 ∈ (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁)))))
145144ssrdv 3950 . 2 (𝑁 ∈ ℕ → 𝐷 ⊆ (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁))))
14651, 145ssfid 9211 1 (𝑁 ∈ ℕ → 𝐷 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943  wral 3064  {crab 3407  Vcvv 3445  cun 3908  wss 3910  {csn 4586   class class class wbr 5105  cmpt 5188   × cxp 5631  ccnv 5632  cima 5636   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615  m cmap 8765  Fincfn 8883  cc 11049  0cc0 11051  1c1 11052  cle 11190  cmin 11385  -cneg 11386  cn 12153  0cn0 12413  cz 12499  cexp 13967  chash 14230  cdvds 16136  ϕcphi 16636  Basecbs 17083  s cress 17112  0gc0g 17321   MndHom cmhm 18599  SubMndcsubmnd 18600  Grpcgrp 18748  .gcmg 18872  odcod 19306  mulGrpcmgp 19896  1rcur 19913  Ringcrg 19964  CRingccrg 19965  Unitcui 20068  fldccnfld 20796  ℤ/nczn 20903  0𝑝c0p 25033  Polycply 25545  degcdgr 25548  DChrcdchr 26580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-omul 8417  df-er 8648  df-ec 8650  df-qs 8654  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-dvds 16137  df-gcd 16375  df-phi 16638  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-0g 17323  df-imas 17390  df-qus 17391  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-nsg 18926  df-eqg 18927  df-ghm 19006  df-od 19310  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-rnghom 20146  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-sra 20633  df-rgmod 20634  df-lidl 20635  df-rsp 20636  df-2idl 20702  df-cnfld 20797  df-zring 20870  df-zrh 20904  df-zn 20907  df-0p 25034  df-ply 25549  df-idp 25550  df-coe 25551  df-dgr 25552  df-quot 25651  df-dchr 26581
This theorem is referenced by:  sumdchr2  26618  dchrhash  26619  rpvmasum2  26860  dchrisum0re  26861
  Copyright terms: Public domain W3C validator