MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrfi Structured version   Visualization version   GIF version

Theorem dchrfi 25991
Description: The group of Dirichlet characters is a finite group. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
dchrabl.g 𝐺 = (DChr‘𝑁)
dchrfi.b 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
dchrfi (𝑁 ∈ ℕ → 𝐷 ∈ Fin)

Proof of Theorem dchrfi
Dummy variables 𝑥 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snfi 8642 . . . 4 {0} ∈ Fin
2 cnex 10696 . . . . . . . . 9 ℂ ∈ V
32a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → ℂ ∈ V)
4 ovexd 7205 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℂ) → (𝑧↑(ϕ‘𝑁)) ∈ V)
5 1cnd 10714 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℂ) → 1 ∈ ℂ)
6 eqidd 2739 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) = (𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))))
7 fconstmpt 5585 . . . . . . . . 9 (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1)
87a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1))
93, 4, 5, 6, 8offval2 7444 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∘f − (ℂ × {1})) = (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)))
10 ssid 3899 . . . . . . . . . 10 ℂ ⊆ ℂ
1110a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → ℂ ⊆ ℂ)
12 1cnd 10714 . . . . . . . . 9 (𝑁 ∈ ℕ → 1 ∈ ℂ)
13 phicl 16206 . . . . . . . . . 10 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ)
1413nnnn0d 12036 . . . . . . . . 9 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ0)
15 plypow 24954 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ ∧ (ϕ‘𝑁) ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∈ (Poly‘ℂ))
1611, 12, 14, 15syl3anc 1372 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∈ (Poly‘ℂ))
17 ax-1cn 10673 . . . . . . . . 9 1 ∈ ℂ
18 plyconst 24955 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ) → (ℂ × {1}) ∈ (Poly‘ℂ))
1910, 17, 18mp2an 692 . . . . . . . 8 (ℂ × {1}) ∈ (Poly‘ℂ)
20 plysubcl 24971 . . . . . . . 8 (((𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∈ (Poly‘ℂ) ∧ (ℂ × {1}) ∈ (Poly‘ℂ)) → ((𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∘f − (ℂ × {1})) ∈ (Poly‘ℂ))
2116, 19, 20sylancl 589 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∘f − (ℂ × {1})) ∈ (Poly‘ℂ))
229, 21eqeltrrd 2834 . . . . . 6 (𝑁 ∈ ℕ → (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ∈ (Poly‘ℂ))
23 0cn 10711 . . . . . . 7 0 ∈ ℂ
24 neg1ne0 11832 . . . . . . . 8 -1 ≠ 0
25130expd 13595 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0↑(ϕ‘𝑁)) = 0)
2625oveq1d 7185 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((0↑(ϕ‘𝑁)) − 1) = (0 − 1))
27 oveq1 7177 . . . . . . . . . . . . 13 (𝑧 = 0 → (𝑧↑(ϕ‘𝑁)) = (0↑(ϕ‘𝑁)))
2827oveq1d 7185 . . . . . . . . . . . 12 (𝑧 = 0 → ((𝑧↑(ϕ‘𝑁)) − 1) = ((0↑(ϕ‘𝑁)) − 1))
29 eqid 2738 . . . . . . . . . . . 12 (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) = (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))
30 ovex 7203 . . . . . . . . . . . 12 ((0↑(ϕ‘𝑁)) − 1) ∈ V
3128, 29, 30fvmpt 6775 . . . . . . . . . . 11 (0 ∈ ℂ → ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) = ((0↑(ϕ‘𝑁)) − 1))
3223, 31ax-mp 5 . . . . . . . . . 10 ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) = ((0↑(ϕ‘𝑁)) − 1)
33 df-neg 10951 . . . . . . . . . 10 -1 = (0 − 1)
3426, 32, 333eqtr4g 2798 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) = -1)
3534neeq1d 2993 . . . . . . . 8 (𝑁 ∈ ℕ → (((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) ≠ 0 ↔ -1 ≠ 0))
3624, 35mpbiri 261 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) ≠ 0)
37 ne0p 24956 . . . . . . 7 ((0 ∈ ℂ ∧ ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) ≠ 0) → (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ≠ 0𝑝)
3823, 36, 37sylancr 590 . . . . . 6 (𝑁 ∈ ℕ → (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ≠ 0𝑝)
3929mptiniseg 6071 . . . . . . . . 9 (0 ∈ ℂ → ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) “ {0}) = {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})
4023, 39ax-mp 5 . . . . . . . 8 ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) “ {0}) = {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}
4140eqcomi 2747 . . . . . . 7 {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} = ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) “ {0})
4241fta1 25056 . . . . . 6 (((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ∈ (Poly‘ℂ) ∧ (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ≠ 0𝑝) → ({𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} ∈ Fin ∧ (♯‘{𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ≤ (deg‘(𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)))))
4322, 38, 42syl2anc 587 . . . . 5 (𝑁 ∈ ℕ → ({𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} ∈ Fin ∧ (♯‘{𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ≤ (deg‘(𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)))))
4443simpld 498 . . . 4 (𝑁 ∈ ℕ → {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} ∈ Fin)
45 unfi 8771 . . . 4 (({0} ∈ Fin ∧ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} ∈ Fin) → ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ∈ Fin)
461, 44, 45sylancr 590 . . 3 (𝑁 ∈ ℕ → ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ∈ Fin)
47 eqid 2738 . . . 4 (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁)
48 eqid 2738 . . . 4 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(ℤ/nℤ‘𝑁))
4947, 48znfi 20378 . . 3 (𝑁 ∈ ℕ → (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin)
50 mapfi 8893 . . 3 ((({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ∈ Fin ∧ (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin) → (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁))) ∈ Fin)
5146, 49, 50syl2anc 587 . 2 (𝑁 ∈ ℕ → (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁))) ∈ Fin)
52 dchrabl.g . . . . . . . 8 𝐺 = (DChr‘𝑁)
53 dchrfi.b . . . . . . . 8 𝐷 = (Base‘𝐺)
54 simpr 488 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → 𝑓𝐷)
5552, 47, 53, 48, 54dchrf 25978 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → 𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
5655ffnd 6505 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → 𝑓 Fn (Base‘(ℤ/nℤ‘𝑁)))
57 df-ne 2935 . . . . . . . . . . 11 ((𝑓𝑥) ≠ 0 ↔ ¬ (𝑓𝑥) = 0)
58 fvex 6687 . . . . . . . . . . . 12 (𝑓𝑥) ∈ V
5958elsn 4531 . . . . . . . . . . 11 ((𝑓𝑥) ∈ {0} ↔ (𝑓𝑥) = 0)
6057, 59xchbinxr 338 . . . . . . . . . 10 ((𝑓𝑥) ≠ 0 ↔ ¬ (𝑓𝑥) ∈ {0})
61 oveq1 7177 . . . . . . . . . . . . . 14 (𝑧 = (𝑓𝑥) → (𝑧↑(ϕ‘𝑁)) = ((𝑓𝑥)↑(ϕ‘𝑁)))
6261oveq1d 7185 . . . . . . . . . . . . 13 (𝑧 = (𝑓𝑥) → ((𝑧↑(ϕ‘𝑁)) − 1) = (((𝑓𝑥)↑(ϕ‘𝑁)) − 1))
6362eqeq1d 2740 . . . . . . . . . . . 12 (𝑧 = (𝑓𝑥) → (((𝑧↑(ϕ‘𝑁)) − 1) = 0 ↔ (((𝑓𝑥)↑(ϕ‘𝑁)) − 1) = 0))
64 simpl 486 . . . . . . . . . . . . 13 ((𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
65 ffvelrn 6859 . . . . . . . . . . . . 13 ((𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑓𝑥) ∈ ℂ)
6655, 64, 65syl2an 599 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓𝑥) ∈ ℂ)
6752, 47, 53dchrmhm 25977 . . . . . . . . . . . . . . . . . 18 𝐷 ⊆ ((mulGrp‘(ℤ/nℤ‘𝑁)) MndHom (mulGrp‘ℂfld))
68 simplr 769 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → 𝑓𝐷)
6967, 68sseldi 3875 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → 𝑓 ∈ ((mulGrp‘(ℤ/nℤ‘𝑁)) MndHom (mulGrp‘ℂfld)))
7014ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (ϕ‘𝑁) ∈ ℕ0)
71 simprl 771 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
72 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (mulGrp‘(ℤ/nℤ‘𝑁)) = (mulGrp‘(ℤ/nℤ‘𝑁))
7372, 48mgpbas 19364 . . . . . . . . . . . . . . . . . 18 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(mulGrp‘(ℤ/nℤ‘𝑁)))
74 eqid 2738 . . . . . . . . . . . . . . . . . 18 (.g‘(mulGrp‘(ℤ/nℤ‘𝑁))) = (.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))
75 eqid 2738 . . . . . . . . . . . . . . . . . 18 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
7673, 74, 75mhmmulg 18386 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ ((mulGrp‘(ℤ/nℤ‘𝑁)) MndHom (mulGrp‘ℂfld)) ∧ (ϕ‘𝑁) ∈ ℕ0𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑓‘((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥)) = ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)))
7769, 70, 71, 76syl3anc 1372 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓‘((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥)) = ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)))
78 nnnn0 11983 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
7947zncrng 20363 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) ∈ CRing)
8078, 79syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (ℤ/nℤ‘𝑁) ∈ CRing)
81 crngring 19428 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ℤ/nℤ‘𝑁) ∈ CRing → (ℤ/nℤ‘𝑁) ∈ Ring)
8280, 81syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (ℤ/nℤ‘𝑁) ∈ Ring)
8382ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (ℤ/nℤ‘𝑁) ∈ Ring)
84 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 (Unit‘(ℤ/nℤ‘𝑁)) = (Unit‘(ℤ/nℤ‘𝑁))
85 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 ((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) = ((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))
8684, 85unitgrp 19539 . . . . . . . . . . . . . . . . . . . . . 22 ((ℤ/nℤ‘𝑁) ∈ Ring → ((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) ∈ Grp)
8783, 86syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) ∈ Grp)
8847, 84znunithash 20383 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (♯‘(Unit‘(ℤ/nℤ‘𝑁))) = (ϕ‘𝑁))
8988, 14eqeltrd 2833 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (♯‘(Unit‘(ℤ/nℤ‘𝑁))) ∈ ℕ0)
90 fvex 6687 . . . . . . . . . . . . . . . . . . . . . . . 24 (Unit‘(ℤ/nℤ‘𝑁)) ∈ V
91 hashclb 13811 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Unit‘(ℤ/nℤ‘𝑁)) ∈ V → ((Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin ↔ (♯‘(Unit‘(ℤ/nℤ‘𝑁))) ∈ ℕ0))
9290, 91ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 ((Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin ↔ (♯‘(Unit‘(ℤ/nℤ‘𝑁))) ∈ ℕ0)
9389, 92sylibr 237 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → (Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin)
9493ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin)
95 simprr 773 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓𝑥) ≠ 0)
9652, 47, 53, 48, 84, 68, 71dchrn0 25986 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((𝑓𝑥) ≠ 0 ↔ 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))))
9795, 96mpbid 235 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))
9884, 85unitgrpbas 19538 . . . . . . . . . . . . . . . . . . . . . 22 (Unit‘(ℤ/nℤ‘𝑁)) = (Base‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))
99 eqid 2738 . . . . . . . . . . . . . . . . . . . . . 22 (od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))) = (od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))
10098, 99oddvds2 18811 . . . . . . . . . . . . . . . . . . . . 21 ((((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) ∈ Grp ∧ (Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin ∧ 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (♯‘(Unit‘(ℤ/nℤ‘𝑁))))
10187, 94, 97, 100syl3anc 1372 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (♯‘(Unit‘(ℤ/nℤ‘𝑁))))
10288ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (♯‘(Unit‘(ℤ/nℤ‘𝑁))) = (ϕ‘𝑁))
103101, 102breqtrd 5056 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (ϕ‘𝑁))
10413ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (ϕ‘𝑁) ∈ ℕ)
105104nnzd 12167 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (ϕ‘𝑁) ∈ ℤ)
106 eqid 2738 . . . . . . . . . . . . . . . . . . . . 21 (.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))) = (.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))
107 eqid 2738 . . . . . . . . . . . . . . . . . . . . 21 (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))
10898, 99, 106, 107oddvds 18793 . . . . . . . . . . . . . . . . . . . 20 ((((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) ∈ Grp ∧ 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ (ϕ‘𝑁) ∈ ℤ) → (((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (ϕ‘𝑁) ↔ ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))))
10987, 97, 105, 108syl3anc 1372 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (ϕ‘𝑁) ↔ ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))))
110103, 109mpbid 235 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))))
11184, 72unitsubm 19542 . . . . . . . . . . . . . . . . . . . 20 ((ℤ/nℤ‘𝑁) ∈ Ring → (Unit‘(ℤ/nℤ‘𝑁)) ∈ (SubMnd‘(mulGrp‘(ℤ/nℤ‘𝑁))))
11283, 111syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (Unit‘(ℤ/nℤ‘𝑁)) ∈ (SubMnd‘(mulGrp‘(ℤ/nℤ‘𝑁))))
11374, 85, 106submmulg 18389 . . . . . . . . . . . . . . . . . . 19 (((Unit‘(ℤ/nℤ‘𝑁)) ∈ (SubMnd‘(mulGrp‘(ℤ/nℤ‘𝑁))) ∧ (ϕ‘𝑁) ∈ ℕ0𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥) = ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥))
114112, 70, 97, 113syl3anc 1372 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥) = ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥))
115 eqid 2738 . . . . . . . . . . . . . . . . . . . . 21 (1r‘(ℤ/nℤ‘𝑁)) = (1r‘(ℤ/nℤ‘𝑁))
11672, 115ringidval 19372 . . . . . . . . . . . . . . . . . . . 20 (1r‘(ℤ/nℤ‘𝑁)) = (0g‘(mulGrp‘(ℤ/nℤ‘𝑁)))
11785, 116subm0 18096 . . . . . . . . . . . . . . . . . . 19 ((Unit‘(ℤ/nℤ‘𝑁)) ∈ (SubMnd‘(mulGrp‘(ℤ/nℤ‘𝑁))) → (1r‘(ℤ/nℤ‘𝑁)) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))))
118112, 117syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (1r‘(ℤ/nℤ‘𝑁)) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))))
119110, 114, 1183eqtr4d 2783 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥) = (1r‘(ℤ/nℤ‘𝑁)))
120119fveq2d 6678 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓‘((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥)) = (𝑓‘(1r‘(ℤ/nℤ‘𝑁))))
12177, 120eqtr3d 2775 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)) = (𝑓‘(1r‘(ℤ/nℤ‘𝑁))))
122 cnfldexp 20250 . . . . . . . . . . . . . . . 16 (((𝑓𝑥) ∈ ℂ ∧ (ϕ‘𝑁) ∈ ℕ0) → ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)) = ((𝑓𝑥)↑(ϕ‘𝑁)))
12366, 70, 122syl2anc 587 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)) = ((𝑓𝑥)↑(ϕ‘𝑁)))
124 eqid 2738 . . . . . . . . . . . . . . . . . 18 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
125 cnfld1 20242 . . . . . . . . . . . . . . . . . 18 1 = (1r‘ℂfld)
126124, 125ringidval 19372 . . . . . . . . . . . . . . . . 17 1 = (0g‘(mulGrp‘ℂfld))
127116, 126mhm0 18080 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ((mulGrp‘(ℤ/nℤ‘𝑁)) MndHom (mulGrp‘ℂfld)) → (𝑓‘(1r‘(ℤ/nℤ‘𝑁))) = 1)
12869, 127syl 17 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓‘(1r‘(ℤ/nℤ‘𝑁))) = 1)
129121, 123, 1283eqtr3d 2781 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((𝑓𝑥)↑(ϕ‘𝑁)) = 1)
130129oveq1d 7185 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (((𝑓𝑥)↑(ϕ‘𝑁)) − 1) = (1 − 1))
131 1m1e0 11788 . . . . . . . . . . . . 13 (1 − 1) = 0
132130, 131eqtrdi 2789 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (((𝑓𝑥)↑(ϕ‘𝑁)) − 1) = 0)
13363, 66, 132elrabd 3590 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})
134133expr 460 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((𝑓𝑥) ≠ 0 → (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
13560, 134syl5bir 246 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (¬ (𝑓𝑥) ∈ {0} → (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
136135orrd 862 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((𝑓𝑥) ∈ {0} ∨ (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
137 elun 4039 . . . . . . . 8 ((𝑓𝑥) ∈ ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↔ ((𝑓𝑥) ∈ {0} ∨ (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
138136, 137sylibr 237 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑓𝑥) ∈ ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
139138ralrimiva 3096 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑓𝑥) ∈ ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
140 ffnfv 6892 . . . . . 6 (𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↔ (𝑓 Fn (Base‘(ℤ/nℤ‘𝑁)) ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑓𝑥) ∈ ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})))
14156, 139, 140sylanbrc 586 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → 𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
142141ex 416 . . . 4 (𝑁 ∈ ℕ → (𝑓𝐷𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})))
14346, 49elmapd 8451 . . . 4 (𝑁 ∈ ℕ → (𝑓 ∈ (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁))) ↔ 𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})))
144142, 143sylibrd 262 . . 3 (𝑁 ∈ ℕ → (𝑓𝐷𝑓 ∈ (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁)))))
145144ssrdv 3883 . 2 (𝑁 ∈ ℕ → 𝐷 ⊆ (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁))))
14651, 145ssfid 8819 1 (𝑁 ∈ ℕ → 𝐷 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 846   = wceq 1542  wcel 2114  wne 2934  wral 3053  {crab 3057  Vcvv 3398  cun 3841  wss 3843  {csn 4516   class class class wbr 5030  cmpt 5110   × cxp 5523  ccnv 5524  cima 5528   Fn wfn 6334  wf 6335  cfv 6339  (class class class)co 7170  f cof 7423  m cmap 8437  Fincfn 8555  cc 10613  0cc0 10615  1c1 10616  cle 10754  cmin 10948  -cneg 10949  cn 11716  0cn0 11976  cz 12062  cexp 13521  chash 13782  cdvds 15699  ϕcphi 16201  Basecbs 16586  s cress 16587  0gc0g 16816   MndHom cmhm 18070  SubMndcsubmnd 18071  Grpcgrp 18219  .gcmg 18342  odcod 18770  mulGrpcmgp 19358  1rcur 19370  Ringcrg 19416  CRingccrg 19417  Unitcui 19511  fldccnfld 20217  ℤ/nczn 20323  0𝑝c0p 24421  Polycply 24933  degcdgr 24936  DChrcdchr 25968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693  ax-addf 10694  ax-mulf 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-tpos 7921  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-oadd 8135  df-omul 8136  df-er 8320  df-ec 8322  df-qs 8326  df-map 8439  df-pm 8440  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-sup 8979  df-inf 8980  df-oi 9047  df-dju 9403  df-card 9441  df-acn 9444  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-xnn0 12049  df-z 12063  df-dec 12180  df-uz 12325  df-rp 12473  df-fz 12982  df-fzo 13125  df-fl 13253  df-mod 13329  df-seq 13461  df-exp 13522  df-hash 13783  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-clim 14935  df-rlim 14936  df-sum 15136  df-dvds 15700  df-gcd 15938  df-phi 16203  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-starv 16683  df-sca 16684  df-vsca 16685  df-ip 16686  df-tset 16687  df-ple 16688  df-ds 16690  df-unif 16691  df-0g 16818  df-imas 16884  df-qus 16885  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-mhm 18072  df-submnd 18073  df-grp 18222  df-minusg 18223  df-sbg 18224  df-mulg 18343  df-subg 18394  df-nsg 18395  df-eqg 18396  df-ghm 18474  df-od 18774  df-cmn 19026  df-abl 19027  df-mgp 19359  df-ur 19371  df-ring 19418  df-cring 19419  df-oppr 19495  df-dvdsr 19513  df-unit 19514  df-invr 19544  df-rnghom 19589  df-subrg 19652  df-lmod 19755  df-lss 19823  df-lsp 19863  df-sra 20063  df-rgmod 20064  df-lidl 20065  df-rsp 20066  df-2idl 20124  df-cnfld 20218  df-zring 20290  df-zrh 20324  df-zn 20327  df-0p 24422  df-ply 24937  df-idp 24938  df-coe 24939  df-dgr 24940  df-quot 25039  df-dchr 25969
This theorem is referenced by:  sumdchr2  26006  dchrhash  26007  rpvmasum2  26248  dchrisum0re  26249
  Copyright terms: Public domain W3C validator