MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrfi Structured version   Visualization version   GIF version

Theorem dchrfi 27102
Description: The group of Dirichlet characters is a finite group. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
dchrabl.g 𝐺 = (DChr‘𝑁)
dchrfi.b 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
dchrfi (𝑁 ∈ ℕ → 𝐷 ∈ Fin)

Proof of Theorem dchrfi
Dummy variables 𝑥 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snfi 9050 . . . 4 {0} ∈ Fin
2 cnex 11197 . . . . . . . . 9 ℂ ∈ V
32a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → ℂ ∈ V)
4 ovexd 7447 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℂ) → (𝑧↑(ϕ‘𝑁)) ∈ V)
5 1cnd 11216 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℂ) → 1 ∈ ℂ)
6 eqidd 2732 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) = (𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))))
7 fconstmpt 5738 . . . . . . . . 9 (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1)
87a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → (ℂ × {1}) = (𝑧 ∈ ℂ ↦ 1))
93, 4, 5, 6, 8offval2 7694 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∘f − (ℂ × {1})) = (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)))
10 ssid 4004 . . . . . . . . . 10 ℂ ⊆ ℂ
1110a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → ℂ ⊆ ℂ)
12 1cnd 11216 . . . . . . . . 9 (𝑁 ∈ ℕ → 1 ∈ ℂ)
13 phicl 16709 . . . . . . . . . 10 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ)
1413nnnn0d 12539 . . . . . . . . 9 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ0)
15 plypow 26057 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ ∧ (ϕ‘𝑁) ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∈ (Poly‘ℂ))
1611, 12, 14, 15syl3anc 1370 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∈ (Poly‘ℂ))
17 ax-1cn 11174 . . . . . . . . 9 1 ∈ ℂ
18 plyconst 26058 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 1 ∈ ℂ) → (ℂ × {1}) ∈ (Poly‘ℂ))
1910, 17, 18mp2an 689 . . . . . . . 8 (ℂ × {1}) ∈ (Poly‘ℂ)
20 plysubcl 26074 . . . . . . . 8 (((𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∈ (Poly‘ℂ) ∧ (ℂ × {1}) ∈ (Poly‘ℂ)) → ((𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∘f − (ℂ × {1})) ∈ (Poly‘ℂ))
2116, 19, 20sylancl 585 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑧 ∈ ℂ ↦ (𝑧↑(ϕ‘𝑁))) ∘f − (ℂ × {1})) ∈ (Poly‘ℂ))
229, 21eqeltrrd 2833 . . . . . 6 (𝑁 ∈ ℕ → (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ∈ (Poly‘ℂ))
23 0cn 11213 . . . . . . 7 0 ∈ ℂ
24 neg1ne0 12335 . . . . . . . 8 -1 ≠ 0
25130expd 14111 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0↑(ϕ‘𝑁)) = 0)
2625oveq1d 7427 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((0↑(ϕ‘𝑁)) − 1) = (0 − 1))
27 oveq1 7419 . . . . . . . . . . . . 13 (𝑧 = 0 → (𝑧↑(ϕ‘𝑁)) = (0↑(ϕ‘𝑁)))
2827oveq1d 7427 . . . . . . . . . . . 12 (𝑧 = 0 → ((𝑧↑(ϕ‘𝑁)) − 1) = ((0↑(ϕ‘𝑁)) − 1))
29 eqid 2731 . . . . . . . . . . . 12 (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) = (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))
30 ovex 7445 . . . . . . . . . . . 12 ((0↑(ϕ‘𝑁)) − 1) ∈ V
3128, 29, 30fvmpt 6998 . . . . . . . . . . 11 (0 ∈ ℂ → ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) = ((0↑(ϕ‘𝑁)) − 1))
3223, 31ax-mp 5 . . . . . . . . . 10 ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) = ((0↑(ϕ‘𝑁)) − 1)
33 df-neg 11454 . . . . . . . . . 10 -1 = (0 − 1)
3426, 32, 333eqtr4g 2796 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) = -1)
3534neeq1d 2999 . . . . . . . 8 (𝑁 ∈ ℕ → (((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) ≠ 0 ↔ -1 ≠ 0))
3624, 35mpbiri 258 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) ≠ 0)
37 ne0p 26059 . . . . . . 7 ((0 ∈ ℂ ∧ ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1))‘0) ≠ 0) → (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ≠ 0𝑝)
3823, 36, 37sylancr 586 . . . . . 6 (𝑁 ∈ ℕ → (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ≠ 0𝑝)
3929mptiniseg 6238 . . . . . . . . 9 (0 ∈ ℂ → ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) “ {0}) = {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})
4023, 39ax-mp 5 . . . . . . . 8 ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) “ {0}) = {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}
4140eqcomi 2740 . . . . . . 7 {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} = ((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) “ {0})
4241fta1 26160 . . . . . 6 (((𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ∈ (Poly‘ℂ) ∧ (𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)) ≠ 0𝑝) → ({𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} ∈ Fin ∧ (♯‘{𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ≤ (deg‘(𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)))))
4322, 38, 42syl2anc 583 . . . . 5 (𝑁 ∈ ℕ → ({𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} ∈ Fin ∧ (♯‘{𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ≤ (deg‘(𝑧 ∈ ℂ ↦ ((𝑧↑(ϕ‘𝑁)) − 1)))))
4443simpld 494 . . . 4 (𝑁 ∈ ℕ → {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} ∈ Fin)
45 unfi 9178 . . . 4 (({0} ∈ Fin ∧ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0} ∈ Fin) → ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ∈ Fin)
461, 44, 45sylancr 586 . . 3 (𝑁 ∈ ℕ → ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ∈ Fin)
47 eqid 2731 . . . 4 (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁)
48 eqid 2731 . . . 4 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(ℤ/nℤ‘𝑁))
4947, 48znfi 21425 . . 3 (𝑁 ∈ ℕ → (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin)
50 mapfi 9354 . . 3 ((({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ∈ Fin ∧ (Base‘(ℤ/nℤ‘𝑁)) ∈ Fin) → (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁))) ∈ Fin)
5146, 49, 50syl2anc 583 . 2 (𝑁 ∈ ℕ → (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁))) ∈ Fin)
52 dchrabl.g . . . . . . . 8 𝐺 = (DChr‘𝑁)
53 dchrfi.b . . . . . . . 8 𝐷 = (Base‘𝐺)
54 simpr 484 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → 𝑓𝐷)
5552, 47, 53, 48, 54dchrf 27089 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → 𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
5655ffnd 6718 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → 𝑓 Fn (Base‘(ℤ/nℤ‘𝑁)))
57 df-ne 2940 . . . . . . . . . . 11 ((𝑓𝑥) ≠ 0 ↔ ¬ (𝑓𝑥) = 0)
58 fvex 6904 . . . . . . . . . . . 12 (𝑓𝑥) ∈ V
5958elsn 4643 . . . . . . . . . . 11 ((𝑓𝑥) ∈ {0} ↔ (𝑓𝑥) = 0)
6057, 59xchbinxr 335 . . . . . . . . . 10 ((𝑓𝑥) ≠ 0 ↔ ¬ (𝑓𝑥) ∈ {0})
61 oveq1 7419 . . . . . . . . . . . . . 14 (𝑧 = (𝑓𝑥) → (𝑧↑(ϕ‘𝑁)) = ((𝑓𝑥)↑(ϕ‘𝑁)))
6261oveq1d 7427 . . . . . . . . . . . . 13 (𝑧 = (𝑓𝑥) → ((𝑧↑(ϕ‘𝑁)) − 1) = (((𝑓𝑥)↑(ϕ‘𝑁)) − 1))
6362eqeq1d 2733 . . . . . . . . . . . 12 (𝑧 = (𝑓𝑥) → (((𝑧↑(ϕ‘𝑁)) − 1) = 0 ↔ (((𝑓𝑥)↑(ϕ‘𝑁)) − 1) = 0))
64 simpl 482 . . . . . . . . . . . . 13 ((𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
65 ffvelcdm 7083 . . . . . . . . . . . . 13 ((𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑓𝑥) ∈ ℂ)
6655, 64, 65syl2an 595 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓𝑥) ∈ ℂ)
6752, 47, 53dchrmhm 27088 . . . . . . . . . . . . . . . . . 18 𝐷 ⊆ ((mulGrp‘(ℤ/nℤ‘𝑁)) MndHom (mulGrp‘ℂfld))
68 simplr 766 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → 𝑓𝐷)
6967, 68sselid 3980 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → 𝑓 ∈ ((mulGrp‘(ℤ/nℤ‘𝑁)) MndHom (mulGrp‘ℂfld)))
7014ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (ϕ‘𝑁) ∈ ℕ0)
71 simprl 768 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
72 eqid 2731 . . . . . . . . . . . . . . . . . . 19 (mulGrp‘(ℤ/nℤ‘𝑁)) = (mulGrp‘(ℤ/nℤ‘𝑁))
7372, 48mgpbas 20041 . . . . . . . . . . . . . . . . . 18 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(mulGrp‘(ℤ/nℤ‘𝑁)))
74 eqid 2731 . . . . . . . . . . . . . . . . . 18 (.g‘(mulGrp‘(ℤ/nℤ‘𝑁))) = (.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))
75 eqid 2731 . . . . . . . . . . . . . . . . . 18 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
7673, 74, 75mhmmulg 19038 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ ((mulGrp‘(ℤ/nℤ‘𝑁)) MndHom (mulGrp‘ℂfld)) ∧ (ϕ‘𝑁) ∈ ℕ0𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑓‘((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥)) = ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)))
7769, 70, 71, 76syl3anc 1370 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓‘((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥)) = ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)))
78 nnnn0 12486 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
7947zncrng 21410 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) ∈ CRing)
8078, 79syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (ℤ/nℤ‘𝑁) ∈ CRing)
81 crngring 20146 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ℤ/nℤ‘𝑁) ∈ CRing → (ℤ/nℤ‘𝑁) ∈ Ring)
8280, 81syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (ℤ/nℤ‘𝑁) ∈ Ring)
8382ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (ℤ/nℤ‘𝑁) ∈ Ring)
84 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . 23 (Unit‘(ℤ/nℤ‘𝑁)) = (Unit‘(ℤ/nℤ‘𝑁))
85 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . 23 ((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) = ((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))
8684, 85unitgrp 20281 . . . . . . . . . . . . . . . . . . . . . 22 ((ℤ/nℤ‘𝑁) ∈ Ring → ((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) ∈ Grp)
8783, 86syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) ∈ Grp)
8847, 84znunithash 21430 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (♯‘(Unit‘(ℤ/nℤ‘𝑁))) = (ϕ‘𝑁))
8988, 14eqeltrd 2832 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (♯‘(Unit‘(ℤ/nℤ‘𝑁))) ∈ ℕ0)
90 fvex 6904 . . . . . . . . . . . . . . . . . . . . . . . 24 (Unit‘(ℤ/nℤ‘𝑁)) ∈ V
91 hashclb 14325 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Unit‘(ℤ/nℤ‘𝑁)) ∈ V → ((Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin ↔ (♯‘(Unit‘(ℤ/nℤ‘𝑁))) ∈ ℕ0))
9290, 91ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 ((Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin ↔ (♯‘(Unit‘(ℤ/nℤ‘𝑁))) ∈ ℕ0)
9389, 92sylibr 233 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → (Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin)
9493ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin)
95 simprr 770 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓𝑥) ≠ 0)
9652, 47, 53, 48, 84, 68, 71dchrn0 27097 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((𝑓𝑥) ≠ 0 ↔ 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))))
9795, 96mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))
9884, 85unitgrpbas 20280 . . . . . . . . . . . . . . . . . . . . . 22 (Unit‘(ℤ/nℤ‘𝑁)) = (Base‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))
99 eqid 2731 . . . . . . . . . . . . . . . . . . . . . 22 (od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))) = (od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))
10098, 99oddvds2 19482 . . . . . . . . . . . . . . . . . . . . 21 ((((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) ∈ Grp ∧ (Unit‘(ℤ/nℤ‘𝑁)) ∈ Fin ∧ 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (♯‘(Unit‘(ℤ/nℤ‘𝑁))))
10187, 94, 97, 100syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (♯‘(Unit‘(ℤ/nℤ‘𝑁))))
10288ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (♯‘(Unit‘(ℤ/nℤ‘𝑁))) = (ϕ‘𝑁))
103101, 102breqtrd 5174 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (ϕ‘𝑁))
10413ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (ϕ‘𝑁) ∈ ℕ)
105104nnzd 12592 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (ϕ‘𝑁) ∈ ℤ)
106 eqid 2731 . . . . . . . . . . . . . . . . . . . . 21 (.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))) = (.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))
107 eqid 2731 . . . . . . . . . . . . . . . . . . . . 21 (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))
10898, 99, 106, 107oddvds 19463 . . . . . . . . . . . . . . . . . . . 20 ((((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))) ∈ Grp ∧ 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ (ϕ‘𝑁) ∈ ℤ) → (((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (ϕ‘𝑁) ↔ ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))))
10987, 97, 105, 108syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (((od‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))‘𝑥) ∥ (ϕ‘𝑁) ↔ ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))))
110103, 109mpbid 231 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))))
11184, 72unitsubm 20284 . . . . . . . . . . . . . . . . . . . 20 ((ℤ/nℤ‘𝑁) ∈ Ring → (Unit‘(ℤ/nℤ‘𝑁)) ∈ (SubMnd‘(mulGrp‘(ℤ/nℤ‘𝑁))))
11283, 111syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (Unit‘(ℤ/nℤ‘𝑁)) ∈ (SubMnd‘(mulGrp‘(ℤ/nℤ‘𝑁))))
11374, 85, 106submmulg 19041 . . . . . . . . . . . . . . . . . . 19 (((Unit‘(ℤ/nℤ‘𝑁)) ∈ (SubMnd‘(mulGrp‘(ℤ/nℤ‘𝑁))) ∧ (ϕ‘𝑁) ∈ ℕ0𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥) = ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥))
114112, 70, 97, 113syl3anc 1370 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥) = ((ϕ‘𝑁)(.g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁))))𝑥))
115 eqid 2731 . . . . . . . . . . . . . . . . . . . . 21 (1r‘(ℤ/nℤ‘𝑁)) = (1r‘(ℤ/nℤ‘𝑁))
11672, 115ringidval 20084 . . . . . . . . . . . . . . . . . . . 20 (1r‘(ℤ/nℤ‘𝑁)) = (0g‘(mulGrp‘(ℤ/nℤ‘𝑁)))
11785, 116subm0 18738 . . . . . . . . . . . . . . . . . . 19 ((Unit‘(ℤ/nℤ‘𝑁)) ∈ (SubMnd‘(mulGrp‘(ℤ/nℤ‘𝑁))) → (1r‘(ℤ/nℤ‘𝑁)) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))))
118112, 117syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (1r‘(ℤ/nℤ‘𝑁)) = (0g‘((mulGrp‘(ℤ/nℤ‘𝑁)) ↾s (Unit‘(ℤ/nℤ‘𝑁)))))
119110, 114, 1183eqtr4d 2781 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥) = (1r‘(ℤ/nℤ‘𝑁)))
120119fveq2d 6895 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓‘((ϕ‘𝑁)(.g‘(mulGrp‘(ℤ/nℤ‘𝑁)))𝑥)) = (𝑓‘(1r‘(ℤ/nℤ‘𝑁))))
12177, 120eqtr3d 2773 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)) = (𝑓‘(1r‘(ℤ/nℤ‘𝑁))))
122 cnfldexp 21267 . . . . . . . . . . . . . . . 16 (((𝑓𝑥) ∈ ℂ ∧ (ϕ‘𝑁) ∈ ℕ0) → ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)) = ((𝑓𝑥)↑(ϕ‘𝑁)))
12366, 70, 122syl2anc 583 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((ϕ‘𝑁)(.g‘(mulGrp‘ℂfld))(𝑓𝑥)) = ((𝑓𝑥)↑(ϕ‘𝑁)))
124 eqid 2731 . . . . . . . . . . . . . . . . . 18 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
125 cnfld1 21259 . . . . . . . . . . . . . . . . . 18 1 = (1r‘ℂfld)
126124, 125ringidval 20084 . . . . . . . . . . . . . . . . 17 1 = (0g‘(mulGrp‘ℂfld))
127116, 126mhm0 18722 . . . . . . . . . . . . . . . 16 (𝑓 ∈ ((mulGrp‘(ℤ/nℤ‘𝑁)) MndHom (mulGrp‘ℂfld)) → (𝑓‘(1r‘(ℤ/nℤ‘𝑁))) = 1)
12869, 127syl 17 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓‘(1r‘(ℤ/nℤ‘𝑁))) = 1)
129121, 123, 1283eqtr3d 2779 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → ((𝑓𝑥)↑(ϕ‘𝑁)) = 1)
130129oveq1d 7427 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (((𝑓𝑥)↑(ϕ‘𝑁)) − 1) = (1 − 1))
131 1m1e0 12291 . . . . . . . . . . . . 13 (1 − 1) = 0
132130, 131eqtrdi 2787 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (((𝑓𝑥)↑(ϕ‘𝑁)) − 1) = 0)
13363, 66, 132elrabd 3685 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ (𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ (𝑓𝑥) ≠ 0)) → (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})
134133expr 456 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((𝑓𝑥) ≠ 0 → (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
13560, 134biimtrrid 242 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (¬ (𝑓𝑥) ∈ {0} → (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
136135orrd 860 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((𝑓𝑥) ∈ {0} ∨ (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
137 elun 4148 . . . . . . . 8 ((𝑓𝑥) ∈ ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↔ ((𝑓𝑥) ∈ {0} ∨ (𝑓𝑥) ∈ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
138136, 137sylibr 233 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑓𝐷) ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑓𝑥) ∈ ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
139138ralrimiva 3145 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑓𝑥) ∈ ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
140 ffnfv 7120 . . . . . 6 (𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↔ (𝑓 Fn (Base‘(ℤ/nℤ‘𝑁)) ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(𝑓𝑥) ∈ ({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})))
14156, 139, 140sylanbrc 582 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑓𝐷) → 𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}))
142141ex 412 . . . 4 (𝑁 ∈ ℕ → (𝑓𝐷𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})))
14346, 49elmapd 8840 . . . 4 (𝑁 ∈ ℕ → (𝑓 ∈ (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁))) ↔ 𝑓:(Base‘(ℤ/nℤ‘𝑁))⟶({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0})))
144142, 143sylibrd 259 . . 3 (𝑁 ∈ ℕ → (𝑓𝐷𝑓 ∈ (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁)))))
145144ssrdv 3988 . 2 (𝑁 ∈ ℕ → 𝐷 ⊆ (({0} ∪ {𝑧 ∈ ℂ ∣ ((𝑧↑(ϕ‘𝑁)) − 1) = 0}) ↑m (Base‘(ℤ/nℤ‘𝑁))))
14651, 145ssfid 9273 1 (𝑁 ∈ ℕ → 𝐷 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844   = wceq 1540  wcel 2105  wne 2939  wral 3060  {crab 3431  Vcvv 3473  cun 3946  wss 3948  {csn 4628   class class class wbr 5148  cmpt 5231   × cxp 5674  ccnv 5675  cima 5679   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7412  f cof 7672  m cmap 8826  Fincfn 8945  cc 11114  0cc0 11116  1c1 11117  cle 11256  cmin 11451  -cneg 11452  cn 12219  0cn0 12479  cz 12565  cexp 14034  chash 14297  cdvds 16204  ϕcphi 16704  Basecbs 17151  s cress 17180  0gc0g 17392   MndHom cmhm 18709  SubMndcsubmnd 18710  Grpcgrp 18861  .gcmg 18993  odcod 19440  mulGrpcmgp 20035  1rcur 20082  Ringcrg 20134  CRingccrg 20135  Unitcui 20253  fldccnfld 21233  ℤ/nczn 21362  0𝑝c0p 25518  Polycply 26036  degcdgr 26039  DChrcdchr 27079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195  ax-mulf 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-tpos 8217  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-oadd 8476  df-omul 8477  df-er 8709  df-ec 8711  df-qs 8715  df-map 8828  df-pm 8829  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-sup 9443  df-inf 9444  df-oi 9511  df-dju 9902  df-card 9940  df-acn 9943  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-xnn0 12552  df-z 12566  df-dec 12685  df-uz 12830  df-rp 12982  df-fz 13492  df-fzo 13635  df-fl 13764  df-mod 13842  df-seq 13974  df-exp 14035  df-hash 14298  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-clim 15439  df-rlim 15440  df-sum 15640  df-dvds 16205  df-gcd 16443  df-phi 16706  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-0g 17394  df-imas 17461  df-qus 17462  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-mhm 18711  df-submnd 18712  df-grp 18864  df-minusg 18865  df-sbg 18866  df-mulg 18994  df-subg 19046  df-nsg 19047  df-eqg 19048  df-ghm 19135  df-od 19444  df-cmn 19698  df-abl 19699  df-mgp 20036  df-rng 20054  df-ur 20083  df-ring 20136  df-cring 20137  df-oppr 20232  df-dvdsr 20255  df-unit 20256  df-invr 20286  df-rhm 20370  df-subrng 20442  df-subrg 20467  df-lmod 20704  df-lss 20775  df-lsp 20815  df-sra 21019  df-rgmod 21020  df-lidl 21021  df-rsp 21022  df-2idl 21095  df-cnfld 21234  df-zring 21307  df-zrh 21363  df-zn 21366  df-0p 25519  df-ply 26040  df-idp 26041  df-coe 26042  df-dgr 26043  df-quot 26143  df-dchr 27080
This theorem is referenced by:  sumdchr2  27117  dchrhash  27118  rpvmasum2  27359  dchrisum0re  27360
  Copyright terms: Public domain W3C validator