| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xp2 | Structured version Visualization version GIF version | ||
| Description: Representation of Cartesian product based on ordered pair component functions. (Contributed by NM, 16-Sep-2006.) |
| Ref | Expression |
|---|---|
| xp2 | ⊢ (𝐴 × 𝐵) = {𝑥 ∈ (V × V) ∣ ((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp7 8028 | . . 3 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ (V × V) ∧ ((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ 𝐵))) | |
| 2 | 1 | eqabi 2871 | . 2 ⊢ (𝐴 × 𝐵) = {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ 𝐵))} |
| 3 | df-rab 3421 | . 2 ⊢ {𝑥 ∈ (V × V) ∣ ((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ 𝐵)} = {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ 𝐵))} | |
| 4 | 2, 3 | eqtr4i 2762 | 1 ⊢ (𝐴 × 𝐵) = {𝑥 ∈ (V × V) ∣ ((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ 𝐵)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 {crab 3420 Vcvv 3464 × cxp 5657 ‘cfv 6536 1st c1st 7991 2nd c2nd 7992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fv 6544 df-1st 7993 df-2nd 7994 |
| This theorem is referenced by: unielxp 8031 xpinpreima 33942 xpinpreima2 33943 |
| Copyright terms: Public domain | W3C validator |