Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xp2 | Structured version Visualization version GIF version |
Description: Representation of Cartesian product based on ordered pair component functions. (Contributed by NM, 16-Sep-2006.) |
Ref | Expression |
---|---|
xp2 | ⊢ (𝐴 × 𝐵) = {𝑥 ∈ (V × V) ∣ ((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp7 7815 | . . 3 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ (V × V) ∧ ((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ 𝐵))) | |
2 | 1 | abbi2i 2877 | . 2 ⊢ (𝐴 × 𝐵) = {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ 𝐵))} |
3 | df-rab 3071 | . 2 ⊢ {𝑥 ∈ (V × V) ∣ ((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ 𝐵)} = {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ 𝐵))} | |
4 | 2, 3 | eqtr4i 2769 | 1 ⊢ (𝐴 × 𝐵) = {𝑥 ∈ (V × V) ∣ ((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ 𝐵)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1543 ∈ wcel 2111 {cab 2715 {crab 3066 Vcvv 3421 × cxp 5564 ‘cfv 6398 1st c1st 7778 2nd c2nd 7779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5207 ax-nul 5214 ax-pr 5337 ax-un 7542 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3423 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-nul 4253 df-if 4455 df-sn 4557 df-pr 4559 df-op 4563 df-uni 4835 df-br 5069 df-opab 5131 df-mpt 5151 df-id 5470 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-iota 6356 df-fun 6400 df-fv 6406 df-1st 7780 df-2nd 7781 |
This theorem is referenced by: unielxp 7818 xpinpreima 31597 xpinpreima2 31598 |
Copyright terms: Public domain | W3C validator |