MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp2 Structured version   Visualization version   GIF version

Theorem xp2 7817
Description: Representation of Cartesian product based on ordered pair component functions. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
xp2 (𝐴 × 𝐵) = {𝑥 ∈ (V × V) ∣ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ 𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem xp2
StepHypRef Expression
1 elxp7 7815 . . 3 (𝑥 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ 𝐵)))
21abbi2i 2877 . 2 (𝐴 × 𝐵) = {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ 𝐵))}
3 df-rab 3071 . 2 {𝑥 ∈ (V × V) ∣ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ 𝐵)} = {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ 𝐵))}
42, 3eqtr4i 2769 1 (𝐴 × 𝐵) = {𝑥 ∈ (V × V) ∣ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ 𝐵)}
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1543  wcel 2111  {cab 2715  {crab 3066  Vcvv 3421   × cxp 5564  cfv 6398  1st c1st 7778  2nd c2nd 7779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5207  ax-nul 5214  ax-pr 5337  ax-un 7542
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3423  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4253  df-if 4455  df-sn 4557  df-pr 4559  df-op 4563  df-uni 4835  df-br 5069  df-opab 5131  df-mpt 5151  df-id 5470  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-iota 6356  df-fun 6400  df-fv 6406  df-1st 7780  df-2nd 7781
This theorem is referenced by:  unielxp  7818  xpinpreima  31597  xpinpreima2  31598
  Copyright terms: Public domain W3C validator