| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqopi | Structured version Visualization version GIF version | ||
| Description: Equality with an ordered pair. (Contributed by NM, 15-Dec-2008.) (Revised by Mario Carneiro, 23-Feb-2014.) |
| Ref | Expression |
|---|---|
| eqopi | ⊢ ((𝐴 ∈ (𝑉 × 𝑊) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶)) → 𝐴 = 〈𝐵, 𝐶〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss 5654 | . . 3 ⊢ (𝑉 × 𝑊) ⊆ (V × V) | |
| 2 | 1 | sseli 3942 | . 2 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 ∈ (V × V)) |
| 3 | elxp6 8002 | . . . 4 ⊢ (𝐴 ∈ (V × V) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V))) | |
| 4 | 3 | simplbi 497 | . . 3 ⊢ (𝐴 ∈ (V × V) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 5 | opeq12 4839 | . . 3 ⊢ (((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈𝐵, 𝐶〉) | |
| 6 | 4, 5 | sylan9eq 2784 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶)) → 𝐴 = 〈𝐵, 𝐶〉) |
| 7 | 2, 6 | sylan 580 | 1 ⊢ ((𝐴 ∈ (𝑉 × 𝑊) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶)) → 𝐴 = 〈𝐵, 𝐶〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 〈cop 4595 × cxp 5636 ‘cfv 6511 1st c1st 7966 2nd c2nd 7967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fv 6519 df-1st 7968 df-2nd 7969 |
| This theorem is referenced by: op1steq 8012 el2xptp0 8015 dfoprab3 8033 1stconst 8079 2ndconst 8080 upxp 23510 opreu2reuALT 32406 gsummpt2d 32989 sitgaddlemb 34339 2oppf 49121 |
| Copyright terms: Public domain | W3C validator |