Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqopi | Structured version Visualization version GIF version |
Description: Equality with an ordered pair. (Contributed by NM, 15-Dec-2008.) (Revised by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
eqopi | ⊢ ((𝐴 ∈ (𝑉 × 𝑊) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶)) → 𝐴 = 〈𝐵, 𝐶〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss 5540 | . . 3 ⊢ (𝑉 × 𝑊) ⊆ (V × V) | |
2 | 1 | sseli 3888 | . 2 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 ∈ (V × V)) |
3 | elxp6 7727 | . . . 4 ⊢ (𝐴 ∈ (V × V) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V))) | |
4 | 3 | simplbi 501 | . . 3 ⊢ (𝐴 ∈ (V × V) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
5 | opeq12 4765 | . . 3 ⊢ (((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈𝐵, 𝐶〉) | |
6 | 4, 5 | sylan9eq 2813 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶)) → 𝐴 = 〈𝐵, 𝐶〉) |
7 | 2, 6 | sylan 583 | 1 ⊢ ((𝐴 ∈ (𝑉 × 𝑊) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶)) → 𝐴 = 〈𝐵, 𝐶〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 〈cop 4528 × cxp 5522 ‘cfv 6335 1st c1st 7691 2nd c2nd 7692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-iota 6294 df-fun 6337 df-fv 6343 df-1st 7693 df-2nd 7694 |
This theorem is referenced by: op1steq 7737 el2xptp0 7740 dfoprab3 7756 1stconst 7800 2ndconst 7801 upxp 22323 opreu2reuALT 30346 cnvoprabOLD 30579 gsummpt2d 30835 sitgaddlemb 31834 |
Copyright terms: Public domain | W3C validator |