![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqopi | Structured version Visualization version GIF version |
Description: Equality with an ordered pair. (Contributed by NM, 15-Dec-2008.) (Revised by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
eqopi | ⊢ ((𝐴 ∈ (𝑉 × 𝑊) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶)) → 𝐴 = ⟨𝐵, 𝐶⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss 5650 | . . 3 ⊢ (𝑉 × 𝑊) ⊆ (V × V) | |
2 | 1 | sseli 3941 | . 2 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 ∈ (V × V)) |
3 | elxp6 7956 | . . . 4 ⊢ (𝐴 ∈ (V × V) ↔ (𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∧ ((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V))) | |
4 | 3 | simplbi 499 | . . 3 ⊢ (𝐴 ∈ (V × V) → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) |
5 | opeq12 4833 | . . 3 ⊢ (((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶) → ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ = ⟨𝐵, 𝐶⟩) | |
6 | 4, 5 | sylan9eq 2797 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶)) → 𝐴 = ⟨𝐵, 𝐶⟩) |
7 | 2, 6 | sylan 581 | 1 ⊢ ((𝐴 ∈ (𝑉 × 𝑊) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶)) → 𝐴 = ⟨𝐵, 𝐶⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3446 ⟨cop 4593 × cxp 5632 ‘cfv 6497 1st c1st 7920 2nd c2nd 7921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-iota 6449 df-fun 6499 df-fv 6505 df-1st 7922 df-2nd 7923 |
This theorem is referenced by: op1steq 7966 el2xptp0 7969 dfoprab3 7987 1stconst 8033 2ndconst 8034 upxp 22977 opreu2reuALT 31408 cnvoprabOLD 31640 gsummpt2d 31894 sitgaddlemb 32951 |
Copyright terms: Public domain | W3C validator |