![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqopi | Structured version Visualization version GIF version |
Description: Equality with an ordered pair. (Contributed by NM, 15-Dec-2008.) (Revised by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
eqopi | ⊢ ((𝐴 ∈ (𝑉 × 𝑊) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶)) → 𝐴 = ⟨𝐵, 𝐶⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss 5691 | . . 3 ⊢ (𝑉 × 𝑊) ⊆ (V × V) | |
2 | 1 | sseli 3977 | . 2 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 ∈ (V × V)) |
3 | elxp6 8005 | . . . 4 ⊢ (𝐴 ∈ (V × V) ↔ (𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∧ ((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V))) | |
4 | 3 | simplbi 498 | . . 3 ⊢ (𝐴 ∈ (V × V) → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) |
5 | opeq12 4874 | . . 3 ⊢ (((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶) → ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ = ⟨𝐵, 𝐶⟩) | |
6 | 4, 5 | sylan9eq 2792 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶)) → 𝐴 = ⟨𝐵, 𝐶⟩) |
7 | 2, 6 | sylan 580 | 1 ⊢ ((𝐴 ∈ (𝑉 × 𝑊) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶)) → 𝐴 = ⟨𝐵, 𝐶⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⟨cop 4633 × cxp 5673 ‘cfv 6540 1st c1st 7969 2nd c2nd 7970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fv 6548 df-1st 7971 df-2nd 7972 |
This theorem is referenced by: op1steq 8015 el2xptp0 8018 dfoprab3 8036 1stconst 8082 2ndconst 8083 upxp 23118 opreu2reuALT 31704 cnvoprabOLD 31932 gsummpt2d 32188 sitgaddlemb 33335 |
Copyright terms: Public domain | W3C validator |