![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqopi | Structured version Visualization version GIF version |
Description: Equality with an ordered pair. (Contributed by NM, 15-Dec-2008.) (Revised by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
eqopi | ⊢ ((𝐴 ∈ (𝑉 × 𝑊) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶)) → 𝐴 = ⟨𝐵, 𝐶⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss 5694 | . . 3 ⊢ (𝑉 × 𝑊) ⊆ (V × V) | |
2 | 1 | sseli 3976 | . 2 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 ∈ (V × V)) |
3 | elxp6 8027 | . . . 4 ⊢ (𝐴 ∈ (V × V) ↔ (𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∧ ((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V))) | |
4 | 3 | simplbi 497 | . . 3 ⊢ (𝐴 ∈ (V × V) → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) |
5 | opeq12 4876 | . . 3 ⊢ (((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶) → ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ = ⟨𝐵, 𝐶⟩) | |
6 | 4, 5 | sylan9eq 2788 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶)) → 𝐴 = ⟨𝐵, 𝐶⟩) |
7 | 2, 6 | sylan 579 | 1 ⊢ ((𝐴 ∈ (𝑉 × 𝑊) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶)) → 𝐴 = ⟨𝐵, 𝐶⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ⟨cop 4635 × cxp 5676 ‘cfv 6548 1st c1st 7991 2nd c2nd 7992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6500 df-fun 6550 df-fv 6556 df-1st 7993 df-2nd 7994 |
This theorem is referenced by: op1steq 8037 el2xptp0 8040 dfoprab3 8058 1stconst 8105 2ndconst 8106 upxp 23526 opreu2reuALT 32274 cnvoprabOLD 32502 gsummpt2d 32763 sitgaddlemb 33968 |
Copyright terms: Public domain | W3C validator |