Step | Hyp | Ref
| Expression |
1 | | inrab 4246 |
. 2
⊢ ({𝑟 ∈ (V × V) ∣
(1st ‘𝑟)
∈ 𝐴} ∩ {𝑟 ∈ (V × V) ∣
(2nd ‘𝑟)
∈ 𝐵}) = {𝑟 ∈ (V × V) ∣
((1st ‘𝑟)
∈ 𝐴 ∧
(2nd ‘𝑟)
∈ 𝐵)} |
2 | | f1stres 7849 |
. . . . 5
⊢
(1st ↾ (V × V)):(V ×
V)⟶V |
3 | | ffn 6598 |
. . . . 5
⊢
((1st ↾ (V × V)):(V × V)⟶V →
(1st ↾ (V × V)) Fn (V × V)) |
4 | | fncnvima2 6935 |
. . . . 5
⊢
((1st ↾ (V × V)) Fn (V × V) → (◡(1st ↾ (V × V))
“ 𝐴) = {𝑟 ∈ (V × V) ∣
((1st ↾ (V × V))‘𝑟) ∈ 𝐴}) |
5 | 2, 3, 4 | mp2b 10 |
. . . 4
⊢ (◡(1st ↾ (V × V))
“ 𝐴) = {𝑟 ∈ (V × V) ∣
((1st ↾ (V × V))‘𝑟) ∈ 𝐴} |
6 | | fvres 6790 |
. . . . . 6
⊢ (𝑟 ∈ (V × V) →
((1st ↾ (V × V))‘𝑟) = (1st ‘𝑟)) |
7 | 6 | eleq1d 2825 |
. . . . 5
⊢ (𝑟 ∈ (V × V) →
(((1st ↾ (V × V))‘𝑟) ∈ 𝐴 ↔ (1st ‘𝑟) ∈ 𝐴)) |
8 | 7 | rabbiia 3405 |
. . . 4
⊢ {𝑟 ∈ (V × V) ∣
((1st ↾ (V × V))‘𝑟) ∈ 𝐴} = {𝑟 ∈ (V × V) ∣ (1st
‘𝑟) ∈ 𝐴} |
9 | 5, 8 | eqtri 2768 |
. . 3
⊢ (◡(1st ↾ (V × V))
“ 𝐴) = {𝑟 ∈ (V × V) ∣
(1st ‘𝑟)
∈ 𝐴} |
10 | | f2ndres 7850 |
. . . . 5
⊢
(2nd ↾ (V × V)):(V ×
V)⟶V |
11 | | ffn 6598 |
. . . . 5
⊢
((2nd ↾ (V × V)):(V × V)⟶V →
(2nd ↾ (V × V)) Fn (V × V)) |
12 | | fncnvima2 6935 |
. . . . 5
⊢
((2nd ↾ (V × V)) Fn (V × V) → (◡(2nd ↾ (V × V))
“ 𝐵) = {𝑟 ∈ (V × V) ∣
((2nd ↾ (V × V))‘𝑟) ∈ 𝐵}) |
13 | 10, 11, 12 | mp2b 10 |
. . . 4
⊢ (◡(2nd ↾ (V × V))
“ 𝐵) = {𝑟 ∈ (V × V) ∣
((2nd ↾ (V × V))‘𝑟) ∈ 𝐵} |
14 | | fvres 6790 |
. . . . . 6
⊢ (𝑟 ∈ (V × V) →
((2nd ↾ (V × V))‘𝑟) = (2nd ‘𝑟)) |
15 | 14 | eleq1d 2825 |
. . . . 5
⊢ (𝑟 ∈ (V × V) →
(((2nd ↾ (V × V))‘𝑟) ∈ 𝐵 ↔ (2nd ‘𝑟) ∈ 𝐵)) |
16 | 15 | rabbiia 3405 |
. . . 4
⊢ {𝑟 ∈ (V × V) ∣
((2nd ↾ (V × V))‘𝑟) ∈ 𝐵} = {𝑟 ∈ (V × V) ∣ (2nd
‘𝑟) ∈ 𝐵} |
17 | 13, 16 | eqtri 2768 |
. . 3
⊢ (◡(2nd ↾ (V × V))
“ 𝐵) = {𝑟 ∈ (V × V) ∣
(2nd ‘𝑟)
∈ 𝐵} |
18 | 9, 17 | ineq12i 4150 |
. 2
⊢ ((◡(1st ↾ (V × V))
“ 𝐴) ∩ (◡(2nd ↾ (V × V))
“ 𝐵)) = ({𝑟 ∈ (V × V) ∣
(1st ‘𝑟)
∈ 𝐴} ∩ {𝑟 ∈ (V × V) ∣
(2nd ‘𝑟)
∈ 𝐵}) |
19 | | xp2 7862 |
. 2
⊢ (𝐴 × 𝐵) = {𝑟 ∈ (V × V) ∣
((1st ‘𝑟)
∈ 𝐴 ∧
(2nd ‘𝑟)
∈ 𝐵)} |
20 | 1, 18, 19 | 3eqtr4ri 2779 |
1
⊢ (𝐴 × 𝐵) = ((◡(1st ↾ (V × V))
“ 𝐴) ∩ (◡(2nd ↾ (V × V))
“ 𝐵)) |