Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpinpreima Structured version   Visualization version   GIF version

Theorem xpinpreima 33991
Description: Rewrite the cartesian product of two sets as the intersection of their preimage by 1st and 2nd, the projections on the first and second elements. (Contributed by Thierry Arnoux, 22-Sep-2017.)
Assertion
Ref Expression
xpinpreima (𝐴 × 𝐵) = (((1st ↾ (V × V)) “ 𝐴) ∩ ((2nd ↾ (V × V)) “ 𝐵))

Proof of Theorem xpinpreima
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 inrab 4265 . 2 ({𝑟 ∈ (V × V) ∣ (1st𝑟) ∈ 𝐴} ∩ {𝑟 ∈ (V × V) ∣ (2nd𝑟) ∈ 𝐵}) = {𝑟 ∈ (V × V) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)}
2 f1stres 7954 . . . . 5 (1st ↾ (V × V)):(V × V)⟶V
3 ffn 6659 . . . . 5 ((1st ↾ (V × V)):(V × V)⟶V → (1st ↾ (V × V)) Fn (V × V))
4 fncnvima2 7003 . . . . 5 ((1st ↾ (V × V)) Fn (V × V) → ((1st ↾ (V × V)) “ 𝐴) = {𝑟 ∈ (V × V) ∣ ((1st ↾ (V × V))‘𝑟) ∈ 𝐴})
52, 3, 4mp2b 10 . . . 4 ((1st ↾ (V × V)) “ 𝐴) = {𝑟 ∈ (V × V) ∣ ((1st ↾ (V × V))‘𝑟) ∈ 𝐴}
6 fvres 6850 . . . . . 6 (𝑟 ∈ (V × V) → ((1st ↾ (V × V))‘𝑟) = (1st𝑟))
76eleq1d 2818 . . . . 5 (𝑟 ∈ (V × V) → (((1st ↾ (V × V))‘𝑟) ∈ 𝐴 ↔ (1st𝑟) ∈ 𝐴))
87rabbiia 3400 . . . 4 {𝑟 ∈ (V × V) ∣ ((1st ↾ (V × V))‘𝑟) ∈ 𝐴} = {𝑟 ∈ (V × V) ∣ (1st𝑟) ∈ 𝐴}
95, 8eqtri 2756 . . 3 ((1st ↾ (V × V)) “ 𝐴) = {𝑟 ∈ (V × V) ∣ (1st𝑟) ∈ 𝐴}
10 f2ndres 7955 . . . . 5 (2nd ↾ (V × V)):(V × V)⟶V
11 ffn 6659 . . . . 5 ((2nd ↾ (V × V)):(V × V)⟶V → (2nd ↾ (V × V)) Fn (V × V))
12 fncnvima2 7003 . . . . 5 ((2nd ↾ (V × V)) Fn (V × V) → ((2nd ↾ (V × V)) “ 𝐵) = {𝑟 ∈ (V × V) ∣ ((2nd ↾ (V × V))‘𝑟) ∈ 𝐵})
1310, 11, 12mp2b 10 . . . 4 ((2nd ↾ (V × V)) “ 𝐵) = {𝑟 ∈ (V × V) ∣ ((2nd ↾ (V × V))‘𝑟) ∈ 𝐵}
14 fvres 6850 . . . . . 6 (𝑟 ∈ (V × V) → ((2nd ↾ (V × V))‘𝑟) = (2nd𝑟))
1514eleq1d 2818 . . . . 5 (𝑟 ∈ (V × V) → (((2nd ↾ (V × V))‘𝑟) ∈ 𝐵 ↔ (2nd𝑟) ∈ 𝐵))
1615rabbiia 3400 . . . 4 {𝑟 ∈ (V × V) ∣ ((2nd ↾ (V × V))‘𝑟) ∈ 𝐵} = {𝑟 ∈ (V × V) ∣ (2nd𝑟) ∈ 𝐵}
1713, 16eqtri 2756 . . 3 ((2nd ↾ (V × V)) “ 𝐵) = {𝑟 ∈ (V × V) ∣ (2nd𝑟) ∈ 𝐵}
189, 17ineq12i 4167 . 2 (((1st ↾ (V × V)) “ 𝐴) ∩ ((2nd ↾ (V × V)) “ 𝐵)) = ({𝑟 ∈ (V × V) ∣ (1st𝑟) ∈ 𝐴} ∩ {𝑟 ∈ (V × V) ∣ (2nd𝑟) ∈ 𝐵})
19 xp2 7967 . 2 (𝐴 × 𝐵) = {𝑟 ∈ (V × V) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)}
201, 18, 193eqtr4ri 2767 1 (𝐴 × 𝐵) = (((1st ↾ (V × V)) “ 𝐴) ∩ ((2nd ↾ (V × V)) “ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  cin 3897   × cxp 5619  ccnv 5620  cres 5623  cima 5624   Fn wfn 6484  wf 6485  cfv 6489  1st c1st 7928  2nd c2nd 7929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-1st 7930  df-2nd 7931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator