Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpinpreima Structured version   Visualization version   GIF version

Theorem xpinpreima 32881
Description: Rewrite the cartesian product of two sets as the intersection of their preimage by 1st and 2nd, the projections on the first and second elements. (Contributed by Thierry Arnoux, 22-Sep-2017.)
Assertion
Ref Expression
xpinpreima (𝐴 × 𝐵) = (((1st ↾ (V × V)) “ 𝐴) ∩ ((2nd ↾ (V × V)) “ 𝐵))

Proof of Theorem xpinpreima
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 inrab 4306 . 2 ({𝑟 ∈ (V × V) ∣ (1st𝑟) ∈ 𝐴} ∩ {𝑟 ∈ (V × V) ∣ (2nd𝑟) ∈ 𝐵}) = {𝑟 ∈ (V × V) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)}
2 f1stres 7998 . . . . 5 (1st ↾ (V × V)):(V × V)⟶V
3 ffn 6717 . . . . 5 ((1st ↾ (V × V)):(V × V)⟶V → (1st ↾ (V × V)) Fn (V × V))
4 fncnvima2 7062 . . . . 5 ((1st ↾ (V × V)) Fn (V × V) → ((1st ↾ (V × V)) “ 𝐴) = {𝑟 ∈ (V × V) ∣ ((1st ↾ (V × V))‘𝑟) ∈ 𝐴})
52, 3, 4mp2b 10 . . . 4 ((1st ↾ (V × V)) “ 𝐴) = {𝑟 ∈ (V × V) ∣ ((1st ↾ (V × V))‘𝑟) ∈ 𝐴}
6 fvres 6910 . . . . . 6 (𝑟 ∈ (V × V) → ((1st ↾ (V × V))‘𝑟) = (1st𝑟))
76eleq1d 2818 . . . . 5 (𝑟 ∈ (V × V) → (((1st ↾ (V × V))‘𝑟) ∈ 𝐴 ↔ (1st𝑟) ∈ 𝐴))
87rabbiia 3436 . . . 4 {𝑟 ∈ (V × V) ∣ ((1st ↾ (V × V))‘𝑟) ∈ 𝐴} = {𝑟 ∈ (V × V) ∣ (1st𝑟) ∈ 𝐴}
95, 8eqtri 2760 . . 3 ((1st ↾ (V × V)) “ 𝐴) = {𝑟 ∈ (V × V) ∣ (1st𝑟) ∈ 𝐴}
10 f2ndres 7999 . . . . 5 (2nd ↾ (V × V)):(V × V)⟶V
11 ffn 6717 . . . . 5 ((2nd ↾ (V × V)):(V × V)⟶V → (2nd ↾ (V × V)) Fn (V × V))
12 fncnvima2 7062 . . . . 5 ((2nd ↾ (V × V)) Fn (V × V) → ((2nd ↾ (V × V)) “ 𝐵) = {𝑟 ∈ (V × V) ∣ ((2nd ↾ (V × V))‘𝑟) ∈ 𝐵})
1310, 11, 12mp2b 10 . . . 4 ((2nd ↾ (V × V)) “ 𝐵) = {𝑟 ∈ (V × V) ∣ ((2nd ↾ (V × V))‘𝑟) ∈ 𝐵}
14 fvres 6910 . . . . . 6 (𝑟 ∈ (V × V) → ((2nd ↾ (V × V))‘𝑟) = (2nd𝑟))
1514eleq1d 2818 . . . . 5 (𝑟 ∈ (V × V) → (((2nd ↾ (V × V))‘𝑟) ∈ 𝐵 ↔ (2nd𝑟) ∈ 𝐵))
1615rabbiia 3436 . . . 4 {𝑟 ∈ (V × V) ∣ ((2nd ↾ (V × V))‘𝑟) ∈ 𝐵} = {𝑟 ∈ (V × V) ∣ (2nd𝑟) ∈ 𝐵}
1713, 16eqtri 2760 . . 3 ((2nd ↾ (V × V)) “ 𝐵) = {𝑟 ∈ (V × V) ∣ (2nd𝑟) ∈ 𝐵}
189, 17ineq12i 4210 . 2 (((1st ↾ (V × V)) “ 𝐴) ∩ ((2nd ↾ (V × V)) “ 𝐵)) = ({𝑟 ∈ (V × V) ∣ (1st𝑟) ∈ 𝐴} ∩ {𝑟 ∈ (V × V) ∣ (2nd𝑟) ∈ 𝐵})
19 xp2 8011 . 2 (𝐴 × 𝐵) = {𝑟 ∈ (V × V) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)}
201, 18, 193eqtr4ri 2771 1 (𝐴 × 𝐵) = (((1st ↾ (V × V)) “ 𝐴) ∩ ((2nd ↾ (V × V)) “ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1541  wcel 2106  {crab 3432  Vcvv 3474  cin 3947   × cxp 5674  ccnv 5675  cres 5678  cima 5679   Fn wfn 6538  wf 6539  cfv 6543  1st c1st 7972  2nd c2nd 7973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-1st 7974  df-2nd 7975
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator