Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpinpreima Structured version   Visualization version   GIF version

Theorem xpinpreima 33937
Description: Rewrite the cartesian product of two sets as the intersection of their preimage by 1st and 2nd, the projections on the first and second elements. (Contributed by Thierry Arnoux, 22-Sep-2017.)
Assertion
Ref Expression
xpinpreima (𝐴 × 𝐵) = (((1st ↾ (V × V)) “ 𝐴) ∩ ((2nd ↾ (V × V)) “ 𝐵))

Proof of Theorem xpinpreima
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 inrab 4291 . 2 ({𝑟 ∈ (V × V) ∣ (1st𝑟) ∈ 𝐴} ∩ {𝑟 ∈ (V × V) ∣ (2nd𝑟) ∈ 𝐵}) = {𝑟 ∈ (V × V) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)}
2 f1stres 8012 . . . . 5 (1st ↾ (V × V)):(V × V)⟶V
3 ffn 6706 . . . . 5 ((1st ↾ (V × V)):(V × V)⟶V → (1st ↾ (V × V)) Fn (V × V))
4 fncnvima2 7051 . . . . 5 ((1st ↾ (V × V)) Fn (V × V) → ((1st ↾ (V × V)) “ 𝐴) = {𝑟 ∈ (V × V) ∣ ((1st ↾ (V × V))‘𝑟) ∈ 𝐴})
52, 3, 4mp2b 10 . . . 4 ((1st ↾ (V × V)) “ 𝐴) = {𝑟 ∈ (V × V) ∣ ((1st ↾ (V × V))‘𝑟) ∈ 𝐴}
6 fvres 6895 . . . . . 6 (𝑟 ∈ (V × V) → ((1st ↾ (V × V))‘𝑟) = (1st𝑟))
76eleq1d 2819 . . . . 5 (𝑟 ∈ (V × V) → (((1st ↾ (V × V))‘𝑟) ∈ 𝐴 ↔ (1st𝑟) ∈ 𝐴))
87rabbiia 3419 . . . 4 {𝑟 ∈ (V × V) ∣ ((1st ↾ (V × V))‘𝑟) ∈ 𝐴} = {𝑟 ∈ (V × V) ∣ (1st𝑟) ∈ 𝐴}
95, 8eqtri 2758 . . 3 ((1st ↾ (V × V)) “ 𝐴) = {𝑟 ∈ (V × V) ∣ (1st𝑟) ∈ 𝐴}
10 f2ndres 8013 . . . . 5 (2nd ↾ (V × V)):(V × V)⟶V
11 ffn 6706 . . . . 5 ((2nd ↾ (V × V)):(V × V)⟶V → (2nd ↾ (V × V)) Fn (V × V))
12 fncnvima2 7051 . . . . 5 ((2nd ↾ (V × V)) Fn (V × V) → ((2nd ↾ (V × V)) “ 𝐵) = {𝑟 ∈ (V × V) ∣ ((2nd ↾ (V × V))‘𝑟) ∈ 𝐵})
1310, 11, 12mp2b 10 . . . 4 ((2nd ↾ (V × V)) “ 𝐵) = {𝑟 ∈ (V × V) ∣ ((2nd ↾ (V × V))‘𝑟) ∈ 𝐵}
14 fvres 6895 . . . . . 6 (𝑟 ∈ (V × V) → ((2nd ↾ (V × V))‘𝑟) = (2nd𝑟))
1514eleq1d 2819 . . . . 5 (𝑟 ∈ (V × V) → (((2nd ↾ (V × V))‘𝑟) ∈ 𝐵 ↔ (2nd𝑟) ∈ 𝐵))
1615rabbiia 3419 . . . 4 {𝑟 ∈ (V × V) ∣ ((2nd ↾ (V × V))‘𝑟) ∈ 𝐵} = {𝑟 ∈ (V × V) ∣ (2nd𝑟) ∈ 𝐵}
1713, 16eqtri 2758 . . 3 ((2nd ↾ (V × V)) “ 𝐵) = {𝑟 ∈ (V × V) ∣ (2nd𝑟) ∈ 𝐵}
189, 17ineq12i 4193 . 2 (((1st ↾ (V × V)) “ 𝐴) ∩ ((2nd ↾ (V × V)) “ 𝐵)) = ({𝑟 ∈ (V × V) ∣ (1st𝑟) ∈ 𝐴} ∩ {𝑟 ∈ (V × V) ∣ (2nd𝑟) ∈ 𝐵})
19 xp2 8025 . 2 (𝐴 × 𝐵) = {𝑟 ∈ (V × V) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)}
201, 18, 193eqtr4ri 2769 1 (𝐴 × 𝐵) = (((1st ↾ (V × V)) “ 𝐴) ∩ ((2nd ↾ (V × V)) “ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  cin 3925   × cxp 5652  ccnv 5653  cres 5656  cima 5657   Fn wfn 6526  wf 6527  cfv 6531  1st c1st 7986  2nd c2nd 7987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-1st 7988  df-2nd 7989
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator