Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpinpreima Structured version   Visualization version   GIF version

Theorem xpinpreima 33852
Description: Rewrite the cartesian product of two sets as the intersection of their preimage by 1st and 2nd, the projections on the first and second elements. (Contributed by Thierry Arnoux, 22-Sep-2017.)
Assertion
Ref Expression
xpinpreima (𝐴 × 𝐵) = (((1st ↾ (V × V)) “ 𝐴) ∩ ((2nd ↾ (V × V)) “ 𝐵))

Proof of Theorem xpinpreima
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 inrab 4335 . 2 ({𝑟 ∈ (V × V) ∣ (1st𝑟) ∈ 𝐴} ∩ {𝑟 ∈ (V × V) ∣ (2nd𝑟) ∈ 𝐵}) = {𝑟 ∈ (V × V) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)}
2 f1stres 8054 . . . . 5 (1st ↾ (V × V)):(V × V)⟶V
3 ffn 6747 . . . . 5 ((1st ↾ (V × V)):(V × V)⟶V → (1st ↾ (V × V)) Fn (V × V))
4 fncnvima2 7094 . . . . 5 ((1st ↾ (V × V)) Fn (V × V) → ((1st ↾ (V × V)) “ 𝐴) = {𝑟 ∈ (V × V) ∣ ((1st ↾ (V × V))‘𝑟) ∈ 𝐴})
52, 3, 4mp2b 10 . . . 4 ((1st ↾ (V × V)) “ 𝐴) = {𝑟 ∈ (V × V) ∣ ((1st ↾ (V × V))‘𝑟) ∈ 𝐴}
6 fvres 6939 . . . . . 6 (𝑟 ∈ (V × V) → ((1st ↾ (V × V))‘𝑟) = (1st𝑟))
76eleq1d 2829 . . . . 5 (𝑟 ∈ (V × V) → (((1st ↾ (V × V))‘𝑟) ∈ 𝐴 ↔ (1st𝑟) ∈ 𝐴))
87rabbiia 3447 . . . 4 {𝑟 ∈ (V × V) ∣ ((1st ↾ (V × V))‘𝑟) ∈ 𝐴} = {𝑟 ∈ (V × V) ∣ (1st𝑟) ∈ 𝐴}
95, 8eqtri 2768 . . 3 ((1st ↾ (V × V)) “ 𝐴) = {𝑟 ∈ (V × V) ∣ (1st𝑟) ∈ 𝐴}
10 f2ndres 8055 . . . . 5 (2nd ↾ (V × V)):(V × V)⟶V
11 ffn 6747 . . . . 5 ((2nd ↾ (V × V)):(V × V)⟶V → (2nd ↾ (V × V)) Fn (V × V))
12 fncnvima2 7094 . . . . 5 ((2nd ↾ (V × V)) Fn (V × V) → ((2nd ↾ (V × V)) “ 𝐵) = {𝑟 ∈ (V × V) ∣ ((2nd ↾ (V × V))‘𝑟) ∈ 𝐵})
1310, 11, 12mp2b 10 . . . 4 ((2nd ↾ (V × V)) “ 𝐵) = {𝑟 ∈ (V × V) ∣ ((2nd ↾ (V × V))‘𝑟) ∈ 𝐵}
14 fvres 6939 . . . . . 6 (𝑟 ∈ (V × V) → ((2nd ↾ (V × V))‘𝑟) = (2nd𝑟))
1514eleq1d 2829 . . . . 5 (𝑟 ∈ (V × V) → (((2nd ↾ (V × V))‘𝑟) ∈ 𝐵 ↔ (2nd𝑟) ∈ 𝐵))
1615rabbiia 3447 . . . 4 {𝑟 ∈ (V × V) ∣ ((2nd ↾ (V × V))‘𝑟) ∈ 𝐵} = {𝑟 ∈ (V × V) ∣ (2nd𝑟) ∈ 𝐵}
1713, 16eqtri 2768 . . 3 ((2nd ↾ (V × V)) “ 𝐵) = {𝑟 ∈ (V × V) ∣ (2nd𝑟) ∈ 𝐵}
189, 17ineq12i 4239 . 2 (((1st ↾ (V × V)) “ 𝐴) ∩ ((2nd ↾ (V × V)) “ 𝐵)) = ({𝑟 ∈ (V × V) ∣ (1st𝑟) ∈ 𝐴} ∩ {𝑟 ∈ (V × V) ∣ (2nd𝑟) ∈ 𝐵})
19 xp2 8067 . 2 (𝐴 × 𝐵) = {𝑟 ∈ (V × V) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)}
201, 18, 193eqtr4ri 2779 1 (𝐴 × 𝐵) = (((1st ↾ (V × V)) “ 𝐴) ∩ ((2nd ↾ (V × V)) “ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  cin 3975   × cxp 5698  ccnv 5699  cres 5702  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  1st c1st 8028  2nd c2nd 8029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-1st 8030  df-2nd 8031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator