MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwdjundom Structured version   Visualization version   GIF version

Theorem pwdjundom 10627
Description: The powerset of a Dedekind-infinite set does not inject into its cardinal sum with itself. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
pwdjundom (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴𝐴))

Proof of Theorem pwdjundom
StepHypRef Expression
1 pwxpndom2 10625 . 2 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))
2 df1o2 8444 . . . . . . . 8 1o = {∅}
32xpeq1i 5667 . . . . . . 7 (1o × 𝐴) = ({∅} × 𝐴)
4 0ex 5265 . . . . . . . 8 ∅ ∈ V
5 reldom 8927 . . . . . . . . 9 Rel ≼
65brrelex2i 5698 . . . . . . . 8 (ω ≼ 𝐴𝐴 ∈ V)
7 xpsnen2g 9039 . . . . . . . 8 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
84, 6, 7sylancr 587 . . . . . . 7 (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ 𝐴)
93, 8eqbrtrid 5145 . . . . . 6 (ω ≼ 𝐴 → (1o × 𝐴) ≈ 𝐴)
109ensymd 8979 . . . . 5 (ω ≼ 𝐴𝐴 ≈ (1o × 𝐴))
11 omex 9603 . . . . . . . 8 ω ∈ V
12 ordom 7855 . . . . . . . . 9 Ord ω
13 1onn 8607 . . . . . . . . 9 1o ∈ ω
14 ordelss 6351 . . . . . . . . 9 ((Ord ω ∧ 1o ∈ ω) → 1o ⊆ ω)
1512, 13, 14mp2an 692 . . . . . . . 8 1o ⊆ ω
16 ssdomg 8974 . . . . . . . 8 (ω ∈ V → (1o ⊆ ω → 1o ≼ ω))
1711, 15, 16mp2 9 . . . . . . 7 1o ≼ ω
18 domtr 8981 . . . . . . 7 ((1o ≼ ω ∧ ω ≼ 𝐴) → 1o𝐴)
1917, 18mpan 690 . . . . . 6 (ω ≼ 𝐴 → 1o𝐴)
20 xpdom1g 9043 . . . . . 6 ((𝐴 ∈ V ∧ 1o𝐴) → (1o × 𝐴) ≼ (𝐴 × 𝐴))
216, 19, 20syl2anc 584 . . . . 5 (ω ≼ 𝐴 → (1o × 𝐴) ≼ (𝐴 × 𝐴))
22 endomtr 8986 . . . . 5 ((𝐴 ≈ (1o × 𝐴) ∧ (1o × 𝐴) ≼ (𝐴 × 𝐴)) → 𝐴 ≼ (𝐴 × 𝐴))
2310, 21, 22syl2anc 584 . . . 4 (ω ≼ 𝐴𝐴 ≼ (𝐴 × 𝐴))
24 djudom2 10144 . . . 4 ((𝐴 ≼ (𝐴 × 𝐴) ∧ 𝐴 ∈ V) → (𝐴𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴)))
2523, 6, 24syl2anc 584 . . 3 (ω ≼ 𝐴 → (𝐴𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴)))
26 domtr 8981 . . . 4 ((𝒫 𝐴 ≼ (𝐴𝐴) ∧ (𝐴𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴))) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))
2726expcom 413 . . 3 ((𝐴𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴)) → (𝒫 𝐴 ≼ (𝐴𝐴) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴))))
2825, 27syl 17 . 2 (ω ≼ 𝐴 → (𝒫 𝐴 ≼ (𝐴𝐴) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴))))
291, 28mtod 198 1 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  Vcvv 3450  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592   class class class wbr 5110   × cxp 5639  Ord word 6334  ωcom 7845  1oc1o 8430  cen 8918  cdom 8919  cdju 9858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-seqom 8419  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-oexp 8443  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-har 9517  df-cnf 9622  df-dju 9861  df-card 9899
This theorem is referenced by:  gchdjuidm  10628
  Copyright terms: Public domain W3C validator