MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwdjundom Structured version   Visualization version   GIF version

Theorem pwdjundom 10664
Description: The powerset of a Dedekind-infinite set does not inject into its cardinal sum with itself. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
pwdjundom (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴𝐴))

Proof of Theorem pwdjundom
StepHypRef Expression
1 pwxpndom2 10662 . 2 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))
2 df1o2 8474 . . . . . . . 8 1o = {∅}
32xpeq1i 5695 . . . . . . 7 (1o × 𝐴) = ({∅} × 𝐴)
4 0ex 5300 . . . . . . . 8 ∅ ∈ V
5 reldom 8947 . . . . . . . . 9 Rel ≼
65brrelex2i 5726 . . . . . . . 8 (ω ≼ 𝐴𝐴 ∈ V)
7 xpsnen2g 9067 . . . . . . . 8 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
84, 6, 7sylancr 586 . . . . . . 7 (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ 𝐴)
93, 8eqbrtrid 5176 . . . . . 6 (ω ≼ 𝐴 → (1o × 𝐴) ≈ 𝐴)
109ensymd 9003 . . . . 5 (ω ≼ 𝐴𝐴 ≈ (1o × 𝐴))
11 omex 9640 . . . . . . . 8 ω ∈ V
12 ordom 7862 . . . . . . . . 9 Ord ω
13 1onn 8641 . . . . . . . . 9 1o ∈ ω
14 ordelss 6374 . . . . . . . . 9 ((Ord ω ∧ 1o ∈ ω) → 1o ⊆ ω)
1512, 13, 14mp2an 689 . . . . . . . 8 1o ⊆ ω
16 ssdomg 8998 . . . . . . . 8 (ω ∈ V → (1o ⊆ ω → 1o ≼ ω))
1711, 15, 16mp2 9 . . . . . . 7 1o ≼ ω
18 domtr 9005 . . . . . . 7 ((1o ≼ ω ∧ ω ≼ 𝐴) → 1o𝐴)
1917, 18mpan 687 . . . . . 6 (ω ≼ 𝐴 → 1o𝐴)
20 xpdom1g 9071 . . . . . 6 ((𝐴 ∈ V ∧ 1o𝐴) → (1o × 𝐴) ≼ (𝐴 × 𝐴))
216, 19, 20syl2anc 583 . . . . 5 (ω ≼ 𝐴 → (1o × 𝐴) ≼ (𝐴 × 𝐴))
22 endomtr 9010 . . . . 5 ((𝐴 ≈ (1o × 𝐴) ∧ (1o × 𝐴) ≼ (𝐴 × 𝐴)) → 𝐴 ≼ (𝐴 × 𝐴))
2310, 21, 22syl2anc 583 . . . 4 (ω ≼ 𝐴𝐴 ≼ (𝐴 × 𝐴))
24 djudom2 10180 . . . 4 ((𝐴 ≼ (𝐴 × 𝐴) ∧ 𝐴 ∈ V) → (𝐴𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴)))
2523, 6, 24syl2anc 583 . . 3 (ω ≼ 𝐴 → (𝐴𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴)))
26 domtr 9005 . . . 4 ((𝒫 𝐴 ≼ (𝐴𝐴) ∧ (𝐴𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴))) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))
2726expcom 413 . . 3 ((𝐴𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴)) → (𝒫 𝐴 ≼ (𝐴𝐴) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴))))
2825, 27syl 17 . 2 (ω ≼ 𝐴 → (𝒫 𝐴 ≼ (𝐴𝐴) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴))))
291, 28mtod 197 1 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2098  Vcvv 3468  wss 3943  c0 4317  𝒫 cpw 4597  {csn 4623   class class class wbr 5141   × cxp 5667  Ord word 6357  ωcom 7852  1oc1o 8460  cen 8938  cdom 8939  cdju 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-supp 8147  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-seqom 8449  df-1o 8467  df-2o 8468  df-oadd 8471  df-omul 8472  df-oexp 8473  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-oi 9507  df-har 9554  df-cnf 9659  df-dju 9898  df-card 9936
This theorem is referenced by:  gchdjuidm  10665
  Copyright terms: Public domain W3C validator