![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwdjundom | Structured version Visualization version GIF version |
Description: The powerset of a Dedekind-infinite set does not inject into its cardinal sum with itself. (Contributed by Mario Carneiro, 31-May-2015.) |
Ref | Expression |
---|---|
pwdjundom | ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwxpndom2 10698 | . 2 ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴))) | |
2 | df1o2 8502 | . . . . . . . 8 ⊢ 1o = {∅} | |
3 | 2 | xpeq1i 5708 | . . . . . . 7 ⊢ (1o × 𝐴) = ({∅} × 𝐴) |
4 | 0ex 5311 | . . . . . . . 8 ⊢ ∅ ∈ V | |
5 | reldom 8978 | . . . . . . . . 9 ⊢ Rel ≼ | |
6 | 5 | brrelex2i 5739 | . . . . . . . 8 ⊢ (ω ≼ 𝐴 → 𝐴 ∈ V) |
7 | xpsnen2g 9098 | . . . . . . . 8 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴) | |
8 | 4, 6, 7 | sylancr 585 | . . . . . . 7 ⊢ (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ 𝐴) |
9 | 3, 8 | eqbrtrid 5187 | . . . . . 6 ⊢ (ω ≼ 𝐴 → (1o × 𝐴) ≈ 𝐴) |
10 | 9 | ensymd 9034 | . . . . 5 ⊢ (ω ≼ 𝐴 → 𝐴 ≈ (1o × 𝐴)) |
11 | omex 9676 | . . . . . . . 8 ⊢ ω ∈ V | |
12 | ordom 7888 | . . . . . . . . 9 ⊢ Ord ω | |
13 | 1onn 8669 | . . . . . . . . 9 ⊢ 1o ∈ ω | |
14 | ordelss 6390 | . . . . . . . . 9 ⊢ ((Ord ω ∧ 1o ∈ ω) → 1o ⊆ ω) | |
15 | 12, 13, 14 | mp2an 690 | . . . . . . . 8 ⊢ 1o ⊆ ω |
16 | ssdomg 9029 | . . . . . . . 8 ⊢ (ω ∈ V → (1o ⊆ ω → 1o ≼ ω)) | |
17 | 11, 15, 16 | mp2 9 | . . . . . . 7 ⊢ 1o ≼ ω |
18 | domtr 9036 | . . . . . . 7 ⊢ ((1o ≼ ω ∧ ω ≼ 𝐴) → 1o ≼ 𝐴) | |
19 | 17, 18 | mpan 688 | . . . . . 6 ⊢ (ω ≼ 𝐴 → 1o ≼ 𝐴) |
20 | xpdom1g 9102 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 1o ≼ 𝐴) → (1o × 𝐴) ≼ (𝐴 × 𝐴)) | |
21 | 6, 19, 20 | syl2anc 582 | . . . . 5 ⊢ (ω ≼ 𝐴 → (1o × 𝐴) ≼ (𝐴 × 𝐴)) |
22 | endomtr 9041 | . . . . 5 ⊢ ((𝐴 ≈ (1o × 𝐴) ∧ (1o × 𝐴) ≼ (𝐴 × 𝐴)) → 𝐴 ≼ (𝐴 × 𝐴)) | |
23 | 10, 21, 22 | syl2anc 582 | . . . 4 ⊢ (ω ≼ 𝐴 → 𝐴 ≼ (𝐴 × 𝐴)) |
24 | djudom2 10216 | . . . 4 ⊢ ((𝐴 ≼ (𝐴 × 𝐴) ∧ 𝐴 ∈ V) → (𝐴 ⊔ 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴))) | |
25 | 23, 6, 24 | syl2anc 582 | . . 3 ⊢ (ω ≼ 𝐴 → (𝐴 ⊔ 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴))) |
26 | domtr 9036 | . . . 4 ⊢ ((𝒫 𝐴 ≼ (𝐴 ⊔ 𝐴) ∧ (𝐴 ⊔ 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴))) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴))) | |
27 | 26 | expcom 412 | . . 3 ⊢ ((𝐴 ⊔ 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴)) → (𝒫 𝐴 ≼ (𝐴 ⊔ 𝐴) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))) |
28 | 25, 27 | syl 17 | . 2 ⊢ (ω ≼ 𝐴 → (𝒫 𝐴 ≼ (𝐴 ⊔ 𝐴) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))) |
29 | 1, 28 | mtod 197 | 1 ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2098 Vcvv 3473 ⊆ wss 3949 ∅c0 4326 𝒫 cpw 4606 {csn 4632 class class class wbr 5152 × cxp 5680 Ord word 6373 ωcom 7878 1oc1o 8488 ≈ cen 8969 ≼ cdom 8970 ⊔ cdju 9931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-inf2 9674 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-supp 8174 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-seqom 8477 df-1o 8495 df-2o 8496 df-oadd 8499 df-omul 8500 df-oexp 8501 df-er 8733 df-map 8855 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-fsupp 9396 df-oi 9543 df-har 9590 df-cnf 9695 df-dju 9934 df-card 9972 |
This theorem is referenced by: gchdjuidm 10701 |
Copyright terms: Public domain | W3C validator |