| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwdjundom | Structured version Visualization version GIF version | ||
| Description: The powerset of a Dedekind-infinite set does not inject into its cardinal sum with itself. (Contributed by Mario Carneiro, 31-May-2015.) |
| Ref | Expression |
|---|---|
| pwdjundom | ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwxpndom2 10687 | . 2 ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴))) | |
| 2 | df1o2 8495 | . . . . . . . 8 ⊢ 1o = {∅} | |
| 3 | 2 | xpeq1i 5691 | . . . . . . 7 ⊢ (1o × 𝐴) = ({∅} × 𝐴) |
| 4 | 0ex 5287 | . . . . . . . 8 ⊢ ∅ ∈ V | |
| 5 | reldom 8973 | . . . . . . . . 9 ⊢ Rel ≼ | |
| 6 | 5 | brrelex2i 5722 | . . . . . . . 8 ⊢ (ω ≼ 𝐴 → 𝐴 ∈ V) |
| 7 | xpsnen2g 9087 | . . . . . . . 8 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴) | |
| 8 | 4, 6, 7 | sylancr 587 | . . . . . . 7 ⊢ (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ 𝐴) |
| 9 | 3, 8 | eqbrtrid 5158 | . . . . . 6 ⊢ (ω ≼ 𝐴 → (1o × 𝐴) ≈ 𝐴) |
| 10 | 9 | ensymd 9027 | . . . . 5 ⊢ (ω ≼ 𝐴 → 𝐴 ≈ (1o × 𝐴)) |
| 11 | omex 9665 | . . . . . . . 8 ⊢ ω ∈ V | |
| 12 | ordom 7879 | . . . . . . . . 9 ⊢ Ord ω | |
| 13 | 1onn 8660 | . . . . . . . . 9 ⊢ 1o ∈ ω | |
| 14 | ordelss 6379 | . . . . . . . . 9 ⊢ ((Ord ω ∧ 1o ∈ ω) → 1o ⊆ ω) | |
| 15 | 12, 13, 14 | mp2an 692 | . . . . . . . 8 ⊢ 1o ⊆ ω |
| 16 | ssdomg 9022 | . . . . . . . 8 ⊢ (ω ∈ V → (1o ⊆ ω → 1o ≼ ω)) | |
| 17 | 11, 15, 16 | mp2 9 | . . . . . . 7 ⊢ 1o ≼ ω |
| 18 | domtr 9029 | . . . . . . 7 ⊢ ((1o ≼ ω ∧ ω ≼ 𝐴) → 1o ≼ 𝐴) | |
| 19 | 17, 18 | mpan 690 | . . . . . 6 ⊢ (ω ≼ 𝐴 → 1o ≼ 𝐴) |
| 20 | xpdom1g 9091 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 1o ≼ 𝐴) → (1o × 𝐴) ≼ (𝐴 × 𝐴)) | |
| 21 | 6, 19, 20 | syl2anc 584 | . . . . 5 ⊢ (ω ≼ 𝐴 → (1o × 𝐴) ≼ (𝐴 × 𝐴)) |
| 22 | endomtr 9034 | . . . . 5 ⊢ ((𝐴 ≈ (1o × 𝐴) ∧ (1o × 𝐴) ≼ (𝐴 × 𝐴)) → 𝐴 ≼ (𝐴 × 𝐴)) | |
| 23 | 10, 21, 22 | syl2anc 584 | . . . 4 ⊢ (ω ≼ 𝐴 → 𝐴 ≼ (𝐴 × 𝐴)) |
| 24 | djudom2 10206 | . . . 4 ⊢ ((𝐴 ≼ (𝐴 × 𝐴) ∧ 𝐴 ∈ V) → (𝐴 ⊔ 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴))) | |
| 25 | 23, 6, 24 | syl2anc 584 | . . 3 ⊢ (ω ≼ 𝐴 → (𝐴 ⊔ 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴))) |
| 26 | domtr 9029 | . . . 4 ⊢ ((𝒫 𝐴 ≼ (𝐴 ⊔ 𝐴) ∧ (𝐴 ⊔ 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴))) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴))) | |
| 27 | 26 | expcom 413 | . . 3 ⊢ ((𝐴 ⊔ 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴)) → (𝒫 𝐴 ≼ (𝐴 ⊔ 𝐴) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))) |
| 28 | 25, 27 | syl 17 | . 2 ⊢ (ω ≼ 𝐴 → (𝒫 𝐴 ≼ (𝐴 ⊔ 𝐴) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))) |
| 29 | 1, 28 | mtod 198 | 1 ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2107 Vcvv 3463 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 {csn 4606 class class class wbr 5123 × cxp 5663 Ord word 6362 ωcom 7869 1oc1o 8481 ≈ cen 8964 ≼ cdom 8965 ⊔ cdju 9920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-seqom 8470 df-1o 8488 df-2o 8489 df-oadd 8492 df-omul 8493 df-oexp 8494 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-oi 9532 df-har 9579 df-cnf 9684 df-dju 9923 df-card 9961 |
| This theorem is referenced by: gchdjuidm 10690 |
| Copyright terms: Public domain | W3C validator |