MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwdjundom Structured version   Visualization version   GIF version

Theorem pwdjundom 10561
Description: The powerset of a Dedekind-infinite set does not inject into its cardinal sum with itself. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
pwdjundom (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴𝐴))

Proof of Theorem pwdjundom
StepHypRef Expression
1 pwxpndom2 10559 . 2 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))
2 df1o2 8395 . . . . . . . 8 1o = {∅}
32xpeq1i 5645 . . . . . . 7 (1o × 𝐴) = ({∅} × 𝐴)
4 0ex 5246 . . . . . . . 8 ∅ ∈ V
5 reldom 8878 . . . . . . . . 9 Rel ≼
65brrelex2i 5676 . . . . . . . 8 (ω ≼ 𝐴𝐴 ∈ V)
7 xpsnen2g 8987 . . . . . . . 8 ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴)
84, 6, 7sylancr 587 . . . . . . 7 (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ 𝐴)
93, 8eqbrtrid 5127 . . . . . 6 (ω ≼ 𝐴 → (1o × 𝐴) ≈ 𝐴)
109ensymd 8930 . . . . 5 (ω ≼ 𝐴𝐴 ≈ (1o × 𝐴))
11 omex 9539 . . . . . . . 8 ω ∈ V
12 ordom 7809 . . . . . . . . 9 Ord ω
13 1onn 8558 . . . . . . . . 9 1o ∈ ω
14 ordelss 6323 . . . . . . . . 9 ((Ord ω ∧ 1o ∈ ω) → 1o ⊆ ω)
1512, 13, 14mp2an 692 . . . . . . . 8 1o ⊆ ω
16 ssdomg 8925 . . . . . . . 8 (ω ∈ V → (1o ⊆ ω → 1o ≼ ω))
1711, 15, 16mp2 9 . . . . . . 7 1o ≼ ω
18 domtr 8932 . . . . . . 7 ((1o ≼ ω ∧ ω ≼ 𝐴) → 1o𝐴)
1917, 18mpan 690 . . . . . 6 (ω ≼ 𝐴 → 1o𝐴)
20 xpdom1g 8991 . . . . . 6 ((𝐴 ∈ V ∧ 1o𝐴) → (1o × 𝐴) ≼ (𝐴 × 𝐴))
216, 19, 20syl2anc 584 . . . . 5 (ω ≼ 𝐴 → (1o × 𝐴) ≼ (𝐴 × 𝐴))
22 endomtr 8937 . . . . 5 ((𝐴 ≈ (1o × 𝐴) ∧ (1o × 𝐴) ≼ (𝐴 × 𝐴)) → 𝐴 ≼ (𝐴 × 𝐴))
2310, 21, 22syl2anc 584 . . . 4 (ω ≼ 𝐴𝐴 ≼ (𝐴 × 𝐴))
24 djudom2 10078 . . . 4 ((𝐴 ≼ (𝐴 × 𝐴) ∧ 𝐴 ∈ V) → (𝐴𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴)))
2523, 6, 24syl2anc 584 . . 3 (ω ≼ 𝐴 → (𝐴𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴)))
26 domtr 8932 . . . 4 ((𝒫 𝐴 ≼ (𝐴𝐴) ∧ (𝐴𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴))) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))
2726expcom 413 . . 3 ((𝐴𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴)) → (𝒫 𝐴 ≼ (𝐴𝐴) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴))))
2825, 27syl 17 . 2 (ω ≼ 𝐴 → (𝒫 𝐴 ≼ (𝐴𝐴) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴))))
291, 28mtod 198 1 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  Vcvv 3436  wss 3903  c0 4284  𝒫 cpw 4551  {csn 4577   class class class wbr 5092   × cxp 5617  Ord word 6306  ωcom 7799  1oc1o 8381  cen 8869  cdom 8870  cdju 9794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-seqom 8370  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-oexp 8394  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-oi 9402  df-har 9449  df-cnf 9558  df-dju 9797  df-card 9835
This theorem is referenced by:  gchdjuidm  10562
  Copyright terms: Public domain W3C validator