Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwdjundom | Structured version Visualization version GIF version |
Description: The powerset of a Dedekind-infinite set does not inject into its cardinal sum with itself. (Contributed by Mario Carneiro, 31-May-2015.) |
Ref | Expression |
---|---|
pwdjundom | ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwxpndom2 10352 | . 2 ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴))) | |
2 | df1o2 8279 | . . . . . . . 8 ⊢ 1o = {∅} | |
3 | 2 | xpeq1i 5606 | . . . . . . 7 ⊢ (1o × 𝐴) = ({∅} × 𝐴) |
4 | 0ex 5226 | . . . . . . . 8 ⊢ ∅ ∈ V | |
5 | reldom 8697 | . . . . . . . . 9 ⊢ Rel ≼ | |
6 | 5 | brrelex2i 5635 | . . . . . . . 8 ⊢ (ω ≼ 𝐴 → 𝐴 ∈ V) |
7 | xpsnen2g 8805 | . . . . . . . 8 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ V) → ({∅} × 𝐴) ≈ 𝐴) | |
8 | 4, 6, 7 | sylancr 586 | . . . . . . 7 ⊢ (ω ≼ 𝐴 → ({∅} × 𝐴) ≈ 𝐴) |
9 | 3, 8 | eqbrtrid 5105 | . . . . . 6 ⊢ (ω ≼ 𝐴 → (1o × 𝐴) ≈ 𝐴) |
10 | 9 | ensymd 8746 | . . . . 5 ⊢ (ω ≼ 𝐴 → 𝐴 ≈ (1o × 𝐴)) |
11 | omex 9331 | . . . . . . . 8 ⊢ ω ∈ V | |
12 | ordom 7697 | . . . . . . . . 9 ⊢ Ord ω | |
13 | 1onn 8432 | . . . . . . . . 9 ⊢ 1o ∈ ω | |
14 | ordelss 6267 | . . . . . . . . 9 ⊢ ((Ord ω ∧ 1o ∈ ω) → 1o ⊆ ω) | |
15 | 12, 13, 14 | mp2an 688 | . . . . . . . 8 ⊢ 1o ⊆ ω |
16 | ssdomg 8741 | . . . . . . . 8 ⊢ (ω ∈ V → (1o ⊆ ω → 1o ≼ ω)) | |
17 | 11, 15, 16 | mp2 9 | . . . . . . 7 ⊢ 1o ≼ ω |
18 | domtr 8748 | . . . . . . 7 ⊢ ((1o ≼ ω ∧ ω ≼ 𝐴) → 1o ≼ 𝐴) | |
19 | 17, 18 | mpan 686 | . . . . . 6 ⊢ (ω ≼ 𝐴 → 1o ≼ 𝐴) |
20 | xpdom1g 8809 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 1o ≼ 𝐴) → (1o × 𝐴) ≼ (𝐴 × 𝐴)) | |
21 | 6, 19, 20 | syl2anc 583 | . . . . 5 ⊢ (ω ≼ 𝐴 → (1o × 𝐴) ≼ (𝐴 × 𝐴)) |
22 | endomtr 8753 | . . . . 5 ⊢ ((𝐴 ≈ (1o × 𝐴) ∧ (1o × 𝐴) ≼ (𝐴 × 𝐴)) → 𝐴 ≼ (𝐴 × 𝐴)) | |
23 | 10, 21, 22 | syl2anc 583 | . . . 4 ⊢ (ω ≼ 𝐴 → 𝐴 ≼ (𝐴 × 𝐴)) |
24 | djudom2 9870 | . . . 4 ⊢ ((𝐴 ≼ (𝐴 × 𝐴) ∧ 𝐴 ∈ V) → (𝐴 ⊔ 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴))) | |
25 | 23, 6, 24 | syl2anc 583 | . . 3 ⊢ (ω ≼ 𝐴 → (𝐴 ⊔ 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴))) |
26 | domtr 8748 | . . . 4 ⊢ ((𝒫 𝐴 ≼ (𝐴 ⊔ 𝐴) ∧ (𝐴 ⊔ 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴))) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴))) | |
27 | 26 | expcom 413 | . . 3 ⊢ ((𝐴 ⊔ 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴)) → (𝒫 𝐴 ≼ (𝐴 ⊔ 𝐴) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))) |
28 | 25, 27 | syl 17 | . 2 ⊢ (ω ≼ 𝐴 → (𝒫 𝐴 ≼ (𝐴 ⊔ 𝐴) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))) |
29 | 1, 28 | mtod 197 | 1 ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 {csn 4558 class class class wbr 5070 × cxp 5578 Ord word 6250 ωcom 7687 1oc1o 8260 ≈ cen 8688 ≼ cdom 8689 ⊔ cdju 9587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-seqom 8249 df-1o 8267 df-2o 8268 df-oadd 8271 df-omul 8272 df-oexp 8273 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-har 9246 df-cnf 9350 df-dju 9590 df-card 9628 |
This theorem is referenced by: gchdjuidm 10355 |
Copyright terms: Public domain | W3C validator |