Step | Hyp | Ref
| Expression |
1 | | binomcxp.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
2 | 1 | rpcnd 12703 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | | binomcxp.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ ℝ) |
4 | 3 | recnd 10934 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℂ) |
5 | | binom 15470 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0)
→ ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
6 | 5 | 3expia 1119 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 ∈ ℕ0
→ ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶 − 𝑘)) · (𝐵↑𝑘))))) |
7 | 2, 4, 6 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (𝐶 ∈ ℕ0 → ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶 − 𝑘)) · (𝐵↑𝑘))))) |
8 | 7 | imp 406 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
9 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → 𝐴 ∈
ℂ) |
10 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → 𝐵 ∈
ℂ) |
11 | 9, 10 | addcld 10925 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℂ) |
12 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → 𝐶 ∈
ℕ0) |
13 | | cxpexp 25728 |
. . . . . 6
⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = ((𝐴 + 𝐵)↑𝐶)) |
14 | 11, 12, 13 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = ((𝐴 + 𝐵)↑𝐶)) |
15 | | elfznn0 13278 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...𝐶) → 𝑘 ∈ ℕ0) |
16 | | simplr 765 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 𝐶 ∈
ℕ0) |
17 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 𝑘 ∈
ℕ0) |
18 | 16, 17 | bccbc 41852 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝐶C𝑐𝑘) = (𝐶C𝑘)) |
19 | 15, 18 | sylan2 592 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝐶C𝑐𝑘) = (𝐶C𝑘)) |
20 | 2 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → 𝐴 ∈ ℂ) |
21 | | elfzle2 13189 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...𝐶) → 𝑘 ≤ 𝐶) |
22 | 21 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → 𝑘 ≤ 𝐶) |
23 | | nn0sub 12213 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → (𝑘 ≤ 𝐶 ↔ (𝐶 − 𝑘) ∈
ℕ0)) |
24 | 23 | ancoms 458 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (𝑘 ≤ 𝐶 ↔ (𝐶 − 𝑘) ∈
ℕ0)) |
25 | 24 | adantll 710 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝑘 ≤ 𝐶 ↔ (𝐶 − 𝑘) ∈
ℕ0)) |
26 | 15, 25 | sylan2 592 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝑘 ≤ 𝐶 ↔ (𝐶 − 𝑘) ∈
ℕ0)) |
27 | 22, 26 | mpbid 231 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝐶 − 𝑘) ∈
ℕ0) |
28 | | cxpexp 25728 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ (𝐶 − 𝑘) ∈ ℕ0) → (𝐴↑𝑐(𝐶 − 𝑘)) = (𝐴↑(𝐶 − 𝑘))) |
29 | 20, 27, 28 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝐴↑𝑐(𝐶 − 𝑘)) = (𝐴↑(𝐶 − 𝑘))) |
30 | 29 | oveq1d 7270 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)) = ((𝐴↑(𝐶 − 𝑘)) · (𝐵↑𝑘))) |
31 | 19, 30 | oveq12d 7273 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) = ((𝐶C𝑘) · ((𝐴↑(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
32 | 31 | sumeq2dv 15343 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
33 | 8, 14, 32 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
34 | | binomcxp.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℂ) |
35 | 34 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → 𝐶 ∈
ℂ) |
36 | 11, 35 | cxpcld 25768 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℂ) |
37 | 33, 36 | eqeltrrd 2840 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) ∈ ℂ) |
38 | 37 | addid1d 11105 |
. 2
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
(Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) + 0) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
39 | | nn0uz 12549 |
. . . 4
⊢
ℕ0 = (ℤ≥‘0) |
40 | | eqid 2738 |
. . . 4
⊢
(ℤ≥‘(𝐶 + 1)) =
(ℤ≥‘(𝐶 + 1)) |
41 | | 1nn0 12179 |
. . . . . 6
⊢ 1 ∈
ℕ0 |
42 | 41 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → 1 ∈
ℕ0) |
43 | 12, 42 | nn0addcld 12227 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → (𝐶 + 1) ∈
ℕ0) |
44 | | eqidd 2739 |
. . . . 5
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝑗 ∈
ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗)))) = (𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))) |
45 | | simpr 484 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
∧ 𝑗 = 𝑘) → 𝑗 = 𝑘) |
46 | 45 | oveq2d 7271 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
∧ 𝑗 = 𝑘) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑘)) |
47 | 45 | oveq2d 7271 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
∧ 𝑗 = 𝑘) → (𝐶 − 𝑗) = (𝐶 − 𝑘)) |
48 | 47 | oveq2d 7271 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
∧ 𝑗 = 𝑘) → (𝐴↑𝑐(𝐶 − 𝑗)) = (𝐴↑𝑐(𝐶 − 𝑘))) |
49 | 45 | oveq2d 7271 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
∧ 𝑗 = 𝑘) → (𝐵↑𝑗) = (𝐵↑𝑘)) |
50 | 48, 49 | oveq12d 7273 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
∧ 𝑗 = 𝑘) → ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗)) = ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) |
51 | 46, 50 | oveq12d 7273 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
∧ 𝑗 = 𝑘) → ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))) = ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
52 | 34 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 𝐶 ∈
ℂ) |
53 | 52, 17 | bcccl 41846 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝐶C𝑐𝑘) ∈ ℂ) |
54 | 2 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 𝐴 ∈
ℂ) |
55 | 17 | nn0cnd 12225 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 𝑘 ∈
ℂ) |
56 | 52, 55 | subcld 11262 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝐶 − 𝑘) ∈
ℂ) |
57 | 54, 56 | cxpcld 25768 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑐(𝐶 − 𝑘)) ∈ ℂ) |
58 | 4 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 𝐵 ∈
ℂ) |
59 | 58, 17 | expcld 13792 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝐵↑𝑘) ∈
ℂ) |
60 | 57, 59 | mulcld 10926 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)) ∈ ℂ) |
61 | 53, 60 | mulcld 10926 |
. . . . 5
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) ∈ ℂ) |
62 | 44, 51, 17, 61 | fvmptd 6864 |
. . . 4
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ((𝑗 ∈
ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))‘𝑘) = ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
63 | | peano2nn0 12203 |
. . . . . 6
⊢ (𝐶 ∈ ℕ0
→ (𝐶 + 1) ∈
ℕ0) |
64 | 63 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → (𝐶 + 1) ∈
ℕ0) |
65 | | c0ex 10900 |
. . . . . . . . 9
⊢ 0 ∈
V |
66 | 65 | fconst 6644 |
. . . . . . . 8
⊢
(ℕ0 ×
{0}):ℕ0⟶{0} |
67 | 66 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
(ℕ0 ×
{0}):ℕ0⟶{0}) |
68 | | 0red 10909 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → 0 ∈
ℝ) |
69 | 68 | snssd 4739 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → {0}
⊆ ℝ) |
70 | 67, 69 | fssd 6602 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
(ℕ0 ×
{0}):ℕ0⟶ℝ) |
71 | 70 | ffvelrnda 6943 |
. . . . 5
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ((ℕ0 × {0})‘𝑘) ∈ ℝ) |
72 | 62, 61 | eqeltrd 2839 |
. . . . 5
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ((𝑗 ∈
ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))‘𝑘) ∈ ℂ) |
73 | | climrel 15129 |
. . . . . . 7
⊢ Rel
⇝ |
74 | 39 | xpeq1i 5606 |
. . . . . . . . 9
⊢
(ℕ0 × {0}) = ((ℤ≥‘0)
× {0}) |
75 | | seqeq3 13654 |
. . . . . . . . 9
⊢
((ℕ0 × {0}) = ((ℤ≥‘0)
× {0}) → seq0( + , (ℕ0 × {0})) = seq0( + ,
((ℤ≥‘0) × {0}))) |
76 | 74, 75 | ax-mp 5 |
. . . . . . . 8
⊢ seq0( + ,
(ℕ0 × {0})) = seq0( + ,
((ℤ≥‘0) × {0})) |
77 | | 0z 12260 |
. . . . . . . . 9
⊢ 0 ∈
ℤ |
78 | | serclim0 15214 |
. . . . . . . . 9
⊢ (0 ∈
ℤ → seq0( + , ((ℤ≥‘0) × {0}))
⇝ 0) |
79 | 77, 78 | ax-mp 5 |
. . . . . . . 8
⊢ seq0( + ,
((ℤ≥‘0) × {0})) ⇝ 0 |
80 | 76, 79 | eqbrtri 5091 |
. . . . . . 7
⊢ seq0( + ,
(ℕ0 × {0})) ⇝ 0 |
81 | | releldm 5842 |
. . . . . . 7
⊢ ((Rel
⇝ ∧ seq0( + , (ℕ0 × {0})) ⇝ 0) →
seq0( + , (ℕ0 × {0})) ∈ dom ⇝
) |
82 | 73, 80, 81 | mp2an 688 |
. . . . . 6
⊢ seq0( + ,
(ℕ0 × {0})) ∈ dom ⇝ |
83 | 82 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → seq0( +
, (ℕ0 × {0})) ∈ dom ⇝ ) |
84 | | eluznn0 12586 |
. . . . . . . . . . . 12
⊢ (((𝐶 + 1) ∈ ℕ0
∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 𝑘 ∈ ℕ0) |
85 | 64, 84 | sylan 579 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 𝑘 ∈ ℕ0) |
86 | 85, 62 | syldan 590 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → ((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))‘𝑘) = ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
87 | | 0zd 12261 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 0 ∈
ℤ) |
88 | 85 | nn0zd 12353 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 𝑘 ∈ ℤ) |
89 | | 1zzd 12281 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 1 ∈
ℤ) |
90 | 88, 89 | zsubcld 12360 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → (𝑘 − 1) ∈ ℤ) |
91 | 12 | nn0zd 12353 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → 𝐶 ∈
ℤ) |
92 | 91 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 𝐶 ∈ ℤ) |
93 | 12 | nn0ge0d 12226 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → 0 ≤
𝐶) |
94 | 93 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 0 ≤ 𝐶) |
95 | | eluzle 12524 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈
(ℤ≥‘(𝐶 + 1)) → (𝐶 + 1) ≤ 𝑘) |
96 | 95 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → (𝐶 + 1) ≤ 𝑘) |
97 | 92 | zred 12355 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 𝐶 ∈ ℝ) |
98 | | 1red 10907 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 1 ∈
ℝ) |
99 | 85 | nn0red 12224 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 𝑘 ∈ ℝ) |
100 | | leaddsub 11381 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ ℝ ∧ 1 ∈
ℝ ∧ 𝑘 ∈
ℝ) → ((𝐶 + 1)
≤ 𝑘 ↔ 𝐶 ≤ (𝑘 − 1))) |
101 | 97, 98, 99, 100 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → ((𝐶 + 1) ≤ 𝑘 ↔ 𝐶 ≤ (𝑘 − 1))) |
102 | 96, 101 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 𝐶 ≤ (𝑘 − 1)) |
103 | 87, 90, 92, 94, 102 | elfzd 13176 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 𝐶 ∈ (0...(𝑘 − 1))) |
104 | 34 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 𝐶 ∈ ℂ) |
105 | 104, 85 | bcc0 41847 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → ((𝐶C𝑐𝑘) = 0 ↔ 𝐶 ∈ (0...(𝑘 − 1)))) |
106 | 103, 105 | mpbird 256 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → (𝐶C𝑐𝑘) = 0) |
107 | 106 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) = (0 · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
108 | 2 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 𝐴 ∈ ℂ) |
109 | | eluzelcn 12523 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈
(ℤ≥‘(𝐶 + 1)) → 𝑘 ∈ ℂ) |
110 | 109 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 𝑘 ∈ ℂ) |
111 | 104, 110 | subcld 11262 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → (𝐶 − 𝑘) ∈ ℂ) |
112 | 108, 111 | cxpcld 25768 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → (𝐴↑𝑐(𝐶 − 𝑘)) ∈ ℂ) |
113 | 4 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 𝐵 ∈ ℂ) |
114 | 113, 85 | expcld 13792 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → (𝐵↑𝑘) ∈ ℂ) |
115 | 112, 114 | mulcld 10926 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)) ∈ ℂ) |
116 | 115 | mul02d 11103 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → (0 · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) = 0) |
117 | 107, 116 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) = 0) |
118 | 86, 117 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → ((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))‘𝑘) = 0) |
119 | 118 | abs00bd 14931 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0
↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))‘𝑘)) = 0) |
120 | | 0re 10908 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
121 | 119, 120 | eqeltrdi 2847 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0
↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))‘𝑘)) ∈ ℝ) |
122 | | eqle 11007 |
. . . . . . 7
⊢
(((abs‘((𝑗
∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))‘𝑘)) ∈ ℝ ∧ (abs‘((𝑗 ∈ ℕ0
↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))‘𝑘)) = 0) → (abs‘((𝑗 ∈ ℕ0
↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))‘𝑘)) ≤ 0) |
123 | 121, 119,
122 | syl2anc 583 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0
↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))‘𝑘)) ≤ 0) |
124 | 71 | recnd 10934 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ((ℕ0 × {0})‘𝑘) ∈ ℂ) |
125 | 85, 124 | syldan 590 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → ((ℕ0 ×
{0})‘𝑘) ∈
ℂ) |
126 | 125 | mul02d 11103 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → (0 ·
((ℕ0 × {0})‘𝑘)) = 0) |
127 | 123, 126 | breqtrrd 5098 |
. . . . 5
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0
↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))‘𝑘)) ≤ (0 · ((ℕ0
× {0})‘𝑘))) |
128 | 39, 64, 71, 72, 83, 68, 127 | cvgcmpce 15458 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → seq0( +
, (𝑗 ∈
ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))) ∈ dom ⇝ ) |
129 | 39, 40, 43, 62, 61, 128 | isumsplit 15480 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
Σ𝑘 ∈
ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) = (Σ𝑘 ∈ (0...((𝐶 + 1) − 1))((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) + Σ𝑘 ∈ (ℤ≥‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))))) |
130 | | 1cnd 10901 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → 1 ∈
ℂ) |
131 | 35, 130 | pncand 11263 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → ((𝐶 + 1) − 1) = 𝐶) |
132 | 131 | oveq2d 7271 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
(0...((𝐶 + 1) − 1)) =
(0...𝐶)) |
133 | 132 | sumeq1d 15341 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
Σ𝑘 ∈
(0...((𝐶 + 1) −
1))((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
134 | 133 | oveq1d 7270 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
(Σ𝑘 ∈
(0...((𝐶 + 1) −
1))((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) + Σ𝑘 ∈ (ℤ≥‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) = (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) + Σ𝑘 ∈ (ℤ≥‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))))) |
135 | 117 | sumeq2dv 15343 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
Σ𝑘 ∈
(ℤ≥‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) = Σ𝑘 ∈ (ℤ≥‘(𝐶 + 1))0) |
136 | | ssid 3939 |
. . . . . . 7
⊢
(ℤ≥‘(𝐶 + 1)) ⊆
(ℤ≥‘(𝐶 + 1)) |
137 | 136 | orci 861 |
. . . . . 6
⊢
((ℤ≥‘(𝐶 + 1)) ⊆
(ℤ≥‘(𝐶 + 1)) ∨
(ℤ≥‘(𝐶 + 1)) ∈ Fin) |
138 | | sumz 15362 |
. . . . . 6
⊢
(((ℤ≥‘(𝐶 + 1)) ⊆
(ℤ≥‘(𝐶 + 1)) ∨
(ℤ≥‘(𝐶 + 1)) ∈ Fin) → Σ𝑘 ∈
(ℤ≥‘(𝐶 + 1))0 = 0) |
139 | 137, 138 | ax-mp 5 |
. . . . 5
⊢
Σ𝑘 ∈
(ℤ≥‘(𝐶 + 1))0 = 0 |
140 | 135, 139 | eqtrdi 2795 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
Σ𝑘 ∈
(ℤ≥‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) = 0) |
141 | 140 | oveq2d 7271 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
(Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) + Σ𝑘 ∈ (ℤ≥‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) = (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) + 0)) |
142 | 129, 134,
141 | 3eqtrd 2782 |
. 2
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
Σ𝑘 ∈
ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) = (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) + 0)) |
143 | 38, 142, 33 | 3eqtr4rd 2789 |
1
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |