Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemnn0 Structured version   Visualization version   GIF version

Theorem binomcxplemnn0 44338
Description: Lemma for binomcxp 44346. When 𝐶 is a nonnegative integer, the binomial's finite sum value by the standard binomial theorem binom 15796 equals this generalized infinite sum: the generalized binomial coefficient and exponentiation operators give exactly the same values in the standard index set (0...𝐶), and when the index set is widened beyond 𝐶 the additional values are just zeroes. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
binomcxplemnn0 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘

Proof of Theorem binomcxplemnn0
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 binomcxp.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
21rpcnd 12997 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3 binomcxp.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
43recnd 11202 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
5 binom 15796 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘))))
653expia 1121 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 ∈ ℕ0 → ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘)))))
72, 4, 6syl2anc 584 . . . . . 6 (𝜑 → (𝐶 ∈ ℕ0 → ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘)))))
87imp 406 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘))))
92adantr 480 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → 𝐴 ∈ ℂ)
104adantr 480 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → 𝐵 ∈ ℂ)
119, 10addcld 11193 . . . . . 6 ((𝜑𝐶 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℂ)
12 simpr 484 . . . . . 6 ((𝜑𝐶 ∈ ℕ0) → 𝐶 ∈ ℕ0)
13 cxpexp 26577 . . . . . 6 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = ((𝐴 + 𝐵)↑𝐶))
1411, 12, 13syl2anc 584 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = ((𝐴 + 𝐵)↑𝐶))
15 elfznn0 13581 . . . . . . . 8 (𝑘 ∈ (0...𝐶) → 𝑘 ∈ ℕ0)
16 simplr 768 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℕ0)
17 simpr 484 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
1816, 17bccbc 44334 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) = (𝐶C𝑘))
1915, 18sylan2 593 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝐶C𝑐𝑘) = (𝐶C𝑘))
202ad2antrr 726 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → 𝐴 ∈ ℂ)
21 elfzle2 13489 . . . . . . . . . . 11 (𝑘 ∈ (0...𝐶) → 𝑘𝐶)
2221adantl 481 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → 𝑘𝐶)
23 nn0sub 12492 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝐶 ∈ ℕ0) → (𝑘𝐶 ↔ (𝐶𝑘) ∈ ℕ0))
2423ancoms 458 . . . . . . . . . . . 12 ((𝐶 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑘𝐶 ↔ (𝐶𝑘) ∈ ℕ0))
2524adantll 714 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘𝐶 ↔ (𝐶𝑘) ∈ ℕ0))
2615, 25sylan2 593 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝑘𝐶 ↔ (𝐶𝑘) ∈ ℕ0))
2722, 26mpbid 232 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝐶𝑘) ∈ ℕ0)
28 cxpexp 26577 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝐶𝑘) ∈ ℕ0) → (𝐴𝑐(𝐶𝑘)) = (𝐴↑(𝐶𝑘)))
2920, 27, 28syl2anc 584 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝐴𝑐(𝐶𝑘)) = (𝐴↑(𝐶𝑘)))
3029oveq1d 7402 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)) = ((𝐴↑(𝐶𝑘)) · (𝐵𝑘)))
3119, 30oveq12d 7405 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = ((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘))))
3231sumeq2dv 15668 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘))))
338, 14, 323eqtr4d 2774 . . . 4 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
34 binomcxp.c . . . . . 6 (𝜑𝐶 ∈ ℂ)
3534adantr 480 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → 𝐶 ∈ ℂ)
3611, 35cxpcld 26617 . . . 4 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℂ)
3733, 36eqeltrrd 2829 . . 3 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) ∈ ℂ)
3837addridd 11374 . 2 ((𝜑𝐶 ∈ ℕ0) → (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + 0) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
39 nn0uz 12835 . . . 4 0 = (ℤ‘0)
40 eqid 2729 . . . 4 (ℤ‘(𝐶 + 1)) = (ℤ‘(𝐶 + 1))
41 1nn0 12458 . . . . . 6 1 ∈ ℕ0
4241a1i 11 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → 1 ∈ ℕ0)
4312, 42nn0addcld 12507 . . . 4 ((𝜑𝐶 ∈ ℕ0) → (𝐶 + 1) ∈ ℕ0)
44 eqidd 2730 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗)))) = (𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗)))))
45 simpr 484 . . . . . . 7 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘)
4645oveq2d 7403 . . . . . 6 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑘))
4745oveq2d 7403 . . . . . . . 8 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐶𝑗) = (𝐶𝑘))
4847oveq2d 7403 . . . . . . 7 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐴𝑐(𝐶𝑗)) = (𝐴𝑐(𝐶𝑘)))
4945oveq2d 7403 . . . . . . 7 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐵𝑗) = (𝐵𝑘))
5048, 49oveq12d 7405 . . . . . 6 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗)) = ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))
5146, 50oveq12d 7405 . . . . 5 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))) = ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
5234ad2antrr 726 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
5352, 17bcccl 44328 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ∈ ℂ)
542ad2antrr 726 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
5517nn0cnd 12505 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
5652, 55subcld 11533 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶𝑘) ∈ ℂ)
5754, 56cxpcld 26617 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑐(𝐶𝑘)) ∈ ℂ)
584ad2antrr 726 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
5958, 17expcld 14111 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℂ)
6057, 59mulcld 11194 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)) ∈ ℂ)
6153, 60mulcld 11194 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) ∈ ℂ)
6244, 51, 17, 61fvmptd 6975 . . . 4 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘) = ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
63 peano2nn0 12482 . . . . . 6 (𝐶 ∈ ℕ0 → (𝐶 + 1) ∈ ℕ0)
6463adantl 481 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → (𝐶 + 1) ∈ ℕ0)
65 c0ex 11168 . . . . . . . . 9 0 ∈ V
6665fconst 6746 . . . . . . . 8 (ℕ0 × {0}):ℕ0⟶{0}
6766a1i 11 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → (ℕ0 × {0}):ℕ0⟶{0})
68 0red 11177 . . . . . . . 8 ((𝜑𝐶 ∈ ℕ0) → 0 ∈ ℝ)
6968snssd 4773 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → {0} ⊆ ℝ)
7067, 69fssd 6705 . . . . . 6 ((𝜑𝐶 ∈ ℕ0) → (ℕ0 × {0}):ℕ0⟶ℝ)
7170ffvelcdmda 7056 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {0})‘𝑘) ∈ ℝ)
7262, 61eqeltrd 2828 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘) ∈ ℂ)
73 climrel 15458 . . . . . . 7 Rel ⇝
7439xpeq1i 5664 . . . . . . . . 9 (ℕ0 × {0}) = ((ℤ‘0) × {0})
75 seqeq3 13971 . . . . . . . . 9 ((ℕ0 × {0}) = ((ℤ‘0) × {0}) → seq0( + , (ℕ0 × {0})) = seq0( + , ((ℤ‘0) × {0})))
7674, 75ax-mp 5 . . . . . . . 8 seq0( + , (ℕ0 × {0})) = seq0( + , ((ℤ‘0) × {0}))
77 0z 12540 . . . . . . . . 9 0 ∈ ℤ
78 serclim0 15543 . . . . . . . . 9 (0 ∈ ℤ → seq0( + , ((ℤ‘0) × {0})) ⇝ 0)
7977, 78ax-mp 5 . . . . . . . 8 seq0( + , ((ℤ‘0) × {0})) ⇝ 0
8076, 79eqbrtri 5128 . . . . . . 7 seq0( + , (ℕ0 × {0})) ⇝ 0
81 releldm 5908 . . . . . . 7 ((Rel ⇝ ∧ seq0( + , (ℕ0 × {0})) ⇝ 0) → seq0( + , (ℕ0 × {0})) ∈ dom ⇝ )
8273, 80, 81mp2an 692 . . . . . 6 seq0( + , (ℕ0 × {0})) ∈ dom ⇝
8382a1i 11 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → seq0( + , (ℕ0 × {0})) ∈ dom ⇝ )
84 eluznn0 12876 . . . . . . . . . . . 12 (((𝐶 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℕ0)
8564, 84sylan 580 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℕ0)
8685, 62syldan 591 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘) = ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
87 0zd 12541 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 0 ∈ ℤ)
8885nn0zd 12555 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℤ)
89 1zzd 12564 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 1 ∈ ℤ)
9088, 89zsubcld 12643 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝑘 − 1) ∈ ℤ)
9112nn0zd 12555 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ ℕ0) → 𝐶 ∈ ℤ)
9291adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ∈ ℤ)
9312nn0ge0d 12506 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ ℕ0) → 0 ≤ 𝐶)
9493adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 0 ≤ 𝐶)
95 eluzle 12806 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘(𝐶 + 1)) → (𝐶 + 1) ≤ 𝑘)
9695adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐶 + 1) ≤ 𝑘)
9792zred 12638 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ∈ ℝ)
98 1red 11175 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 1 ∈ ℝ)
9985nn0red 12504 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℝ)
100 leaddsub 11654 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐶 + 1) ≤ 𝑘𝐶 ≤ (𝑘 − 1)))
10197, 98, 99, 100syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐶 + 1) ≤ 𝑘𝐶 ≤ (𝑘 − 1)))
10296, 101mpbid 232 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ≤ (𝑘 − 1))
10387, 90, 92, 94, 102elfzd 13476 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ∈ (0...(𝑘 − 1)))
10434ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ∈ ℂ)
105104, 85bcc0 44329 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐶C𝑐𝑘) = 0 ↔ 𝐶 ∈ (0...(𝑘 − 1))))
106103, 105mpbird 257 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐶C𝑐𝑘) = 0)
107106oveq1d 7402 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = (0 · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
1082ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐴 ∈ ℂ)
109 eluzelcn 12805 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘(𝐶 + 1)) → 𝑘 ∈ ℂ)
110109adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℂ)
111104, 110subcld 11533 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐶𝑘) ∈ ℂ)
112108, 111cxpcld 26617 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐴𝑐(𝐶𝑘)) ∈ ℂ)
1134ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐵 ∈ ℂ)
114113, 85expcld 14111 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐵𝑘) ∈ ℂ)
115112, 114mulcld 11194 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)) ∈ ℂ)
116115mul02d 11372 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (0 · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = 0)
117107, 116eqtrd 2764 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = 0)
11886, 117eqtrd 2764 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘) = 0)
119118abs00bd 15257 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) = 0)
120 0re 11176 . . . . . . . 8 0 ∈ ℝ
121119, 120eqeltrdi 2836 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ∈ ℝ)
122 eqle 11276 . . . . . . 7 (((abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ∈ ℝ ∧ (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) = 0) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ≤ 0)
123121, 119, 122syl2anc 584 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ≤ 0)
12471recnd 11202 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {0})‘𝑘) ∈ ℂ)
12585, 124syldan 591 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((ℕ0 × {0})‘𝑘) ∈ ℂ)
126125mul02d 11372 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (0 · ((ℕ0 × {0})‘𝑘)) = 0)
127123, 126breqtrrd 5135 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ≤ (0 · ((ℕ0 × {0})‘𝑘)))
12839, 64, 71, 72, 83, 68, 127cvgcmpce 15784 . . . 4 ((𝜑𝐶 ∈ ℕ0) → seq0( + , (𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))) ∈ dom ⇝ )
12939, 40, 43, 62, 61, 128isumsplit 15806 . . 3 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = (Σ𝑘 ∈ (0...((𝐶 + 1) − 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))))
130 1cnd 11169 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → 1 ∈ ℂ)
13135, 130pncand 11534 . . . . . 6 ((𝜑𝐶 ∈ ℕ0) → ((𝐶 + 1) − 1) = 𝐶)
132131oveq2d 7403 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → (0...((𝐶 + 1) − 1)) = (0...𝐶))
133132sumeq1d 15666 . . . 4 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...((𝐶 + 1) − 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
134133oveq1d 7402 . . 3 ((𝜑𝐶 ∈ ℕ0) → (Σ𝑘 ∈ (0...((𝐶 + 1) − 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))) = (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))))
135117sumeq2dv 15668 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (ℤ‘(𝐶 + 1))0)
136 ssid 3969 . . . . . . 7 (ℤ‘(𝐶 + 1)) ⊆ (ℤ‘(𝐶 + 1))
137136orci 865 . . . . . 6 ((ℤ‘(𝐶 + 1)) ⊆ (ℤ‘(𝐶 + 1)) ∨ (ℤ‘(𝐶 + 1)) ∈ Fin)
138 sumz 15688 . . . . . 6 (((ℤ‘(𝐶 + 1)) ⊆ (ℤ‘(𝐶 + 1)) ∨ (ℤ‘(𝐶 + 1)) ∈ Fin) → Σ𝑘 ∈ (ℤ‘(𝐶 + 1))0 = 0)
139137, 138ax-mp 5 . . . . 5 Σ𝑘 ∈ (ℤ‘(𝐶 + 1))0 = 0
140135, 139eqtrdi 2780 . . . 4 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = 0)
141140oveq2d 7403 . . 3 ((𝜑𝐶 ∈ ℕ0) → (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))) = (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + 0))
142129, 134, 1413eqtrd 2768 . 2 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + 0))
14338, 142, 333eqtr4rd 2775 1 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wss 3914  {csn 4589   class class class wbr 5107  cmpt 5188   × cxp 5636  dom cdm 5638  Rel wrel 5643  wf 6507  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405  0cn0 12442  cz 12529  cuz 12793  +crp 12951  ...cfz 13468  seqcseq 13966  cexp 14026  Ccbc 14267  abscabs 15200  cli 15450  Σcsu 15652  𝑐ccxp 26464  C𝑐cbcc 44325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-prod 15870  df-fallfac 15973  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466  df-bcc 44326
This theorem is referenced by:  binomcxp  44346
  Copyright terms: Public domain W3C validator