Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemnn0 Structured version   Visualization version   GIF version

Theorem binomcxplemnn0 44340
Description: Lemma for binomcxp 44348. When 𝐶 is a nonnegative integer, the binomial's finite sum value by the standard binomial theorem binom 15851 equals this generalized infinite sum: the generalized binomial coefficient and exponentiation operators give exactly the same values in the standard index set (0...𝐶), and when the index set is widened beyond 𝐶 the additional values are just zeroes. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
binomcxplemnn0 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘

Proof of Theorem binomcxplemnn0
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 binomcxp.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
21rpcnd 13058 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3 binomcxp.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
43recnd 11268 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
5 binom 15851 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘))))
653expia 1121 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 ∈ ℕ0 → ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘)))))
72, 4, 6syl2anc 584 . . . . . 6 (𝜑 → (𝐶 ∈ ℕ0 → ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘)))))
87imp 406 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘))))
92adantr 480 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → 𝐴 ∈ ℂ)
104adantr 480 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → 𝐵 ∈ ℂ)
119, 10addcld 11259 . . . . . 6 ((𝜑𝐶 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℂ)
12 simpr 484 . . . . . 6 ((𝜑𝐶 ∈ ℕ0) → 𝐶 ∈ ℕ0)
13 cxpexp 26634 . . . . . 6 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = ((𝐴 + 𝐵)↑𝐶))
1411, 12, 13syl2anc 584 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = ((𝐴 + 𝐵)↑𝐶))
15 elfznn0 13642 . . . . . . . 8 (𝑘 ∈ (0...𝐶) → 𝑘 ∈ ℕ0)
16 simplr 768 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℕ0)
17 simpr 484 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
1816, 17bccbc 44336 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) = (𝐶C𝑘))
1915, 18sylan2 593 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝐶C𝑐𝑘) = (𝐶C𝑘))
202ad2antrr 726 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → 𝐴 ∈ ℂ)
21 elfzle2 13550 . . . . . . . . . . 11 (𝑘 ∈ (0...𝐶) → 𝑘𝐶)
2221adantl 481 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → 𝑘𝐶)
23 nn0sub 12556 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝐶 ∈ ℕ0) → (𝑘𝐶 ↔ (𝐶𝑘) ∈ ℕ0))
2423ancoms 458 . . . . . . . . . . . 12 ((𝐶 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑘𝐶 ↔ (𝐶𝑘) ∈ ℕ0))
2524adantll 714 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘𝐶 ↔ (𝐶𝑘) ∈ ℕ0))
2615, 25sylan2 593 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝑘𝐶 ↔ (𝐶𝑘) ∈ ℕ0))
2722, 26mpbid 232 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝐶𝑘) ∈ ℕ0)
28 cxpexp 26634 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝐶𝑘) ∈ ℕ0) → (𝐴𝑐(𝐶𝑘)) = (𝐴↑(𝐶𝑘)))
2920, 27, 28syl2anc 584 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝐴𝑐(𝐶𝑘)) = (𝐴↑(𝐶𝑘)))
3029oveq1d 7425 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)) = ((𝐴↑(𝐶𝑘)) · (𝐵𝑘)))
3119, 30oveq12d 7428 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = ((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘))))
3231sumeq2dv 15723 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘))))
338, 14, 323eqtr4d 2781 . . . 4 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
34 binomcxp.c . . . . . 6 (𝜑𝐶 ∈ ℂ)
3534adantr 480 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → 𝐶 ∈ ℂ)
3611, 35cxpcld 26674 . . . 4 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℂ)
3733, 36eqeltrrd 2836 . . 3 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) ∈ ℂ)
3837addridd 11440 . 2 ((𝜑𝐶 ∈ ℕ0) → (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + 0) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
39 nn0uz 12899 . . . 4 0 = (ℤ‘0)
40 eqid 2736 . . . 4 (ℤ‘(𝐶 + 1)) = (ℤ‘(𝐶 + 1))
41 1nn0 12522 . . . . . 6 1 ∈ ℕ0
4241a1i 11 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → 1 ∈ ℕ0)
4312, 42nn0addcld 12571 . . . 4 ((𝜑𝐶 ∈ ℕ0) → (𝐶 + 1) ∈ ℕ0)
44 eqidd 2737 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗)))) = (𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗)))))
45 simpr 484 . . . . . . 7 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘)
4645oveq2d 7426 . . . . . 6 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑘))
4745oveq2d 7426 . . . . . . . 8 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐶𝑗) = (𝐶𝑘))
4847oveq2d 7426 . . . . . . 7 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐴𝑐(𝐶𝑗)) = (𝐴𝑐(𝐶𝑘)))
4945oveq2d 7426 . . . . . . 7 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐵𝑗) = (𝐵𝑘))
5048, 49oveq12d 7428 . . . . . 6 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗)) = ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))
5146, 50oveq12d 7428 . . . . 5 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))) = ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
5234ad2antrr 726 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
5352, 17bcccl 44330 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ∈ ℂ)
542ad2antrr 726 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
5517nn0cnd 12569 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
5652, 55subcld 11599 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶𝑘) ∈ ℂ)
5754, 56cxpcld 26674 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑐(𝐶𝑘)) ∈ ℂ)
584ad2antrr 726 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
5958, 17expcld 14169 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℂ)
6057, 59mulcld 11260 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)) ∈ ℂ)
6153, 60mulcld 11260 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) ∈ ℂ)
6244, 51, 17, 61fvmptd 6998 . . . 4 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘) = ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
63 peano2nn0 12546 . . . . . 6 (𝐶 ∈ ℕ0 → (𝐶 + 1) ∈ ℕ0)
6463adantl 481 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → (𝐶 + 1) ∈ ℕ0)
65 c0ex 11234 . . . . . . . . 9 0 ∈ V
6665fconst 6769 . . . . . . . 8 (ℕ0 × {0}):ℕ0⟶{0}
6766a1i 11 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → (ℕ0 × {0}):ℕ0⟶{0})
68 0red 11243 . . . . . . . 8 ((𝜑𝐶 ∈ ℕ0) → 0 ∈ ℝ)
6968snssd 4790 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → {0} ⊆ ℝ)
7067, 69fssd 6728 . . . . . 6 ((𝜑𝐶 ∈ ℕ0) → (ℕ0 × {0}):ℕ0⟶ℝ)
7170ffvelcdmda 7079 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {0})‘𝑘) ∈ ℝ)
7262, 61eqeltrd 2835 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘) ∈ ℂ)
73 climrel 15513 . . . . . . 7 Rel ⇝
7439xpeq1i 5685 . . . . . . . . 9 (ℕ0 × {0}) = ((ℤ‘0) × {0})
75 seqeq3 14029 . . . . . . . . 9 ((ℕ0 × {0}) = ((ℤ‘0) × {0}) → seq0( + , (ℕ0 × {0})) = seq0( + , ((ℤ‘0) × {0})))
7674, 75ax-mp 5 . . . . . . . 8 seq0( + , (ℕ0 × {0})) = seq0( + , ((ℤ‘0) × {0}))
77 0z 12604 . . . . . . . . 9 0 ∈ ℤ
78 serclim0 15598 . . . . . . . . 9 (0 ∈ ℤ → seq0( + , ((ℤ‘0) × {0})) ⇝ 0)
7977, 78ax-mp 5 . . . . . . . 8 seq0( + , ((ℤ‘0) × {0})) ⇝ 0
8076, 79eqbrtri 5145 . . . . . . 7 seq0( + , (ℕ0 × {0})) ⇝ 0
81 releldm 5929 . . . . . . 7 ((Rel ⇝ ∧ seq0( + , (ℕ0 × {0})) ⇝ 0) → seq0( + , (ℕ0 × {0})) ∈ dom ⇝ )
8273, 80, 81mp2an 692 . . . . . 6 seq0( + , (ℕ0 × {0})) ∈ dom ⇝
8382a1i 11 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → seq0( + , (ℕ0 × {0})) ∈ dom ⇝ )
84 eluznn0 12938 . . . . . . . . . . . 12 (((𝐶 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℕ0)
8564, 84sylan 580 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℕ0)
8685, 62syldan 591 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘) = ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
87 0zd 12605 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 0 ∈ ℤ)
8885nn0zd 12619 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℤ)
89 1zzd 12628 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 1 ∈ ℤ)
9088, 89zsubcld 12707 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝑘 − 1) ∈ ℤ)
9112nn0zd 12619 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ ℕ0) → 𝐶 ∈ ℤ)
9291adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ∈ ℤ)
9312nn0ge0d 12570 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ ℕ0) → 0 ≤ 𝐶)
9493adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 0 ≤ 𝐶)
95 eluzle 12870 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘(𝐶 + 1)) → (𝐶 + 1) ≤ 𝑘)
9695adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐶 + 1) ≤ 𝑘)
9792zred 12702 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ∈ ℝ)
98 1red 11241 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 1 ∈ ℝ)
9985nn0red 12568 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℝ)
100 leaddsub 11718 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐶 + 1) ≤ 𝑘𝐶 ≤ (𝑘 − 1)))
10197, 98, 99, 100syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐶 + 1) ≤ 𝑘𝐶 ≤ (𝑘 − 1)))
10296, 101mpbid 232 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ≤ (𝑘 − 1))
10387, 90, 92, 94, 102elfzd 13537 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ∈ (0...(𝑘 − 1)))
10434ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ∈ ℂ)
105104, 85bcc0 44331 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐶C𝑐𝑘) = 0 ↔ 𝐶 ∈ (0...(𝑘 − 1))))
106103, 105mpbird 257 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐶C𝑐𝑘) = 0)
107106oveq1d 7425 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = (0 · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
1082ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐴 ∈ ℂ)
109 eluzelcn 12869 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘(𝐶 + 1)) → 𝑘 ∈ ℂ)
110109adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℂ)
111104, 110subcld 11599 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐶𝑘) ∈ ℂ)
112108, 111cxpcld 26674 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐴𝑐(𝐶𝑘)) ∈ ℂ)
1134ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐵 ∈ ℂ)
114113, 85expcld 14169 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐵𝑘) ∈ ℂ)
115112, 114mulcld 11260 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)) ∈ ℂ)
116115mul02d 11438 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (0 · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = 0)
117107, 116eqtrd 2771 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = 0)
11886, 117eqtrd 2771 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘) = 0)
119118abs00bd 15315 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) = 0)
120 0re 11242 . . . . . . . 8 0 ∈ ℝ
121119, 120eqeltrdi 2843 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ∈ ℝ)
122 eqle 11342 . . . . . . 7 (((abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ∈ ℝ ∧ (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) = 0) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ≤ 0)
123121, 119, 122syl2anc 584 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ≤ 0)
12471recnd 11268 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {0})‘𝑘) ∈ ℂ)
12585, 124syldan 591 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((ℕ0 × {0})‘𝑘) ∈ ℂ)
126125mul02d 11438 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (0 · ((ℕ0 × {0})‘𝑘)) = 0)
127123, 126breqtrrd 5152 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ≤ (0 · ((ℕ0 × {0})‘𝑘)))
12839, 64, 71, 72, 83, 68, 127cvgcmpce 15839 . . . 4 ((𝜑𝐶 ∈ ℕ0) → seq0( + , (𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))) ∈ dom ⇝ )
12939, 40, 43, 62, 61, 128isumsplit 15861 . . 3 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = (Σ𝑘 ∈ (0...((𝐶 + 1) − 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))))
130 1cnd 11235 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → 1 ∈ ℂ)
13135, 130pncand 11600 . . . . . 6 ((𝜑𝐶 ∈ ℕ0) → ((𝐶 + 1) − 1) = 𝐶)
132131oveq2d 7426 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → (0...((𝐶 + 1) − 1)) = (0...𝐶))
133132sumeq1d 15721 . . . 4 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...((𝐶 + 1) − 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
134133oveq1d 7425 . . 3 ((𝜑𝐶 ∈ ℕ0) → (Σ𝑘 ∈ (0...((𝐶 + 1) − 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))) = (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))))
135117sumeq2dv 15723 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (ℤ‘(𝐶 + 1))0)
136 ssid 3986 . . . . . . 7 (ℤ‘(𝐶 + 1)) ⊆ (ℤ‘(𝐶 + 1))
137136orci 865 . . . . . 6 ((ℤ‘(𝐶 + 1)) ⊆ (ℤ‘(𝐶 + 1)) ∨ (ℤ‘(𝐶 + 1)) ∈ Fin)
138 sumz 15743 . . . . . 6 (((ℤ‘(𝐶 + 1)) ⊆ (ℤ‘(𝐶 + 1)) ∨ (ℤ‘(𝐶 + 1)) ∈ Fin) → Σ𝑘 ∈ (ℤ‘(𝐶 + 1))0 = 0)
139137, 138ax-mp 5 . . . . 5 Σ𝑘 ∈ (ℤ‘(𝐶 + 1))0 = 0
140135, 139eqtrdi 2787 . . . 4 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = 0)
141140oveq2d 7426 . . 3 ((𝜑𝐶 ∈ ℕ0) → (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))) = (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + 0))
142129, 134, 1413eqtrd 2775 . 2 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + 0))
14338, 142, 333eqtr4rd 2782 1 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wss 3931  {csn 4606   class class class wbr 5124  cmpt 5206   × cxp 5657  dom cdm 5659  Rel wrel 5664  wf 6532  cfv 6536  (class class class)co 7410  Fincfn 8964  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cle 11275  cmin 11471  0cn0 12506  cz 12593  cuz 12857  +crp 13013  ...cfz 13529  seqcseq 14024  cexp 14084  Ccbc 14325  abscabs 15258  cli 15505  Σcsu 15707  𝑐ccxp 26521  C𝑐cbcc 44327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-prod 15925  df-fallfac 16028  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522  df-cxp 26523  df-bcc 44328
This theorem is referenced by:  binomcxp  44348
  Copyright terms: Public domain W3C validator