Step | Hyp | Ref
| Expression |
1 | | binomcxp.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
2 | 1 | rpcnd 12272 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℂ) |
3 | | binomcxp.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ ℝ) |
4 | 3 | recnd 10504 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℂ) |
5 | | binom 15006 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0)
→ ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
6 | 5 | 3expia 1112 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 ∈ ℕ0
→ ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶 − 𝑘)) · (𝐵↑𝑘))))) |
7 | 2, 4, 6 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝐶 ∈ ℕ0 → ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶 − 𝑘)) · (𝐵↑𝑘))))) |
8 | 7 | imp 407 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
9 | 2 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → 𝐴 ∈
ℂ) |
10 | 4 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → 𝐵 ∈
ℂ) |
11 | 9, 10 | addcld 10495 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℂ) |
12 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → 𝐶 ∈
ℕ0) |
13 | | cxpexp 24920 |
. . . . . 6
⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = ((𝐴 + 𝐵)↑𝐶)) |
14 | 11, 12, 13 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = ((𝐴 + 𝐵)↑𝐶)) |
15 | | elfznn0 12839 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...𝐶) → 𝑘 ∈ ℕ0) |
16 | | simplr 765 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 𝐶 ∈
ℕ0) |
17 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 𝑘 ∈
ℕ0) |
18 | 16, 17 | bccbc 40167 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝐶C𝑐𝑘) = (𝐶C𝑘)) |
19 | 15, 18 | sylan2 592 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝐶C𝑐𝑘) = (𝐶C𝑘)) |
20 | 2 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → 𝐴 ∈ ℂ) |
21 | | elfzle2 12750 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...𝐶) → 𝑘 ≤ 𝐶) |
22 | 21 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → 𝑘 ≤ 𝐶) |
23 | | nn0sub 11784 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ0
∧ 𝐶 ∈
ℕ0) → (𝑘 ≤ 𝐶 ↔ (𝐶 − 𝑘) ∈
ℕ0)) |
24 | 23 | ancoms 459 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (𝑘 ≤ 𝐶 ↔ (𝐶 − 𝑘) ∈
ℕ0)) |
25 | 24 | adantll 710 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝑘 ≤ 𝐶 ↔ (𝐶 − 𝑘) ∈
ℕ0)) |
26 | 15, 25 | sylan2 592 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝑘 ≤ 𝐶 ↔ (𝐶 − 𝑘) ∈
ℕ0)) |
27 | 22, 26 | mpbid 233 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝐶 − 𝑘) ∈
ℕ0) |
28 | | cxpexp 24920 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ (𝐶 − 𝑘) ∈ ℕ0) → (𝐴↑𝑐(𝐶 − 𝑘)) = (𝐴↑(𝐶 − 𝑘))) |
29 | 20, 27, 28 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝐴↑𝑐(𝐶 − 𝑘)) = (𝐴↑(𝐶 − 𝑘))) |
30 | 29 | oveq1d 7022 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)) = ((𝐴↑(𝐶 − 𝑘)) · (𝐵↑𝑘))) |
31 | 19, 30 | oveq12d 7025 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) = ((𝐶C𝑘) · ((𝐴↑(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
32 | 31 | sumeq2dv 14881 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
33 | 8, 14, 32 | 3eqtr4d 2839 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
34 | | binomcxp.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℂ) |
35 | 34 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → 𝐶 ∈
ℂ) |
36 | 11, 35 | cxpcld 24960 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℂ) |
37 | 33, 36 | eqeltrrd 2882 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) ∈ ℂ) |
38 | 37 | addid1d 10676 |
. 2
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
(Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) + 0) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
39 | | nn0uz 12118 |
. . . 4
⊢
ℕ0 = (ℤ≥‘0) |
40 | | eqid 2793 |
. . . 4
⊢
(ℤ≥‘(𝐶 + 1)) =
(ℤ≥‘(𝐶 + 1)) |
41 | | 1nn0 11750 |
. . . . . 6
⊢ 1 ∈
ℕ0 |
42 | 41 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → 1 ∈
ℕ0) |
43 | 12, 42 | nn0addcld 11796 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → (𝐶 + 1) ∈
ℕ0) |
44 | | eqidd 2794 |
. . . . 5
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝑗 ∈
ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗)))) = (𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))) |
45 | | simpr 485 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
∧ 𝑗 = 𝑘) → 𝑗 = 𝑘) |
46 | 45 | oveq2d 7023 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
∧ 𝑗 = 𝑘) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑘)) |
47 | 45 | oveq2d 7023 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
∧ 𝑗 = 𝑘) → (𝐶 − 𝑗) = (𝐶 − 𝑘)) |
48 | 47 | oveq2d 7023 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
∧ 𝑗 = 𝑘) → (𝐴↑𝑐(𝐶 − 𝑗)) = (𝐴↑𝑐(𝐶 − 𝑘))) |
49 | 45 | oveq2d 7023 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
∧ 𝑗 = 𝑘) → (𝐵↑𝑗) = (𝐵↑𝑘)) |
50 | 48, 49 | oveq12d 7025 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
∧ 𝑗 = 𝑘) → ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗)) = ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) |
51 | 46, 50 | oveq12d 7025 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
∧ 𝑗 = 𝑘) → ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))) = ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
52 | 34 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 𝐶 ∈
ℂ) |
53 | 52, 17 | bcccl 40161 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝐶C𝑐𝑘) ∈ ℂ) |
54 | 2 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 𝐴 ∈
ℂ) |
55 | 17 | nn0cnd 11794 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 𝑘 ∈
ℂ) |
56 | 52, 55 | subcld 10834 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝐶 − 𝑘) ∈
ℂ) |
57 | 54, 56 | cxpcld 24960 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑐(𝐶 − 𝑘)) ∈ ℂ) |
58 | 4 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 𝐵 ∈
ℂ) |
59 | 58, 17 | expcld 13348 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝐵↑𝑘) ∈
ℂ) |
60 | 57, 59 | mulcld 10496 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)) ∈ ℂ) |
61 | 53, 60 | mulcld 10496 |
. . . . 5
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) ∈ ℂ) |
62 | 44, 51, 17, 61 | fvmptd 6632 |
. . . 4
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ((𝑗 ∈
ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))‘𝑘) = ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
63 | | peano2nn0 11774 |
. . . . . 6
⊢ (𝐶 ∈ ℕ0
→ (𝐶 + 1) ∈
ℕ0) |
64 | 63 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → (𝐶 + 1) ∈
ℕ0) |
65 | | c0ex 10470 |
. . . . . . . . 9
⊢ 0 ∈
V |
66 | 65 | fconst 6425 |
. . . . . . . 8
⊢
(ℕ0 ×
{0}):ℕ0⟶{0} |
67 | 66 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
(ℕ0 ×
{0}):ℕ0⟶{0}) |
68 | | 0red 10479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → 0 ∈
ℝ) |
69 | 68 | snssd 4643 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → {0}
⊆ ℝ) |
70 | 67, 69 | fssd 6388 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
(ℕ0 ×
{0}):ℕ0⟶ℝ) |
71 | 70 | ffvelrnda 6707 |
. . . . 5
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ((ℕ0 × {0})‘𝑘) ∈ ℝ) |
72 | 62, 61 | eqeltrd 2881 |
. . . . 5
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ((𝑗 ∈
ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))‘𝑘) ∈ ℂ) |
73 | | climrel 14671 |
. . . . . . 7
⊢ Rel
⇝ |
74 | 39 | xpeq1i 5461 |
. . . . . . . . 9
⊢
(ℕ0 × {0}) = ((ℤ≥‘0)
× {0}) |
75 | | seqeq3 13212 |
. . . . . . . . 9
⊢
((ℕ0 × {0}) = ((ℤ≥‘0)
× {0}) → seq0( + , (ℕ0 × {0})) = seq0( + ,
((ℤ≥‘0) × {0}))) |
76 | 74, 75 | ax-mp 5 |
. . . . . . . 8
⊢ seq0( + ,
(ℕ0 × {0})) = seq0( + ,
((ℤ≥‘0) × {0})) |
77 | | 0z 11829 |
. . . . . . . . 9
⊢ 0 ∈
ℤ |
78 | | serclim0 14756 |
. . . . . . . . 9
⊢ (0 ∈
ℤ → seq0( + , ((ℤ≥‘0) × {0}))
⇝ 0) |
79 | 77, 78 | ax-mp 5 |
. . . . . . . 8
⊢ seq0( + ,
((ℤ≥‘0) × {0})) ⇝ 0 |
80 | 76, 79 | eqbrtri 4977 |
. . . . . . 7
⊢ seq0( + ,
(ℕ0 × {0})) ⇝ 0 |
81 | | releldm 5688 |
. . . . . . 7
⊢ ((Rel
⇝ ∧ seq0( + , (ℕ0 × {0})) ⇝ 0) →
seq0( + , (ℕ0 × {0})) ∈ dom ⇝
) |
82 | 73, 80, 81 | mp2an 688 |
. . . . . 6
⊢ seq0( + ,
(ℕ0 × {0})) ∈ dom ⇝ |
83 | 82 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → seq0( +
, (ℕ0 × {0})) ∈ dom ⇝ ) |
84 | | eluznn0 12155 |
. . . . . . . . . . . 12
⊢ (((𝐶 + 1) ∈ ℕ0
∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 𝑘 ∈ ℕ0) |
85 | 64, 84 | sylan 580 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 𝑘 ∈ ℕ0) |
86 | 85, 62 | syldan 591 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → ((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))‘𝑘) = ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
87 | | 0zd 11830 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 0 ∈
ℤ) |
88 | 85 | nn0zd 11923 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 𝑘 ∈ ℤ) |
89 | | 1zzd 11851 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 1 ∈
ℤ) |
90 | 88, 89 | zsubcld 11930 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → (𝑘 − 1) ∈ ℤ) |
91 | 12 | nn0zd 11923 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → 𝐶 ∈
ℤ) |
92 | 91 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 𝐶 ∈ ℤ) |
93 | 12 | nn0ge0d 11795 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → 0 ≤
𝐶) |
94 | 93 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 0 ≤ 𝐶) |
95 | | eluzle 12095 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈
(ℤ≥‘(𝐶 + 1)) → (𝐶 + 1) ≤ 𝑘) |
96 | 95 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → (𝐶 + 1) ≤ 𝑘) |
97 | 92 | zred 11925 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 𝐶 ∈ ℝ) |
98 | | 1red 10477 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 1 ∈
ℝ) |
99 | 85 | nn0red 11793 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 𝑘 ∈ ℝ) |
100 | | leaddsub 10953 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ ℝ ∧ 1 ∈
ℝ ∧ 𝑘 ∈
ℝ) → ((𝐶 + 1)
≤ 𝑘 ↔ 𝐶 ≤ (𝑘 − 1))) |
101 | 97, 98, 99, 100 | syl3anc 1362 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → ((𝐶 + 1) ≤ 𝑘 ↔ 𝐶 ≤ (𝑘 − 1))) |
102 | 96, 101 | mpbid 233 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 𝐶 ≤ (𝑘 − 1)) |
103 | | elfz4 12740 |
. . . . . . . . . . . . . 14
⊢ (((0
∈ ℤ ∧ (𝑘
− 1) ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (0 ≤ 𝐶 ∧ 𝐶 ≤ (𝑘 − 1))) → 𝐶 ∈ (0...(𝑘 − 1))) |
104 | 87, 90, 92, 94, 102, 103 | syl32anc 1369 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 𝐶 ∈ (0...(𝑘 − 1))) |
105 | 34 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 𝐶 ∈ ℂ) |
106 | 105, 85 | bcc0 40162 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → ((𝐶C𝑐𝑘) = 0 ↔ 𝐶 ∈ (0...(𝑘 − 1)))) |
107 | 104, 106 | mpbird 258 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → (𝐶C𝑐𝑘) = 0) |
108 | 107 | oveq1d 7022 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) = (0 · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
109 | 2 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 𝐴 ∈ ℂ) |
110 | | eluzelcn 12094 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈
(ℤ≥‘(𝐶 + 1)) → 𝑘 ∈ ℂ) |
111 | 110 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 𝑘 ∈ ℂ) |
112 | 105, 111 | subcld 10834 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → (𝐶 − 𝑘) ∈ ℂ) |
113 | 109, 112 | cxpcld 24960 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → (𝐴↑𝑐(𝐶 − 𝑘)) ∈ ℂ) |
114 | 4 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → 𝐵 ∈ ℂ) |
115 | 114, 85 | expcld 13348 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → (𝐵↑𝑘) ∈ ℂ) |
116 | 113, 115 | mulcld 10496 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)) ∈ ℂ) |
117 | 116 | mul02d 10674 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → (0 · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) = 0) |
118 | 108, 117 | eqtrd 2829 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) = 0) |
119 | 86, 118 | eqtrd 2829 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → ((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))‘𝑘) = 0) |
120 | 119 | abs00bd 14473 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0
↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))‘𝑘)) = 0) |
121 | | 0re 10478 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
122 | 120, 121 | syl6eqel 2889 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0
↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))‘𝑘)) ∈ ℝ) |
123 | | eqle 10578 |
. . . . . . 7
⊢
(((abs‘((𝑗
∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))‘𝑘)) ∈ ℝ ∧ (abs‘((𝑗 ∈ ℕ0
↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))‘𝑘)) = 0) → (abs‘((𝑗 ∈ ℕ0
↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))‘𝑘)) ≤ 0) |
124 | 122, 120,
123 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0
↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))‘𝑘)) ≤ 0) |
125 | 71 | recnd 10504 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ((ℕ0 × {0})‘𝑘) ∈ ℂ) |
126 | 85, 125 | syldan 591 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → ((ℕ0 ×
{0})‘𝑘) ∈
ℂ) |
127 | 126 | mul02d 10674 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → (0 ·
((ℕ0 × {0})‘𝑘)) = 0) |
128 | 124, 127 | breqtrrd 4984 |
. . . . 5
⊢ (((𝜑 ∧ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈
(ℤ≥‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0
↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))‘𝑘)) ≤ (0 · ((ℕ0
× {0})‘𝑘))) |
129 | 39, 64, 71, 72, 83, 68, 128 | cvgcmpce 14994 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → seq0( +
, (𝑗 ∈
ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴↑𝑐(𝐶 − 𝑗)) · (𝐵↑𝑗))))) ∈ dom ⇝ ) |
130 | 39, 40, 43, 62, 61, 129 | isumsplit 15016 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
Σ𝑘 ∈
ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) = (Σ𝑘 ∈ (0...((𝐶 + 1) − 1))((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) + Σ𝑘 ∈ (ℤ≥‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))))) |
131 | | 1cnd 10471 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → 1 ∈
ℂ) |
132 | 35, 131 | pncand 10835 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → ((𝐶 + 1) − 1) = 𝐶) |
133 | 132 | oveq2d 7023 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
(0...((𝐶 + 1) − 1)) =
(0...𝐶)) |
134 | 133 | sumeq1d 14879 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
Σ𝑘 ∈
(0...((𝐶 + 1) −
1))((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |
135 | 134 | oveq1d 7022 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
(Σ𝑘 ∈
(0...((𝐶 + 1) −
1))((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) + Σ𝑘 ∈ (ℤ≥‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) = (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) + Σ𝑘 ∈ (ℤ≥‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))))) |
136 | 118 | sumeq2dv 14881 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
Σ𝑘 ∈
(ℤ≥‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) = Σ𝑘 ∈ (ℤ≥‘(𝐶 + 1))0) |
137 | | ssid 3905 |
. . . . . . 7
⊢
(ℤ≥‘(𝐶 + 1)) ⊆
(ℤ≥‘(𝐶 + 1)) |
138 | 137 | orci 860 |
. . . . . 6
⊢
((ℤ≥‘(𝐶 + 1)) ⊆
(ℤ≥‘(𝐶 + 1)) ∨
(ℤ≥‘(𝐶 + 1)) ∈ Fin) |
139 | | sumz 14900 |
. . . . . 6
⊢
(((ℤ≥‘(𝐶 + 1)) ⊆
(ℤ≥‘(𝐶 + 1)) ∨
(ℤ≥‘(𝐶 + 1)) ∈ Fin) → Σ𝑘 ∈
(ℤ≥‘(𝐶 + 1))0 = 0) |
140 | 138, 139 | ax-mp 5 |
. . . . 5
⊢
Σ𝑘 ∈
(ℤ≥‘(𝐶 + 1))0 = 0 |
141 | 136, 140 | syl6eq 2845 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
Σ𝑘 ∈
(ℤ≥‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) = 0) |
142 | 141 | oveq2d 7023 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
(Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) + Σ𝑘 ∈ (ℤ≥‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) = (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) + 0)) |
143 | 130, 135,
142 | 3eqtrd 2833 |
. 2
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) →
Σ𝑘 ∈
ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) = (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘))) + 0)) |
144 | 38, 143, 33 | 3eqtr4rd 2840 |
1
⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) |