Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemnn0 Structured version   Visualization version   GIF version

Theorem binomcxplemnn0 44467
Description: Lemma for binomcxp 44475. When 𝐶 is a nonnegative integer, the binomial's finite sum value by the standard binomial theorem binom 15739 equals this generalized infinite sum: the generalized binomial coefficient and exponentiation operators give exactly the same values in the standard index set (0...𝐶), and when the index set is widened beyond 𝐶 the additional values are just zeroes. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
binomcxplemnn0 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘

Proof of Theorem binomcxplemnn0
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 binomcxp.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
21rpcnd 12938 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3 binomcxp.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
43recnd 11147 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
5 binom 15739 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘))))
653expia 1121 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 ∈ ℕ0 → ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘)))))
72, 4, 6syl2anc 584 . . . . . 6 (𝜑 → (𝐶 ∈ ℕ0 → ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘)))))
87imp 406 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘))))
92adantr 480 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → 𝐴 ∈ ℂ)
104adantr 480 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → 𝐵 ∈ ℂ)
119, 10addcld 11138 . . . . . 6 ((𝜑𝐶 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℂ)
12 simpr 484 . . . . . 6 ((𝜑𝐶 ∈ ℕ0) → 𝐶 ∈ ℕ0)
13 cxpexp 26605 . . . . . 6 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = ((𝐴 + 𝐵)↑𝐶))
1411, 12, 13syl2anc 584 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = ((𝐴 + 𝐵)↑𝐶))
15 elfznn0 13522 . . . . . . . 8 (𝑘 ∈ (0...𝐶) → 𝑘 ∈ ℕ0)
16 simplr 768 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℕ0)
17 simpr 484 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
1816, 17bccbc 44463 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) = (𝐶C𝑘))
1915, 18sylan2 593 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝐶C𝑐𝑘) = (𝐶C𝑘))
202ad2antrr 726 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → 𝐴 ∈ ℂ)
21 elfzle2 13430 . . . . . . . . . . 11 (𝑘 ∈ (0...𝐶) → 𝑘𝐶)
2221adantl 481 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → 𝑘𝐶)
23 nn0sub 12438 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝐶 ∈ ℕ0) → (𝑘𝐶 ↔ (𝐶𝑘) ∈ ℕ0))
2423ancoms 458 . . . . . . . . . . . 12 ((𝐶 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑘𝐶 ↔ (𝐶𝑘) ∈ ℕ0))
2524adantll 714 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘𝐶 ↔ (𝐶𝑘) ∈ ℕ0))
2615, 25sylan2 593 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝑘𝐶 ↔ (𝐶𝑘) ∈ ℕ0))
2722, 26mpbid 232 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝐶𝑘) ∈ ℕ0)
28 cxpexp 26605 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝐶𝑘) ∈ ℕ0) → (𝐴𝑐(𝐶𝑘)) = (𝐴↑(𝐶𝑘)))
2920, 27, 28syl2anc 584 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝐴𝑐(𝐶𝑘)) = (𝐴↑(𝐶𝑘)))
3029oveq1d 7367 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)) = ((𝐴↑(𝐶𝑘)) · (𝐵𝑘)))
3119, 30oveq12d 7370 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = ((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘))))
3231sumeq2dv 15611 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘))))
338, 14, 323eqtr4d 2778 . . . 4 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
34 binomcxp.c . . . . . 6 (𝜑𝐶 ∈ ℂ)
3534adantr 480 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → 𝐶 ∈ ℂ)
3611, 35cxpcld 26645 . . . 4 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℂ)
3733, 36eqeltrrd 2834 . . 3 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) ∈ ℂ)
3837addridd 11320 . 2 ((𝜑𝐶 ∈ ℕ0) → (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + 0) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
39 nn0uz 12776 . . . 4 0 = (ℤ‘0)
40 eqid 2733 . . . 4 (ℤ‘(𝐶 + 1)) = (ℤ‘(𝐶 + 1))
41 1nn0 12404 . . . . . 6 1 ∈ ℕ0
4241a1i 11 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → 1 ∈ ℕ0)
4312, 42nn0addcld 12453 . . . 4 ((𝜑𝐶 ∈ ℕ0) → (𝐶 + 1) ∈ ℕ0)
44 eqidd 2734 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗)))) = (𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗)))))
45 simpr 484 . . . . . . 7 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘)
4645oveq2d 7368 . . . . . 6 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑘))
4745oveq2d 7368 . . . . . . . 8 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐶𝑗) = (𝐶𝑘))
4847oveq2d 7368 . . . . . . 7 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐴𝑐(𝐶𝑗)) = (𝐴𝑐(𝐶𝑘)))
4945oveq2d 7368 . . . . . . 7 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐵𝑗) = (𝐵𝑘))
5048, 49oveq12d 7370 . . . . . 6 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗)) = ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))
5146, 50oveq12d 7370 . . . . 5 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))) = ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
5234ad2antrr 726 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
5352, 17bcccl 44457 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ∈ ℂ)
542ad2antrr 726 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
5517nn0cnd 12451 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
5652, 55subcld 11479 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶𝑘) ∈ ℂ)
5754, 56cxpcld 26645 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑐(𝐶𝑘)) ∈ ℂ)
584ad2antrr 726 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
5958, 17expcld 14055 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℂ)
6057, 59mulcld 11139 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)) ∈ ℂ)
6153, 60mulcld 11139 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) ∈ ℂ)
6244, 51, 17, 61fvmptd 6942 . . . 4 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘) = ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
63 peano2nn0 12428 . . . . . 6 (𝐶 ∈ ℕ0 → (𝐶 + 1) ∈ ℕ0)
6463adantl 481 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → (𝐶 + 1) ∈ ℕ0)
65 c0ex 11113 . . . . . . . . 9 0 ∈ V
6665fconst 6714 . . . . . . . 8 (ℕ0 × {0}):ℕ0⟶{0}
6766a1i 11 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → (ℕ0 × {0}):ℕ0⟶{0})
68 0red 11122 . . . . . . . 8 ((𝜑𝐶 ∈ ℕ0) → 0 ∈ ℝ)
6968snssd 4760 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → {0} ⊆ ℝ)
7067, 69fssd 6673 . . . . . 6 ((𝜑𝐶 ∈ ℕ0) → (ℕ0 × {0}):ℕ0⟶ℝ)
7170ffvelcdmda 7023 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {0})‘𝑘) ∈ ℝ)
7262, 61eqeltrd 2833 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘) ∈ ℂ)
73 climrel 15401 . . . . . . 7 Rel ⇝
7439xpeq1i 5645 . . . . . . . . 9 (ℕ0 × {0}) = ((ℤ‘0) × {0})
75 seqeq3 13915 . . . . . . . . 9 ((ℕ0 × {0}) = ((ℤ‘0) × {0}) → seq0( + , (ℕ0 × {0})) = seq0( + , ((ℤ‘0) × {0})))
7674, 75ax-mp 5 . . . . . . . 8 seq0( + , (ℕ0 × {0})) = seq0( + , ((ℤ‘0) × {0}))
77 0z 12486 . . . . . . . . 9 0 ∈ ℤ
78 serclim0 15486 . . . . . . . . 9 (0 ∈ ℤ → seq0( + , ((ℤ‘0) × {0})) ⇝ 0)
7977, 78ax-mp 5 . . . . . . . 8 seq0( + , ((ℤ‘0) × {0})) ⇝ 0
8076, 79eqbrtri 5114 . . . . . . 7 seq0( + , (ℕ0 × {0})) ⇝ 0
81 releldm 5888 . . . . . . 7 ((Rel ⇝ ∧ seq0( + , (ℕ0 × {0})) ⇝ 0) → seq0( + , (ℕ0 × {0})) ∈ dom ⇝ )
8273, 80, 81mp2an 692 . . . . . 6 seq0( + , (ℕ0 × {0})) ∈ dom ⇝
8382a1i 11 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → seq0( + , (ℕ0 × {0})) ∈ dom ⇝ )
84 eluznn0 12817 . . . . . . . . . . . 12 (((𝐶 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℕ0)
8564, 84sylan 580 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℕ0)
8685, 62syldan 591 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘) = ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
87 0zd 12487 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 0 ∈ ℤ)
8885nn0zd 12500 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℤ)
89 1zzd 12509 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 1 ∈ ℤ)
9088, 89zsubcld 12588 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝑘 − 1) ∈ ℤ)
9112nn0zd 12500 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ ℕ0) → 𝐶 ∈ ℤ)
9291adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ∈ ℤ)
9312nn0ge0d 12452 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ ℕ0) → 0 ≤ 𝐶)
9493adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 0 ≤ 𝐶)
95 eluzle 12751 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘(𝐶 + 1)) → (𝐶 + 1) ≤ 𝑘)
9695adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐶 + 1) ≤ 𝑘)
9792zred 12583 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ∈ ℝ)
98 1red 11120 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 1 ∈ ℝ)
9985nn0red 12450 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℝ)
100 leaddsub 11600 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐶 + 1) ≤ 𝑘𝐶 ≤ (𝑘 − 1)))
10197, 98, 99, 100syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐶 + 1) ≤ 𝑘𝐶 ≤ (𝑘 − 1)))
10296, 101mpbid 232 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ≤ (𝑘 − 1))
10387, 90, 92, 94, 102elfzd 13417 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ∈ (0...(𝑘 − 1)))
10434ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ∈ ℂ)
105104, 85bcc0 44458 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐶C𝑐𝑘) = 0 ↔ 𝐶 ∈ (0...(𝑘 − 1))))
106103, 105mpbird 257 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐶C𝑐𝑘) = 0)
107106oveq1d 7367 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = (0 · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
1082ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐴 ∈ ℂ)
109 eluzelcn 12750 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘(𝐶 + 1)) → 𝑘 ∈ ℂ)
110109adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℂ)
111104, 110subcld 11479 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐶𝑘) ∈ ℂ)
112108, 111cxpcld 26645 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐴𝑐(𝐶𝑘)) ∈ ℂ)
1134ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐵 ∈ ℂ)
114113, 85expcld 14055 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐵𝑘) ∈ ℂ)
115112, 114mulcld 11139 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)) ∈ ℂ)
116115mul02d 11318 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (0 · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = 0)
117107, 116eqtrd 2768 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = 0)
11886, 117eqtrd 2768 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘) = 0)
119118abs00bd 15200 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) = 0)
120 0re 11121 . . . . . . . 8 0 ∈ ℝ
121119, 120eqeltrdi 2841 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ∈ ℝ)
122 eqle 11222 . . . . . . 7 (((abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ∈ ℝ ∧ (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) = 0) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ≤ 0)
123121, 119, 122syl2anc 584 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ≤ 0)
12471recnd 11147 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {0})‘𝑘) ∈ ℂ)
12585, 124syldan 591 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((ℕ0 × {0})‘𝑘) ∈ ℂ)
126125mul02d 11318 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (0 · ((ℕ0 × {0})‘𝑘)) = 0)
127123, 126breqtrrd 5121 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ≤ (0 · ((ℕ0 × {0})‘𝑘)))
12839, 64, 71, 72, 83, 68, 127cvgcmpce 15727 . . . 4 ((𝜑𝐶 ∈ ℕ0) → seq0( + , (𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))) ∈ dom ⇝ )
12939, 40, 43, 62, 61, 128isumsplit 15749 . . 3 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = (Σ𝑘 ∈ (0...((𝐶 + 1) − 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))))
130 1cnd 11114 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → 1 ∈ ℂ)
13135, 130pncand 11480 . . . . . 6 ((𝜑𝐶 ∈ ℕ0) → ((𝐶 + 1) − 1) = 𝐶)
132131oveq2d 7368 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → (0...((𝐶 + 1) − 1)) = (0...𝐶))
133132sumeq1d 15609 . . . 4 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...((𝐶 + 1) − 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
134133oveq1d 7367 . . 3 ((𝜑𝐶 ∈ ℕ0) → (Σ𝑘 ∈ (0...((𝐶 + 1) − 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))) = (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))))
135117sumeq2dv 15611 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (ℤ‘(𝐶 + 1))0)
136 ssid 3953 . . . . . . 7 (ℤ‘(𝐶 + 1)) ⊆ (ℤ‘(𝐶 + 1))
137136orci 865 . . . . . 6 ((ℤ‘(𝐶 + 1)) ⊆ (ℤ‘(𝐶 + 1)) ∨ (ℤ‘(𝐶 + 1)) ∈ Fin)
138 sumz 15631 . . . . . 6 (((ℤ‘(𝐶 + 1)) ⊆ (ℤ‘(𝐶 + 1)) ∨ (ℤ‘(𝐶 + 1)) ∈ Fin) → Σ𝑘 ∈ (ℤ‘(𝐶 + 1))0 = 0)
139137, 138ax-mp 5 . . . . 5 Σ𝑘 ∈ (ℤ‘(𝐶 + 1))0 = 0
140135, 139eqtrdi 2784 . . . 4 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = 0)
141140oveq2d 7368 . . 3 ((𝜑𝐶 ∈ ℕ0) → (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))) = (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + 0))
142129, 134, 1413eqtrd 2772 . 2 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + 0))
14338, 142, 333eqtr4rd 2779 1 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wss 3898  {csn 4575   class class class wbr 5093  cmpt 5174   × cxp 5617  dom cdm 5619  Rel wrel 5624  wf 6482  cfv 6486  (class class class)co 7352  Fincfn 8875  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018   < clt 11153  cle 11154  cmin 11351  0cn0 12388  cz 12475  cuz 12738  +crp 12892  ...cfz 13409  seqcseq 13910  cexp 13970  Ccbc 14211  abscabs 15143  cli 15393  Σcsu 15595  𝑐ccxp 26492  C𝑐cbcc 44454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-prod 15813  df-fallfac 15916  df-ef 15976  df-sin 15978  df-cos 15979  df-pi 15981  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-log 26493  df-cxp 26494  df-bcc 44455
This theorem is referenced by:  binomcxp  44475
  Copyright terms: Public domain W3C validator