Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemnn0 Structured version   Visualization version   GIF version

Theorem binomcxplemnn0 44318
Description: Lemma for binomcxp 44326. When 𝐶 is a nonnegative integer, the binomial's finite sum value by the standard binomial theorem binom 15878 equals this generalized infinite sum: the generalized binomial coefficient and exponentiation operators give exactly the same values in the standard index set (0...𝐶), and when the index set is widened beyond 𝐶 the additional values are just zeroes. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
binomcxplemnn0 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘

Proof of Theorem binomcxplemnn0
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 binomcxp.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
21rpcnd 13101 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3 binomcxp.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
43recnd 11318 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
5 binom 15878 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘))))
653expia 1121 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 ∈ ℕ0 → ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘)))))
72, 4, 6syl2anc 583 . . . . . 6 (𝜑 → (𝐶 ∈ ℕ0 → ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘)))))
87imp 406 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘))))
92adantr 480 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → 𝐴 ∈ ℂ)
104adantr 480 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → 𝐵 ∈ ℂ)
119, 10addcld 11309 . . . . . 6 ((𝜑𝐶 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℂ)
12 simpr 484 . . . . . 6 ((𝜑𝐶 ∈ ℕ0) → 𝐶 ∈ ℕ0)
13 cxpexp 26728 . . . . . 6 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = ((𝐴 + 𝐵)↑𝐶))
1411, 12, 13syl2anc 583 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = ((𝐴 + 𝐵)↑𝐶))
15 elfznn0 13677 . . . . . . . 8 (𝑘 ∈ (0...𝐶) → 𝑘 ∈ ℕ0)
16 simplr 768 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℕ0)
17 simpr 484 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
1816, 17bccbc 44314 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) = (𝐶C𝑘))
1915, 18sylan2 592 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝐶C𝑐𝑘) = (𝐶C𝑘))
202ad2antrr 725 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → 𝐴 ∈ ℂ)
21 elfzle2 13588 . . . . . . . . . . 11 (𝑘 ∈ (0...𝐶) → 𝑘𝐶)
2221adantl 481 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → 𝑘𝐶)
23 nn0sub 12603 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝐶 ∈ ℕ0) → (𝑘𝐶 ↔ (𝐶𝑘) ∈ ℕ0))
2423ancoms 458 . . . . . . . . . . . 12 ((𝐶 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑘𝐶 ↔ (𝐶𝑘) ∈ ℕ0))
2524adantll 713 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘𝐶 ↔ (𝐶𝑘) ∈ ℕ0))
2615, 25sylan2 592 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝑘𝐶 ↔ (𝐶𝑘) ∈ ℕ0))
2722, 26mpbid 232 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝐶𝑘) ∈ ℕ0)
28 cxpexp 26728 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝐶𝑘) ∈ ℕ0) → (𝐴𝑐(𝐶𝑘)) = (𝐴↑(𝐶𝑘)))
2920, 27, 28syl2anc 583 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → (𝐴𝑐(𝐶𝑘)) = (𝐴↑(𝐶𝑘)))
3029oveq1d 7463 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)) = ((𝐴↑(𝐶𝑘)) · (𝐵𝑘)))
3119, 30oveq12d 7466 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝐶)) → ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = ((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘))))
3231sumeq2dv 15750 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑘) · ((𝐴↑(𝐶𝑘)) · (𝐵𝑘))))
338, 14, 323eqtr4d 2790 . . . 4 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
34 binomcxp.c . . . . . 6 (𝜑𝐶 ∈ ℂ)
3534adantr 480 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → 𝐶 ∈ ℂ)
3611, 35cxpcld 26768 . . . 4 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℂ)
3733, 36eqeltrrd 2845 . . 3 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) ∈ ℂ)
3837addridd 11490 . 2 ((𝜑𝐶 ∈ ℕ0) → (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + 0) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
39 nn0uz 12945 . . . 4 0 = (ℤ‘0)
40 eqid 2740 . . . 4 (ℤ‘(𝐶 + 1)) = (ℤ‘(𝐶 + 1))
41 1nn0 12569 . . . . . 6 1 ∈ ℕ0
4241a1i 11 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → 1 ∈ ℕ0)
4312, 42nn0addcld 12617 . . . 4 ((𝜑𝐶 ∈ ℕ0) → (𝐶 + 1) ∈ ℕ0)
44 eqidd 2741 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗)))) = (𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗)))))
45 simpr 484 . . . . . . 7 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘)
4645oveq2d 7464 . . . . . 6 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑘))
4745oveq2d 7464 . . . . . . . 8 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐶𝑗) = (𝐶𝑘))
4847oveq2d 7464 . . . . . . 7 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐴𝑐(𝐶𝑗)) = (𝐴𝑐(𝐶𝑘)))
4945oveq2d 7464 . . . . . . 7 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐵𝑗) = (𝐵𝑘))
5048, 49oveq12d 7466 . . . . . 6 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗)) = ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))
5146, 50oveq12d 7466 . . . . 5 ((((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))) = ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
5234ad2antrr 725 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
5352, 17bcccl 44308 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ∈ ℂ)
542ad2antrr 725 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
5517nn0cnd 12615 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
5652, 55subcld 11647 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶𝑘) ∈ ℂ)
5754, 56cxpcld 26768 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑐(𝐶𝑘)) ∈ ℂ)
584ad2antrr 725 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
5958, 17expcld 14196 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℂ)
6057, 59mulcld 11310 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)) ∈ ℂ)
6153, 60mulcld 11310 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) ∈ ℂ)
6244, 51, 17, 61fvmptd 7036 . . . 4 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘) = ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
63 peano2nn0 12593 . . . . . 6 (𝐶 ∈ ℕ0 → (𝐶 + 1) ∈ ℕ0)
6463adantl 481 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → (𝐶 + 1) ∈ ℕ0)
65 c0ex 11284 . . . . . . . . 9 0 ∈ V
6665fconst 6807 . . . . . . . 8 (ℕ0 × {0}):ℕ0⟶{0}
6766a1i 11 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → (ℕ0 × {0}):ℕ0⟶{0})
68 0red 11293 . . . . . . . 8 ((𝜑𝐶 ∈ ℕ0) → 0 ∈ ℝ)
6968snssd 4834 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → {0} ⊆ ℝ)
7067, 69fssd 6764 . . . . . 6 ((𝜑𝐶 ∈ ℕ0) → (ℕ0 × {0}):ℕ0⟶ℝ)
7170ffvelcdmda 7118 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {0})‘𝑘) ∈ ℝ)
7262, 61eqeltrd 2844 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘) ∈ ℂ)
73 climrel 15538 . . . . . . 7 Rel ⇝
7439xpeq1i 5726 . . . . . . . . 9 (ℕ0 × {0}) = ((ℤ‘0) × {0})
75 seqeq3 14057 . . . . . . . . 9 ((ℕ0 × {0}) = ((ℤ‘0) × {0}) → seq0( + , (ℕ0 × {0})) = seq0( + , ((ℤ‘0) × {0})))
7674, 75ax-mp 5 . . . . . . . 8 seq0( + , (ℕ0 × {0})) = seq0( + , ((ℤ‘0) × {0}))
77 0z 12650 . . . . . . . . 9 0 ∈ ℤ
78 serclim0 15623 . . . . . . . . 9 (0 ∈ ℤ → seq0( + , ((ℤ‘0) × {0})) ⇝ 0)
7977, 78ax-mp 5 . . . . . . . 8 seq0( + , ((ℤ‘0) × {0})) ⇝ 0
8076, 79eqbrtri 5187 . . . . . . 7 seq0( + , (ℕ0 × {0})) ⇝ 0
81 releldm 5969 . . . . . . 7 ((Rel ⇝ ∧ seq0( + , (ℕ0 × {0})) ⇝ 0) → seq0( + , (ℕ0 × {0})) ∈ dom ⇝ )
8273, 80, 81mp2an 691 . . . . . 6 seq0( + , (ℕ0 × {0})) ∈ dom ⇝
8382a1i 11 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → seq0( + , (ℕ0 × {0})) ∈ dom ⇝ )
84 eluznn0 12982 . . . . . . . . . . . 12 (((𝐶 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℕ0)
8564, 84sylan 579 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℕ0)
8685, 62syldan 590 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘) = ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
87 0zd 12651 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 0 ∈ ℤ)
8885nn0zd 12665 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℤ)
89 1zzd 12674 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 1 ∈ ℤ)
9088, 89zsubcld 12752 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝑘 − 1) ∈ ℤ)
9112nn0zd 12665 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ ℕ0) → 𝐶 ∈ ℤ)
9291adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ∈ ℤ)
9312nn0ge0d 12616 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ ℕ0) → 0 ≤ 𝐶)
9493adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 0 ≤ 𝐶)
95 eluzle 12916 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘(𝐶 + 1)) → (𝐶 + 1) ≤ 𝑘)
9695adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐶 + 1) ≤ 𝑘)
9792zred 12747 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ∈ ℝ)
98 1red 11291 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 1 ∈ ℝ)
9985nn0red 12614 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℝ)
100 leaddsub 11766 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝐶 + 1) ≤ 𝑘𝐶 ≤ (𝑘 − 1)))
10197, 98, 99, 100syl3anc 1371 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐶 + 1) ≤ 𝑘𝐶 ≤ (𝑘 − 1)))
10296, 101mpbid 232 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ≤ (𝑘 − 1))
10387, 90, 92, 94, 102elfzd 13575 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ∈ (0...(𝑘 − 1)))
10434ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐶 ∈ ℂ)
105104, 85bcc0 44309 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐶C𝑐𝑘) = 0 ↔ 𝐶 ∈ (0...(𝑘 − 1))))
106103, 105mpbird 257 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐶C𝑐𝑘) = 0)
107106oveq1d 7463 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = (0 · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
1082ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐴 ∈ ℂ)
109 eluzelcn 12915 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘(𝐶 + 1)) → 𝑘 ∈ ℂ)
110109adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝑘 ∈ ℂ)
111104, 110subcld 11647 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐶𝑘) ∈ ℂ)
112108, 111cxpcld 26768 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐴𝑐(𝐶𝑘)) ∈ ℂ)
1134ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → 𝐵 ∈ ℂ)
114113, 85expcld 14196 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (𝐵𝑘) ∈ ℂ)
115112, 114mulcld 11310 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)) ∈ ℂ)
116115mul02d 11488 . . . . . . . . . . 11 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (0 · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = 0)
117107, 116eqtrd 2780 . . . . . . . . . 10 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = 0)
11886, 117eqtrd 2780 . . . . . . . . 9 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘) = 0)
119118abs00bd 15340 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) = 0)
120 0re 11292 . . . . . . . 8 0 ∈ ℝ
121119, 120eqeltrdi 2852 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ∈ ℝ)
122 eqle 11392 . . . . . . 7 (((abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ∈ ℝ ∧ (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) = 0) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ≤ 0)
123121, 119, 122syl2anc 583 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ≤ 0)
12471recnd 11318 . . . . . . . 8 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {0})‘𝑘) ∈ ℂ)
12585, 124syldan 590 . . . . . . 7 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → ((ℕ0 × {0})‘𝑘) ∈ ℂ)
126125mul02d 11488 . . . . . 6 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (0 · ((ℕ0 × {0})‘𝑘)) = 0)
127123, 126breqtrrd 5194 . . . . 5 (((𝜑𝐶 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ‘(𝐶 + 1))) → (abs‘((𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))‘𝑘)) ≤ (0 · ((ℕ0 × {0})‘𝑘)))
12839, 64, 71, 72, 83, 68, 127cvgcmpce 15866 . . . 4 ((𝜑𝐶 ∈ ℕ0) → seq0( + , (𝑗 ∈ ℕ0 ↦ ((𝐶C𝑐𝑗) · ((𝐴𝑐(𝐶𝑗)) · (𝐵𝑗))))) ∈ dom ⇝ )
12939, 40, 43, 62, 61, 128isumsplit 15888 . . 3 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = (Σ𝑘 ∈ (0...((𝐶 + 1) − 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))))
130 1cnd 11285 . . . . . . 7 ((𝜑𝐶 ∈ ℕ0) → 1 ∈ ℂ)
13135, 130pncand 11648 . . . . . 6 ((𝜑𝐶 ∈ ℕ0) → ((𝐶 + 1) − 1) = 𝐶)
132131oveq2d 7464 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → (0...((𝐶 + 1) − 1)) = (0...𝐶))
133132sumeq1d 15748 . . . 4 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (0...((𝐶 + 1) − 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
134133oveq1d 7463 . . 3 ((𝜑𝐶 ∈ ℕ0) → (Σ𝑘 ∈ (0...((𝐶 + 1) − 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))) = (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))))
135117sumeq2dv 15750 . . . . 5 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (ℤ‘(𝐶 + 1))0)
136 ssid 4031 . . . . . . 7 (ℤ‘(𝐶 + 1)) ⊆ (ℤ‘(𝐶 + 1))
137136orci 864 . . . . . 6 ((ℤ‘(𝐶 + 1)) ⊆ (ℤ‘(𝐶 + 1)) ∨ (ℤ‘(𝐶 + 1)) ∈ Fin)
138 sumz 15770 . . . . . 6 (((ℤ‘(𝐶 + 1)) ⊆ (ℤ‘(𝐶 + 1)) ∨ (ℤ‘(𝐶 + 1)) ∈ Fin) → Σ𝑘 ∈ (ℤ‘(𝐶 + 1))0 = 0)
139137, 138ax-mp 5 . . . . 5 Σ𝑘 ∈ (ℤ‘(𝐶 + 1))0 = 0
140135, 139eqtrdi 2796 . . . 4 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = 0)
141140oveq2d 7464 . . 3 ((𝜑𝐶 ∈ ℕ0) → (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (ℤ‘(𝐶 + 1))((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘)))) = (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + 0))
142129, 134, 1413eqtrd 2784 . 2 ((𝜑𝐶 ∈ ℕ0) → Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) = (Σ𝑘 ∈ (0...𝐶)((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))) + 0))
14338, 142, 333eqtr4rd 2791 1 ((𝜑𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴𝑐(𝐶𝑘)) · (𝐵𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wss 3976  {csn 4648   class class class wbr 5166  cmpt 5249   × cxp 5698  dom cdm 5700  Rel wrel 5705  wf 6569  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520  0cn0 12553  cz 12639  cuz 12903  +crp 13057  ...cfz 13567  seqcseq 14052  cexp 14112  Ccbc 14351  abscabs 15283  cli 15530  Σcsu 15734  𝑐ccxp 26615  C𝑐cbcc 44305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-prod 15952  df-fallfac 16055  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-cxp 26617  df-bcc 44306
This theorem is referenced by:  binomcxp  44326
  Copyright terms: Public domain W3C validator