Proof of Theorem mapsncnv
Step | Hyp | Ref
| Expression |
1 | | elmapi 8595 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐵 ↑m {𝑋}) → 𝑥:{𝑋}⟶𝐵) |
2 | | mapsncnv.x |
. . . . . . . . . 10
⊢ 𝑋 ∈ V |
3 | 2 | snid 4594 |
. . . . . . . . 9
⊢ 𝑋 ∈ {𝑋} |
4 | | ffvelrn 6941 |
. . . . . . . . 9
⊢ ((𝑥:{𝑋}⟶𝐵 ∧ 𝑋 ∈ {𝑋}) → (𝑥‘𝑋) ∈ 𝐵) |
5 | 1, 3, 4 | sylancl 585 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐵 ↑m {𝑋}) → (𝑥‘𝑋) ∈ 𝐵) |
6 | | eqid 2738 |
. . . . . . . . 9
⊢ {𝑋} = {𝑋} |
7 | | mapsncnv.b |
. . . . . . . . 9
⊢ 𝐵 ∈ V |
8 | 6, 7, 2 | mapsnconst 8638 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐵 ↑m {𝑋}) → 𝑥 = ({𝑋} × {(𝑥‘𝑋)})) |
9 | 5, 8 | jca 511 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐵 ↑m {𝑋}) → ((𝑥‘𝑋) ∈ 𝐵 ∧ 𝑥 = ({𝑋} × {(𝑥‘𝑋)}))) |
10 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑦 = (𝑥‘𝑋) → (𝑦 ∈ 𝐵 ↔ (𝑥‘𝑋) ∈ 𝐵)) |
11 | | sneq 4568 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑥‘𝑋) → {𝑦} = {(𝑥‘𝑋)}) |
12 | 11 | xpeq2d 5610 |
. . . . . . . . 9
⊢ (𝑦 = (𝑥‘𝑋) → ({𝑋} × {𝑦}) = ({𝑋} × {(𝑥‘𝑋)})) |
13 | 12 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑦 = (𝑥‘𝑋) → (𝑥 = ({𝑋} × {𝑦}) ↔ 𝑥 = ({𝑋} × {(𝑥‘𝑋)}))) |
14 | 10, 13 | anbi12d 630 |
. . . . . . 7
⊢ (𝑦 = (𝑥‘𝑋) → ((𝑦 ∈ 𝐵 ∧ 𝑥 = ({𝑋} × {𝑦})) ↔ ((𝑥‘𝑋) ∈ 𝐵 ∧ 𝑥 = ({𝑋} × {(𝑥‘𝑋)})))) |
15 | 9, 14 | syl5ibrcom 246 |
. . . . . 6
⊢ (𝑥 ∈ (𝐵 ↑m {𝑋}) → (𝑦 = (𝑥‘𝑋) → (𝑦 ∈ 𝐵 ∧ 𝑥 = ({𝑋} × {𝑦})))) |
16 | 15 | imp 406 |
. . . . 5
⊢ ((𝑥 ∈ (𝐵 ↑m {𝑋}) ∧ 𝑦 = (𝑥‘𝑋)) → (𝑦 ∈ 𝐵 ∧ 𝑥 = ({𝑋} × {𝑦}))) |
17 | | fconst6g 6647 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐵 → ({𝑋} × {𝑦}):{𝑋}⟶𝐵) |
18 | | snex 5349 |
. . . . . . . . . 10
⊢ {𝑋} ∈ V |
19 | 7, 18 | elmap 8617 |
. . . . . . . . 9
⊢ (({𝑋} × {𝑦}) ∈ (𝐵 ↑m {𝑋}) ↔ ({𝑋} × {𝑦}):{𝑋}⟶𝐵) |
20 | 17, 19 | sylibr 233 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵 → ({𝑋} × {𝑦}) ∈ (𝐵 ↑m {𝑋})) |
21 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
22 | 21 | fvconst2 7061 |
. . . . . . . . . 10
⊢ (𝑋 ∈ {𝑋} → (({𝑋} × {𝑦})‘𝑋) = 𝑦) |
23 | 3, 22 | mp1i 13 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐵 → (({𝑋} × {𝑦})‘𝑋) = 𝑦) |
24 | 23 | eqcomd 2744 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵 → 𝑦 = (({𝑋} × {𝑦})‘𝑋)) |
25 | 20, 24 | jca 511 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐵 → (({𝑋} × {𝑦}) ∈ (𝐵 ↑m {𝑋}) ∧ 𝑦 = (({𝑋} × {𝑦})‘𝑋))) |
26 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑥 = ({𝑋} × {𝑦}) → (𝑥 ∈ (𝐵 ↑m {𝑋}) ↔ ({𝑋} × {𝑦}) ∈ (𝐵 ↑m {𝑋}))) |
27 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑥 = ({𝑋} × {𝑦}) → (𝑥‘𝑋) = (({𝑋} × {𝑦})‘𝑋)) |
28 | 27 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑥 = ({𝑋} × {𝑦}) → (𝑦 = (𝑥‘𝑋) ↔ 𝑦 = (({𝑋} × {𝑦})‘𝑋))) |
29 | 26, 28 | anbi12d 630 |
. . . . . . 7
⊢ (𝑥 = ({𝑋} × {𝑦}) → ((𝑥 ∈ (𝐵 ↑m {𝑋}) ∧ 𝑦 = (𝑥‘𝑋)) ↔ (({𝑋} × {𝑦}) ∈ (𝐵 ↑m {𝑋}) ∧ 𝑦 = (({𝑋} × {𝑦})‘𝑋)))) |
30 | 25, 29 | syl5ibrcom 246 |
. . . . . 6
⊢ (𝑦 ∈ 𝐵 → (𝑥 = ({𝑋} × {𝑦}) → (𝑥 ∈ (𝐵 ↑m {𝑋}) ∧ 𝑦 = (𝑥‘𝑋)))) |
31 | 30 | imp 406 |
. . . . 5
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 = ({𝑋} × {𝑦})) → (𝑥 ∈ (𝐵 ↑m {𝑋}) ∧ 𝑦 = (𝑥‘𝑋))) |
32 | 16, 31 | impbii 208 |
. . . 4
⊢ ((𝑥 ∈ (𝐵 ↑m {𝑋}) ∧ 𝑦 = (𝑥‘𝑋)) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = ({𝑋} × {𝑦}))) |
33 | | mapsncnv.s |
. . . . . . 7
⊢ 𝑆 = {𝑋} |
34 | 33 | oveq2i 7266 |
. . . . . 6
⊢ (𝐵 ↑m 𝑆) = (𝐵 ↑m {𝑋}) |
35 | 34 | eleq2i 2830 |
. . . . 5
⊢ (𝑥 ∈ (𝐵 ↑m 𝑆) ↔ 𝑥 ∈ (𝐵 ↑m {𝑋})) |
36 | 35 | anbi1i 623 |
. . . 4
⊢ ((𝑥 ∈ (𝐵 ↑m 𝑆) ∧ 𝑦 = (𝑥‘𝑋)) ↔ (𝑥 ∈ (𝐵 ↑m {𝑋}) ∧ 𝑦 = (𝑥‘𝑋))) |
37 | 33 | xpeq1i 5606 |
. . . . . 6
⊢ (𝑆 × {𝑦}) = ({𝑋} × {𝑦}) |
38 | 37 | eqeq2i 2751 |
. . . . 5
⊢ (𝑥 = (𝑆 × {𝑦}) ↔ 𝑥 = ({𝑋} × {𝑦})) |
39 | 38 | anbi2i 622 |
. . . 4
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 = (𝑆 × {𝑦})) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = ({𝑋} × {𝑦}))) |
40 | 32, 36, 39 | 3bitr4i 302 |
. . 3
⊢ ((𝑥 ∈ (𝐵 ↑m 𝑆) ∧ 𝑦 = (𝑥‘𝑋)) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = (𝑆 × {𝑦}))) |
41 | 40 | opabbii 5137 |
. 2
⊢
{〈𝑦, 𝑥〉 ∣ (𝑥 ∈ (𝐵 ↑m 𝑆) ∧ 𝑦 = (𝑥‘𝑋))} = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐵 ∧ 𝑥 = (𝑆 × {𝑦}))} |
42 | | mapsncnv.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) |
43 | | df-mpt 5154 |
. . . . 5
⊢ (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐵 ↑m 𝑆) ∧ 𝑦 = (𝑥‘𝑋))} |
44 | 42, 43 | eqtri 2766 |
. . . 4
⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐵 ↑m 𝑆) ∧ 𝑦 = (𝑥‘𝑋))} |
45 | 44 | cnveqi 5772 |
. . 3
⊢ ◡𝐹 = ◡{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐵 ↑m 𝑆) ∧ 𝑦 = (𝑥‘𝑋))} |
46 | | cnvopab 6031 |
. . 3
⊢ ◡{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐵 ↑m 𝑆) ∧ 𝑦 = (𝑥‘𝑋))} = {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ (𝐵 ↑m 𝑆) ∧ 𝑦 = (𝑥‘𝑋))} |
47 | 45, 46 | eqtri 2766 |
. 2
⊢ ◡𝐹 = {〈𝑦, 𝑥〉 ∣ (𝑥 ∈ (𝐵 ↑m 𝑆) ∧ 𝑦 = (𝑥‘𝑋))} |
48 | | df-mpt 5154 |
. 2
⊢ (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) = {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐵 ∧ 𝑥 = (𝑆 × {𝑦}))} |
49 | 41, 47, 48 | 3eqtr4i 2776 |
1
⊢ ◡𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |