MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hofcl Structured version   Visualization version   GIF version

Theorem hofcl 18165
Description: Closure of the Hom functor. Note that the codomain is the category SetCat‘𝑈 for any universe 𝑈 which contains each Hom-set. This corresponds to the assertion that 𝐶 be locally small (with respect to 𝑈). (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofcl.m 𝑀 = (HomF𝐶)
hofcl.o 𝑂 = (oppCat‘𝐶)
hofcl.d 𝐷 = (SetCat‘𝑈)
hofcl.c (𝜑𝐶 ∈ Cat)
hofcl.u (𝜑𝑈𝑉)
hofcl.h (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
Assertion
Ref Expression
hofcl (𝜑𝑀 ∈ ((𝑂 ×c 𝐶) Func 𝐷))

Proof of Theorem hofcl
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofcl.m . . . 4 𝑀 = (HomF𝐶)
2 hofcl.c . . . 4 (𝜑𝐶 ∈ Cat)
3 eqid 2731 . . . 4 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2731 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
5 eqid 2731 . . . 4 (comp‘𝐶) = (comp‘𝐶)
61, 2, 3, 4, 5hofval 18158 . . 3 (𝜑𝑀 = ⟨(Homf𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))⟩)
7 fvex 6835 . . . . . 6 (Homf𝐶) ∈ V
8 fvex 6835 . . . . . . . 8 (Base‘𝐶) ∈ V
98, 8xpex 7686 . . . . . . 7 ((Base‘𝐶) × (Base‘𝐶)) ∈ V
109, 9mpoex 8011 . . . . . 6 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))) ∈ V
117, 10op2ndd 7932 . . . . 5 (𝑀 = ⟨(Homf𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))⟩ → (2nd𝑀) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))))
126, 11syl 17 . . . 4 (𝜑 → (2nd𝑀) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))))
1312opeq2d 4829 . . 3 (𝜑 → ⟨(Homf𝐶), (2nd𝑀)⟩ = ⟨(Homf𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))⟩)
146, 13eqtr4d 2769 . 2 (𝜑𝑀 = ⟨(Homf𝐶), (2nd𝑀)⟩)
15 eqid 2731 . . . . 5 (𝑂 ×c 𝐶) = (𝑂 ×c 𝐶)
16 hofcl.o . . . . . 6 𝑂 = (oppCat‘𝐶)
1716, 3oppcbas 17624 . . . . 5 (Base‘𝐶) = (Base‘𝑂)
1815, 17, 3xpcbas 18084 . . . 4 ((Base‘𝐶) × (Base‘𝐶)) = (Base‘(𝑂 ×c 𝐶))
19 eqid 2731 . . . 4 (Base‘𝐷) = (Base‘𝐷)
20 eqid 2731 . . . 4 (Hom ‘(𝑂 ×c 𝐶)) = (Hom ‘(𝑂 ×c 𝐶))
21 eqid 2731 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
22 eqid 2731 . . . 4 (Id‘(𝑂 ×c 𝐶)) = (Id‘(𝑂 ×c 𝐶))
23 eqid 2731 . . . 4 (Id‘𝐷) = (Id‘𝐷)
24 eqid 2731 . . . 4 (comp‘(𝑂 ×c 𝐶)) = (comp‘(𝑂 ×c 𝐶))
25 eqid 2731 . . . 4 (comp‘𝐷) = (comp‘𝐷)
2616oppccat 17628 . . . . . 6 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
272, 26syl 17 . . . . 5 (𝜑𝑂 ∈ Cat)
2815, 27, 2xpccat 18096 . . . 4 (𝜑 → (𝑂 ×c 𝐶) ∈ Cat)
29 hofcl.u . . . . 5 (𝜑𝑈𝑉)
30 hofcl.d . . . . . 6 𝐷 = (SetCat‘𝑈)
3130setccat 17992 . . . . 5 (𝑈𝑉𝐷 ∈ Cat)
3229, 31syl 17 . . . 4 (𝜑𝐷 ∈ Cat)
33 eqid 2731 . . . . . . . 8 (Homf𝐶) = (Homf𝐶)
3433, 3homffn 17599 . . . . . . 7 (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))
3534a1i 11 . . . . . 6 (𝜑 → (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
36 hofcl.h . . . . . 6 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
37 df-f 6485 . . . . . 6 ((Homf𝐶):((Base‘𝐶) × (Base‘𝐶))⟶𝑈 ↔ ((Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ran (Homf𝐶) ⊆ 𝑈))
3835, 36, 37sylanbrc 583 . . . . 5 (𝜑 → (Homf𝐶):((Base‘𝐶) × (Base‘𝐶))⟶𝑈)
3930, 29setcbas 17985 . . . . . 6 (𝜑𝑈 = (Base‘𝐷))
4039feq3d 6636 . . . . 5 (𝜑 → ((Homf𝐶):((Base‘𝐶) × (Base‘𝐶))⟶𝑈 ↔ (Homf𝐶):((Base‘𝐶) × (Base‘𝐶))⟶(Base‘𝐷)))
4138, 40mpbid 232 . . . 4 (𝜑 → (Homf𝐶):((Base‘𝐶) × (Base‘𝐶))⟶(Base‘𝐷))
42 eqid 2731 . . . . . 6 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))
43 ovex 7379 . . . . . . 7 ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∈ V
44 ovex 7379 . . . . . . 7 ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ∈ V
4543, 44mpoex 8011 . . . . . 6 (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))) ∈ V
4642, 45fnmpoi 8002 . . . . 5 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))) Fn (((Base‘𝐶) × (Base‘𝐶)) × ((Base‘𝐶) × (Base‘𝐶)))
4712fneq1d 6574 . . . . 5 (𝜑 → ((2nd𝑀) Fn (((Base‘𝐶) × (Base‘𝐶)) × ((Base‘𝐶) × (Base‘𝐶))) ↔ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))) Fn (((Base‘𝐶) × (Base‘𝐶)) × ((Base‘𝐶) × (Base‘𝐶)))))
4846, 47mpbiri 258 . . . 4 (𝜑 → (2nd𝑀) Fn (((Base‘𝐶) × (Base‘𝐶)) × ((Base‘𝐶) × (Base‘𝐶))))
492ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝐶 ∈ Cat)
50 simplrr 777 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))
51 xp1st 7953 . . . . . . . . . . . . . 14 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (1st𝑦) ∈ (Base‘𝐶))
5250, 51syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (1st𝑦) ∈ (Base‘𝐶))
5352adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (1st𝑦) ∈ (Base‘𝐶))
54 simplrl 776 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)))
55 xp1st 7953 . . . . . . . . . . . . . 14 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (1st𝑥) ∈ (Base‘𝐶))
5654, 55syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (1st𝑥) ∈ (Base‘𝐶))
5756adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (1st𝑥) ∈ (Base‘𝐶))
58 xp2nd 7954 . . . . . . . . . . . . . 14 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (2nd𝑦) ∈ (Base‘𝐶))
5950, 58syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (2nd𝑦) ∈ (Base‘𝐶))
6059adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (2nd𝑦) ∈ (Base‘𝐶))
61 simplrl 776 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)))
62 1st2nd2 7960 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6354, 62syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6463adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6564oveq1d 7361 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑥(comp‘𝐶)(2nd𝑦)) = (⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦)))
6665oveqd 7363 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(𝑥(comp‘𝐶)(2nd𝑦))) = (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦))))
67 xp2nd 7954 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (2nd𝑥) ∈ (Base‘𝐶))
6854, 67syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (2nd𝑥) ∈ (Base‘𝐶))
6968adantr 480 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (2nd𝑥) ∈ (Base‘𝐶))
7063fveq2d 6826 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑥) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
71 df-ov 7349 . . . . . . . . . . . . . . . . 17 ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩)
7270, 71eqtr4di 2784 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑥) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
7372eleq2d 2817 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ( ∈ ((Hom ‘𝐶)‘𝑥) ↔ ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))))
7473biimpa 476 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
75 simplrr 777 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))
763, 4, 5, 49, 57, 69, 60, 74, 75catcocl 17591 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦))) ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑦)))
7766, 76eqeltrd 2831 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(𝑥(comp‘𝐶)(2nd𝑦))) ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑦)))
783, 4, 5, 49, 53, 57, 60, 61, 77catcocl 17591 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓) ∈ ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)))
79 1st2nd2 7960 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
8050, 79syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
8180fveq2d 6826 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑦) = ((Hom ‘𝐶)‘⟨(1st𝑦), (2nd𝑦)⟩))
82 df-ov 7349 . . . . . . . . . . . . 13 ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)) = ((Hom ‘𝐶)‘⟨(1st𝑦), (2nd𝑦)⟩)
8381, 82eqtr4di 2784 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑦) = ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)))
8483adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ((Hom ‘𝐶)‘𝑦) = ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)))
8578, 84eleqtrrd 2834 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓) ∈ ((Hom ‘𝐶)‘𝑦))
8685fmpttd 7048 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)):((Hom ‘𝐶)‘𝑥)⟶((Hom ‘𝐶)‘𝑦))
8729ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → 𝑈𝑉)
8833, 3, 4, 56, 68homfval 17598 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((1st𝑥)(Homf𝐶)(2nd𝑥)) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
8963fveq2d 6826 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑥) = ((Homf𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
90 df-ov 7349 . . . . . . . . . . . . 13 ((1st𝑥)(Homf𝐶)(2nd𝑥)) = ((Homf𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩)
9189, 90eqtr4di 2784 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑥) = ((1st𝑥)(Homf𝐶)(2nd𝑥)))
9288, 91, 723eqtr4d 2776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑥) = ((Hom ‘𝐶)‘𝑥))
9338ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (Homf𝐶):((Base‘𝐶) × (Base‘𝐶))⟶𝑈)
9493, 54ffvelcdmd 7018 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑥) ∈ 𝑈)
9592, 94eqeltrrd 2832 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑥) ∈ 𝑈)
9633, 3, 4, 52, 59homfval 17598 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((1st𝑦)(Homf𝐶)(2nd𝑦)) = ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)))
9780fveq2d 6826 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑦) = ((Homf𝐶)‘⟨(1st𝑦), (2nd𝑦)⟩))
98 df-ov 7349 . . . . . . . . . . . . 13 ((1st𝑦)(Homf𝐶)(2nd𝑦)) = ((Homf𝐶)‘⟨(1st𝑦), (2nd𝑦)⟩)
9997, 98eqtr4di 2784 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑦) = ((1st𝑦)(Homf𝐶)(2nd𝑦)))
10096, 99, 833eqtr4d 2776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑦) = ((Hom ‘𝐶)‘𝑦))
10193, 50ffvelcdmd 7018 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑦) ∈ 𝑈)
102100, 101eqeltrrd 2832 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑦) ∈ 𝑈)
10330, 87, 21, 95, 102elsetchom 17988 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) ∈ (((Hom ‘𝐶)‘𝑥)(Hom ‘𝐷)((Hom ‘𝐶)‘𝑦)) ↔ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)):((Hom ‘𝐶)‘𝑥)⟶((Hom ‘𝐶)‘𝑦)))
10486, 103mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) ∈ (((Hom ‘𝐶)‘𝑥)(Hom ‘𝐷)((Hom ‘𝐶)‘𝑦)))
10592, 100oveq12d 7364 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)) = (((Hom ‘𝐶)‘𝑥)(Hom ‘𝐷)((Hom ‘𝐶)‘𝑦)))
106104, 105eleqtrrd 2834 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) ∈ (((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)))
107106ralrimivva 3175 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ∀𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥))∀𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) ∈ (((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)))
108 eqid 2731 . . . . . . 7 (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))) = (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))
109108fmpo 8000 . . . . . 6 (∀𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥))∀𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) ∈ (((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)) ↔ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))):(((1st𝑦)(Hom ‘𝐶)(1st𝑥)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))⟶(((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)))
110107, 109sylib 218 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))):(((1st𝑦)(Hom ‘𝐶)(1st𝑥)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))⟶(((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)))
11112oveqd 7363 . . . . . . 7 (𝜑 → (𝑥(2nd𝑀)𝑦) = (𝑥(𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))𝑦))
11242ovmpt4g 7493 . . . . . . . 8 ((𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))) ∈ V) → (𝑥(𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))𝑦) = (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))
11345, 112mp3an3 1452 . . . . . . 7 ((𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (𝑥(𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))𝑦) = (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))
114111, 113sylan9eq 2786 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (𝑥(2nd𝑀)𝑦) = (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))
115 eqid 2731 . . . . . . . 8 (Hom ‘𝑂) = (Hom ‘𝑂)
116 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)))
117 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))
11815, 18, 115, 4, 20, 116, 117xpchom 18086 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) = (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
1194, 16oppchom 17621 . . . . . . . 8 ((1st𝑥)(Hom ‘𝑂)(1st𝑦)) = ((1st𝑦)(Hom ‘𝐶)(1st𝑥))
120119xpeq1i 5640 . . . . . . 7 (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))) = (((1st𝑦)(Hom ‘𝐶)(1st𝑥)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))
121118, 120eqtrdi 2782 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) = (((1st𝑦)(Hom ‘𝐶)(1st𝑥)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
122114, 121feq12d 6639 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((𝑥(2nd𝑀)𝑦):(𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦)⟶(((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)) ↔ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))):(((1st𝑦)(Hom ‘𝐶)(1st𝑥)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))⟶(((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦))))
123110, 122mpbird 257 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (𝑥(2nd𝑀)𝑦):(𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦)⟶(((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)))
124 eqid 2731 . . . . . . . . . 10 (Id‘𝐶) = (Id‘𝐶)
1252ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → 𝐶 ∈ Cat)
12655adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (1st𝑥) ∈ (Base‘𝐶))
127126adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → (1st𝑥) ∈ (Base‘𝐶))
12867adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (2nd𝑥) ∈ (Base‘𝐶))
129128adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → (2nd𝑥) ∈ (Base‘𝐶))
130 simpr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
1313, 4, 124, 125, 127, 5, 129, 130catlid 17589 . . . . . . . . 9 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → (((Id‘𝐶)‘(2nd𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑥))𝑓) = 𝑓)
132131oveq1d 7361 . . . . . . . 8 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → ((((Id‘𝐶)‘(2nd𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑥))𝑓)(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥))) = (𝑓(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥))))
1333, 4, 124, 125, 127, 5, 129, 130catrid 17590 . . . . . . . 8 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → (𝑓(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥))) = 𝑓)
134132, 133eqtrd 2766 . . . . . . 7 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → ((((Id‘𝐶)‘(2nd𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑥))𝑓)(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥))) = 𝑓)
135134mpteq2dva 5182 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) ↦ ((((Id‘𝐶)‘(2nd𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑥))𝑓)(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥)))) = (𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) ↦ 𝑓))
136 df-ov 7349 . . . . . . 7 (((Id‘𝐶)‘(1st𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩)((Id‘𝐶)‘(2nd𝑥))) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩)‘⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩)
1372adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → 𝐶 ∈ Cat)
1383, 4, 124, 137, 126catidcl 17588 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘𝐶)‘(1st𝑥)) ∈ ((1st𝑥)(Hom ‘𝐶)(1st𝑥)))
1393, 4, 124, 137, 128catidcl 17588 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘𝐶)‘(2nd𝑥)) ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑥)))
1401, 137, 3, 4, 126, 128, 126, 128, 5, 138, 139hof2val 18162 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (((Id‘𝐶)‘(1st𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩)((Id‘𝐶)‘(2nd𝑥))) = (𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) ↦ ((((Id‘𝐶)‘(2nd𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑥))𝑓)(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥)))))
141136, 140eqtr3id 2780 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩)‘⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩) = (𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) ↦ ((((Id‘𝐶)‘(2nd𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑥))𝑓)(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥)))))
14262adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
143142fveq2d 6826 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Homf𝐶)‘𝑥) = ((Homf𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
144143, 90eqtr4di 2784 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Homf𝐶)‘𝑥) = ((1st𝑥)(Homf𝐶)(2nd𝑥)))
14533, 3, 4, 126, 128homfval 17598 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((1st𝑥)(Homf𝐶)(2nd𝑥)) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
146144, 145eqtrd 2766 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Homf𝐶)‘𝑥) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
147146reseq2d 5927 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ( I ↾ ((Homf𝐶)‘𝑥)) = ( I ↾ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))))
148 mptresid 5999 . . . . . . 7 ( I ↾ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) = (𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) ↦ 𝑓)
149147, 148eqtrdi 2782 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ( I ↾ ((Homf𝐶)‘𝑥)) = (𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) ↦ 𝑓))
150135, 141, 1493eqtr4d 2776 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩)‘⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩) = ( I ↾ ((Homf𝐶)‘𝑥)))
151142, 142oveq12d 7364 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (𝑥(2nd𝑀)𝑥) = (⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩))
152142fveq2d 6826 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘(𝑂 ×c 𝐶))‘𝑥) = ((Id‘(𝑂 ×c 𝐶))‘⟨(1st𝑥), (2nd𝑥)⟩))
15327adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → 𝑂 ∈ Cat)
154 eqid 2731 . . . . . . . 8 (Id‘𝑂) = (Id‘𝑂)
15515, 153, 137, 17, 3, 154, 124, 22, 126, 128xpcid 18095 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘(𝑂 ×c 𝐶))‘⟨(1st𝑥), (2nd𝑥)⟩) = ⟨((Id‘𝑂)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩)
15616, 124oppcid 17627 . . . . . . . . . 10 (𝐶 ∈ Cat → (Id‘𝑂) = (Id‘𝐶))
157137, 156syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (Id‘𝑂) = (Id‘𝐶))
158157fveq1d 6824 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘𝑂)‘(1st𝑥)) = ((Id‘𝐶)‘(1st𝑥)))
159158opeq1d 4828 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ⟨((Id‘𝑂)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩ = ⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩)
160152, 155, 1593eqtrd 2770 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘(𝑂 ×c 𝐶))‘𝑥) = ⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩)
161151, 160fveq12d 6829 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((𝑥(2nd𝑀)𝑥)‘((Id‘(𝑂 ×c 𝐶))‘𝑥)) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩)‘⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩))
16229adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → 𝑈𝑉)
16338ffvelcdmda 7017 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Homf𝐶)‘𝑥) ∈ 𝑈)
16430, 23, 162, 163setcid 17993 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘𝐷)‘((Homf𝐶)‘𝑥)) = ( I ↾ ((Homf𝐶)‘𝑥)))
165150, 161, 1643eqtr4d 2776 . . . 4 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((𝑥(2nd𝑀)𝑥)‘((Id‘(𝑂 ×c 𝐶))‘𝑥)) = ((Id‘𝐷)‘((Homf𝐶)‘𝑥)))
16623ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝐶 ∈ Cat)
167293ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑈𝑉)
168363ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ran (Homf𝐶) ⊆ 𝑈)
169 simp21 1207 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)))
170169, 55syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑥) ∈ (Base‘𝐶))
171169, 67syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (2nd𝑥) ∈ (Base‘𝐶))
172 simp22 1208 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))
173172, 51syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑦) ∈ (Base‘𝐶))
174172, 58syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (2nd𝑦) ∈ (Base‘𝐶))
175 simp23 1209 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)))
176 xp1st 7953 . . . . . . 7 (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (1st𝑧) ∈ (Base‘𝐶))
177175, 176syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑧) ∈ (Base‘𝐶))
178 xp2nd 7954 . . . . . . 7 (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (2nd𝑧) ∈ (Base‘𝐶))
179175, 178syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (2nd𝑧) ∈ (Base‘𝐶))
180 simp3l 1202 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦))
18115, 18, 115, 4, 20, 169, 172xpchom 18086 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) = (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
182180, 181eleqtrd 2833 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑓 ∈ (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
183 xp1st 7953 . . . . . . . 8 (𝑓 ∈ (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))) → (1st𝑓) ∈ ((1st𝑥)(Hom ‘𝑂)(1st𝑦)))
184182, 183syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑓) ∈ ((1st𝑥)(Hom ‘𝑂)(1st𝑦)))
185184, 119eleqtrdi 2841 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑓) ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)))
186 xp2nd 7954 . . . . . . 7 (𝑓 ∈ (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))) → (2nd𝑓) ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))
187182, 186syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (2nd𝑓) ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))
188 simp3r 1203 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))
18915, 18, 115, 4, 20, 172, 175xpchom 18086 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧) = (((1st𝑦)(Hom ‘𝑂)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
190188, 189eleqtrd 2833 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑔 ∈ (((1st𝑦)(Hom ‘𝑂)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
191 xp1st 7953 . . . . . . . 8 (𝑔 ∈ (((1st𝑦)(Hom ‘𝑂)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))) → (1st𝑔) ∈ ((1st𝑦)(Hom ‘𝑂)(1st𝑧)))
192190, 191syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑔) ∈ ((1st𝑦)(Hom ‘𝑂)(1st𝑧)))
1934, 16oppchom 17621 . . . . . . 7 ((1st𝑦)(Hom ‘𝑂)(1st𝑧)) = ((1st𝑧)(Hom ‘𝐶)(1st𝑦))
194192, 193eleqtrdi 2841 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑔) ∈ ((1st𝑧)(Hom ‘𝐶)(1st𝑦)))
195 xp2nd 7954 . . . . . . 7 (𝑔 ∈ (((1st𝑦)(Hom ‘𝑂)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))) → (2nd𝑔) ∈ ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧)))
196190, 195syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (2nd𝑔) ∈ ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧)))
1971, 16, 30, 166, 167, 168, 3, 4, 170, 171, 173, 174, 177, 179, 185, 187, 194, 196hofcllem 18164 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔))(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))) = (((1st𝑔)(⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)(2nd𝑔))(⟨((1st𝑥)(Hom ‘𝐶)(2nd𝑥)), ((1st𝑦)(Hom ‘𝐶)(2nd𝑦))⟩(comp‘𝐷)((1st𝑧)(Hom ‘𝐶)(2nd𝑧)))((1st𝑓)(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩)(2nd𝑓))))
198169, 62syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
199 1st2nd2 7960 . . . . . . . . 9 (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
200175, 199syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
201198, 200oveq12d 7364 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑥(2nd𝑀)𝑧) = (⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩))
202172, 79syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
203198, 202opeq12d 4830 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ⟨𝑥, 𝑦⟩ = ⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩)
204203, 200oveq12d 7364 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (⟨𝑥, 𝑦⟩(comp‘(𝑂 ×c 𝐶))𝑧) = (⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑂 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩))
205 1st2nd2 7960 . . . . . . . . . 10 (𝑔 ∈ (((1st𝑦)(Hom ‘𝑂)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
206190, 205syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
207 1st2nd2 7960 . . . . . . . . . 10 (𝑓 ∈ (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))) → 𝑓 = ⟨(1st𝑓), (2nd𝑓)⟩)
208182, 207syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑓 = ⟨(1st𝑓), (2nd𝑓)⟩)
209204, 206, 208oveq123d 7367 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑂 ×c 𝐶))𝑧)𝑓) = (⟨(1st𝑔), (2nd𝑔)⟩(⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑂 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩)⟨(1st𝑓), (2nd𝑓)⟩))
210 eqid 2731 . . . . . . . . 9 (comp‘𝑂) = (comp‘𝑂)
21115, 17, 3, 115, 4, 170, 171, 173, 174, 210, 5, 24, 177, 179, 184, 187, 192, 196xpcco2 18093 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (⟨(1st𝑔), (2nd𝑔)⟩(⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑂 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩)⟨(1st𝑓), (2nd𝑓)⟩) = ⟨((1st𝑔)(⟨(1st𝑥), (1st𝑦)⟩(comp‘𝑂)(1st𝑧))(1st𝑓)), ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))⟩)
2123, 5, 16, 170, 173, 177oppcco 17623 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((1st𝑔)(⟨(1st𝑥), (1st𝑦)⟩(comp‘𝑂)(1st𝑧))(1st𝑓)) = ((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔)))
213212opeq1d 4828 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ⟨((1st𝑔)(⟨(1st𝑥), (1st𝑦)⟩(comp‘𝑂)(1st𝑧))(1st𝑓)), ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))⟩ = ⟨((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔)), ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))⟩)
214209, 211, 2133eqtrd 2770 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑂 ×c 𝐶))𝑧)𝑓) = ⟨((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔)), ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))⟩)
215201, 214fveq12d 6829 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑥(2nd𝑀)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑂 ×c 𝐶))𝑧)𝑓)) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔)), ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))⟩))
216 df-ov 7349 . . . . . 6 (((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔))(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔)), ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))⟩)
217215, 216eqtr4di 2784 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑥(2nd𝑀)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑂 ×c 𝐶))𝑧)𝑓)) = (((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔))(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))))
218198fveq2d 6826 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑥) = ((Homf𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
219218, 90eqtr4di 2784 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑥) = ((1st𝑥)(Homf𝐶)(2nd𝑥)))
22033, 3, 4, 170, 171homfval 17598 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((1st𝑥)(Homf𝐶)(2nd𝑥)) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
221219, 220eqtrd 2766 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑥) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
222202fveq2d 6826 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑦) = ((Homf𝐶)‘⟨(1st𝑦), (2nd𝑦)⟩))
223222, 98eqtr4di 2784 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑦) = ((1st𝑦)(Homf𝐶)(2nd𝑦)))
22433, 3, 4, 173, 174homfval 17598 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((1st𝑦)(Homf𝐶)(2nd𝑦)) = ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)))
225223, 224eqtrd 2766 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑦) = ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)))
226221, 225opeq12d 4830 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ⟨((Homf𝐶)‘𝑥), ((Homf𝐶)‘𝑦)⟩ = ⟨((1st𝑥)(Hom ‘𝐶)(2nd𝑥)), ((1st𝑦)(Hom ‘𝐶)(2nd𝑦))⟩)
227200fveq2d 6826 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑧) = ((Homf𝐶)‘⟨(1st𝑧), (2nd𝑧)⟩))
228 df-ov 7349 . . . . . . . . 9 ((1st𝑧)(Homf𝐶)(2nd𝑧)) = ((Homf𝐶)‘⟨(1st𝑧), (2nd𝑧)⟩)
229227, 228eqtr4di 2784 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑧) = ((1st𝑧)(Homf𝐶)(2nd𝑧)))
23033, 3, 4, 177, 179homfval 17598 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((1st𝑧)(Homf𝐶)(2nd𝑧)) = ((1st𝑧)(Hom ‘𝐶)(2nd𝑧)))
231229, 230eqtrd 2766 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑧) = ((1st𝑧)(Hom ‘𝐶)(2nd𝑧)))
232226, 231oveq12d 7364 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (⟨((Homf𝐶)‘𝑥), ((Homf𝐶)‘𝑦)⟩(comp‘𝐷)((Homf𝐶)‘𝑧)) = (⟨((1st𝑥)(Hom ‘𝐶)(2nd𝑥)), ((1st𝑦)(Hom ‘𝐶)(2nd𝑦))⟩(comp‘𝐷)((1st𝑧)(Hom ‘𝐶)(2nd𝑧))))
233202, 200oveq12d 7364 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑦(2nd𝑀)𝑧) = (⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩))
234233, 206fveq12d 6829 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑦(2nd𝑀)𝑧)‘𝑔) = ((⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩))
235 df-ov 7349 . . . . . . 7 ((1st𝑔)(⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)(2nd𝑔)) = ((⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩)
236234, 235eqtr4di 2784 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑦(2nd𝑀)𝑧)‘𝑔) = ((1st𝑔)(⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)(2nd𝑔)))
237198, 202oveq12d 7364 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑥(2nd𝑀)𝑦) = (⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩))
238237, 208fveq12d 6829 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑥(2nd𝑀)𝑦)‘𝑓) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩)‘⟨(1st𝑓), (2nd𝑓)⟩))
239 df-ov 7349 . . . . . . 7 ((1st𝑓)(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩)(2nd𝑓)) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩)‘⟨(1st𝑓), (2nd𝑓)⟩)
240238, 239eqtr4di 2784 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑥(2nd𝑀)𝑦)‘𝑓) = ((1st𝑓)(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩)(2nd𝑓)))
241232, 236, 240oveq123d 7367 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (((𝑦(2nd𝑀)𝑧)‘𝑔)(⟨((Homf𝐶)‘𝑥), ((Homf𝐶)‘𝑦)⟩(comp‘𝐷)((Homf𝐶)‘𝑧))((𝑥(2nd𝑀)𝑦)‘𝑓)) = (((1st𝑔)(⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)(2nd𝑔))(⟨((1st𝑥)(Hom ‘𝐶)(2nd𝑥)), ((1st𝑦)(Hom ‘𝐶)(2nd𝑦))⟩(comp‘𝐷)((1st𝑧)(Hom ‘𝐶)(2nd𝑧)))((1st𝑓)(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩)(2nd𝑓))))
242197, 217, 2413eqtr4d 2776 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑥(2nd𝑀)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑂 ×c 𝐶))𝑧)𝑓)) = (((𝑦(2nd𝑀)𝑧)‘𝑔)(⟨((Homf𝐶)‘𝑥), ((Homf𝐶)‘𝑦)⟩(comp‘𝐷)((Homf𝐶)‘𝑧))((𝑥(2nd𝑀)𝑦)‘𝑓)))
24318, 19, 20, 21, 22, 23, 24, 25, 28, 32, 41, 48, 123, 165, 242isfuncd 17772 . . 3 (𝜑 → (Homf𝐶)((𝑂 ×c 𝐶) Func 𝐷)(2nd𝑀))
244 df-br 5090 . . 3 ((Homf𝐶)((𝑂 ×c 𝐶) Func 𝐷)(2nd𝑀) ↔ ⟨(Homf𝐶), (2nd𝑀)⟩ ∈ ((𝑂 ×c 𝐶) Func 𝐷))
245243, 244sylib 218 . 2 (𝜑 → ⟨(Homf𝐶), (2nd𝑀)⟩ ∈ ((𝑂 ×c 𝐶) Func 𝐷))
24614, 245eqeltrd 2831 1 (𝜑𝑀 ∈ ((𝑂 ×c 𝐶) Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  wss 3897  cop 4579   class class class wbr 5089  cmpt 5170   I cid 5508   × cxp 5612  ran crn 5615  cres 5616   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  Idccid 17571  Homf chomf 17572  oppCatcoppc 17617   Func cfunc 17761  SetCatcsetc 17982   ×c cxpc 18074  HomFchof 18154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-hom 17185  df-cco 17186  df-cat 17574  df-cid 17575  df-homf 17576  df-oppc 17618  df-func 17765  df-setc 17983  df-xpc 18078  df-hof 18156
This theorem is referenced by:  oppchofcl  18166  oppcyon  18175  yonedalem1  18178  yonedalem21  18179  yonedalem22  18184
  Copyright terms: Public domain W3C validator