MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hofcl Structured version   Visualization version   GIF version

Theorem hofcl 18276
Description: Closure of the Hom functor. Note that the codomain is the category SetCat‘𝑈 for any universe 𝑈 which contains each Hom-set. This corresponds to the assertion that 𝐶 be locally small (with respect to 𝑈). (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofcl.m 𝑀 = (HomF𝐶)
hofcl.o 𝑂 = (oppCat‘𝐶)
hofcl.d 𝐷 = (SetCat‘𝑈)
hofcl.c (𝜑𝐶 ∈ Cat)
hofcl.u (𝜑𝑈𝑉)
hofcl.h (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
Assertion
Ref Expression
hofcl (𝜑𝑀 ∈ ((𝑂 ×c 𝐶) Func 𝐷))

Proof of Theorem hofcl
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofcl.m . . . 4 𝑀 = (HomF𝐶)
2 hofcl.c . . . 4 (𝜑𝐶 ∈ Cat)
3 eqid 2736 . . . 4 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2736 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
5 eqid 2736 . . . 4 (comp‘𝐶) = (comp‘𝐶)
61, 2, 3, 4, 5hofval 18269 . . 3 (𝜑𝑀 = ⟨(Homf𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))⟩)
7 fvex 6894 . . . . . 6 (Homf𝐶) ∈ V
8 fvex 6894 . . . . . . . 8 (Base‘𝐶) ∈ V
98, 8xpex 7752 . . . . . . 7 ((Base‘𝐶) × (Base‘𝐶)) ∈ V
109, 9mpoex 8083 . . . . . 6 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))) ∈ V
117, 10op2ndd 8004 . . . . 5 (𝑀 = ⟨(Homf𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))⟩ → (2nd𝑀) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))))
126, 11syl 17 . . . 4 (𝜑 → (2nd𝑀) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))))
1312opeq2d 4861 . . 3 (𝜑 → ⟨(Homf𝐶), (2nd𝑀)⟩ = ⟨(Homf𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))⟩)
146, 13eqtr4d 2774 . 2 (𝜑𝑀 = ⟨(Homf𝐶), (2nd𝑀)⟩)
15 eqid 2736 . . . . 5 (𝑂 ×c 𝐶) = (𝑂 ×c 𝐶)
16 hofcl.o . . . . . 6 𝑂 = (oppCat‘𝐶)
1716, 3oppcbas 17735 . . . . 5 (Base‘𝐶) = (Base‘𝑂)
1815, 17, 3xpcbas 18195 . . . 4 ((Base‘𝐶) × (Base‘𝐶)) = (Base‘(𝑂 ×c 𝐶))
19 eqid 2736 . . . 4 (Base‘𝐷) = (Base‘𝐷)
20 eqid 2736 . . . 4 (Hom ‘(𝑂 ×c 𝐶)) = (Hom ‘(𝑂 ×c 𝐶))
21 eqid 2736 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
22 eqid 2736 . . . 4 (Id‘(𝑂 ×c 𝐶)) = (Id‘(𝑂 ×c 𝐶))
23 eqid 2736 . . . 4 (Id‘𝐷) = (Id‘𝐷)
24 eqid 2736 . . . 4 (comp‘(𝑂 ×c 𝐶)) = (comp‘(𝑂 ×c 𝐶))
25 eqid 2736 . . . 4 (comp‘𝐷) = (comp‘𝐷)
2616oppccat 17739 . . . . . 6 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
272, 26syl 17 . . . . 5 (𝜑𝑂 ∈ Cat)
2815, 27, 2xpccat 18207 . . . 4 (𝜑 → (𝑂 ×c 𝐶) ∈ Cat)
29 hofcl.u . . . . 5 (𝜑𝑈𝑉)
30 hofcl.d . . . . . 6 𝐷 = (SetCat‘𝑈)
3130setccat 18103 . . . . 5 (𝑈𝑉𝐷 ∈ Cat)
3229, 31syl 17 . . . 4 (𝜑𝐷 ∈ Cat)
33 eqid 2736 . . . . . . . 8 (Homf𝐶) = (Homf𝐶)
3433, 3homffn 17710 . . . . . . 7 (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))
3534a1i 11 . . . . . 6 (𝜑 → (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
36 hofcl.h . . . . . 6 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
37 df-f 6540 . . . . . 6 ((Homf𝐶):((Base‘𝐶) × (Base‘𝐶))⟶𝑈 ↔ ((Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ran (Homf𝐶) ⊆ 𝑈))
3835, 36, 37sylanbrc 583 . . . . 5 (𝜑 → (Homf𝐶):((Base‘𝐶) × (Base‘𝐶))⟶𝑈)
3930, 29setcbas 18096 . . . . . 6 (𝜑𝑈 = (Base‘𝐷))
4039feq3d 6698 . . . . 5 (𝜑 → ((Homf𝐶):((Base‘𝐶) × (Base‘𝐶))⟶𝑈 ↔ (Homf𝐶):((Base‘𝐶) × (Base‘𝐶))⟶(Base‘𝐷)))
4138, 40mpbid 232 . . . 4 (𝜑 → (Homf𝐶):((Base‘𝐶) × (Base‘𝐶))⟶(Base‘𝐷))
42 eqid 2736 . . . . . 6 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))
43 ovex 7443 . . . . . . 7 ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∈ V
44 ovex 7443 . . . . . . 7 ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ∈ V
4543, 44mpoex 8083 . . . . . 6 (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))) ∈ V
4642, 45fnmpoi 8074 . . . . 5 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))) Fn (((Base‘𝐶) × (Base‘𝐶)) × ((Base‘𝐶) × (Base‘𝐶)))
4712fneq1d 6636 . . . . 5 (𝜑 → ((2nd𝑀) Fn (((Base‘𝐶) × (Base‘𝐶)) × ((Base‘𝐶) × (Base‘𝐶))) ↔ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))) Fn (((Base‘𝐶) × (Base‘𝐶)) × ((Base‘𝐶) × (Base‘𝐶)))))
4846, 47mpbiri 258 . . . 4 (𝜑 → (2nd𝑀) Fn (((Base‘𝐶) × (Base‘𝐶)) × ((Base‘𝐶) × (Base‘𝐶))))
492ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝐶 ∈ Cat)
50 simplrr 777 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))
51 xp1st 8025 . . . . . . . . . . . . . 14 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (1st𝑦) ∈ (Base‘𝐶))
5250, 51syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (1st𝑦) ∈ (Base‘𝐶))
5352adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (1st𝑦) ∈ (Base‘𝐶))
54 simplrl 776 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)))
55 xp1st 8025 . . . . . . . . . . . . . 14 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (1st𝑥) ∈ (Base‘𝐶))
5654, 55syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (1st𝑥) ∈ (Base‘𝐶))
5756adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (1st𝑥) ∈ (Base‘𝐶))
58 xp2nd 8026 . . . . . . . . . . . . . 14 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (2nd𝑦) ∈ (Base‘𝐶))
5950, 58syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (2nd𝑦) ∈ (Base‘𝐶))
6059adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (2nd𝑦) ∈ (Base‘𝐶))
61 simplrl 776 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)))
62 1st2nd2 8032 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6354, 62syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6463adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6564oveq1d 7425 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑥(comp‘𝐶)(2nd𝑦)) = (⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦)))
6665oveqd 7427 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(𝑥(comp‘𝐶)(2nd𝑦))) = (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦))))
67 xp2nd 8026 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (2nd𝑥) ∈ (Base‘𝐶))
6854, 67syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (2nd𝑥) ∈ (Base‘𝐶))
6968adantr 480 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (2nd𝑥) ∈ (Base‘𝐶))
7063fveq2d 6885 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑥) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
71 df-ov 7413 . . . . . . . . . . . . . . . . 17 ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩)
7270, 71eqtr4di 2789 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑥) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
7372eleq2d 2821 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ( ∈ ((Hom ‘𝐶)‘𝑥) ↔ ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))))
7473biimpa 476 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
75 simplrr 777 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))
763, 4, 5, 49, 57, 69, 60, 74, 75catcocl 17702 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦))) ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑦)))
7766, 76eqeltrd 2835 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(𝑥(comp‘𝐶)(2nd𝑦))) ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑦)))
783, 4, 5, 49, 53, 57, 60, 61, 77catcocl 17702 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓) ∈ ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)))
79 1st2nd2 8032 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
8050, 79syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
8180fveq2d 6885 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑦) = ((Hom ‘𝐶)‘⟨(1st𝑦), (2nd𝑦)⟩))
82 df-ov 7413 . . . . . . . . . . . . 13 ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)) = ((Hom ‘𝐶)‘⟨(1st𝑦), (2nd𝑦)⟩)
8381, 82eqtr4di 2789 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑦) = ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)))
8483adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ((Hom ‘𝐶)‘𝑦) = ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)))
8578, 84eleqtrrd 2838 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓) ∈ ((Hom ‘𝐶)‘𝑦))
8685fmpttd 7110 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)):((Hom ‘𝐶)‘𝑥)⟶((Hom ‘𝐶)‘𝑦))
8729ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → 𝑈𝑉)
8833, 3, 4, 56, 68homfval 17709 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((1st𝑥)(Homf𝐶)(2nd𝑥)) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
8963fveq2d 6885 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑥) = ((Homf𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
90 df-ov 7413 . . . . . . . . . . . . 13 ((1st𝑥)(Homf𝐶)(2nd𝑥)) = ((Homf𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩)
9189, 90eqtr4di 2789 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑥) = ((1st𝑥)(Homf𝐶)(2nd𝑥)))
9288, 91, 723eqtr4d 2781 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑥) = ((Hom ‘𝐶)‘𝑥))
9338ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (Homf𝐶):((Base‘𝐶) × (Base‘𝐶))⟶𝑈)
9493, 54ffvelcdmd 7080 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑥) ∈ 𝑈)
9592, 94eqeltrrd 2836 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑥) ∈ 𝑈)
9633, 3, 4, 52, 59homfval 17709 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((1st𝑦)(Homf𝐶)(2nd𝑦)) = ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)))
9780fveq2d 6885 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑦) = ((Homf𝐶)‘⟨(1st𝑦), (2nd𝑦)⟩))
98 df-ov 7413 . . . . . . . . . . . . 13 ((1st𝑦)(Homf𝐶)(2nd𝑦)) = ((Homf𝐶)‘⟨(1st𝑦), (2nd𝑦)⟩)
9997, 98eqtr4di 2789 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑦) = ((1st𝑦)(Homf𝐶)(2nd𝑦)))
10096, 99, 833eqtr4d 2781 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑦) = ((Hom ‘𝐶)‘𝑦))
10193, 50ffvelcdmd 7080 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑦) ∈ 𝑈)
102100, 101eqeltrrd 2836 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑦) ∈ 𝑈)
10330, 87, 21, 95, 102elsetchom 18099 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) ∈ (((Hom ‘𝐶)‘𝑥)(Hom ‘𝐷)((Hom ‘𝐶)‘𝑦)) ↔ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)):((Hom ‘𝐶)‘𝑥)⟶((Hom ‘𝐶)‘𝑦)))
10486, 103mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) ∈ (((Hom ‘𝐶)‘𝑥)(Hom ‘𝐷)((Hom ‘𝐶)‘𝑦)))
10592, 100oveq12d 7428 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)) = (((Hom ‘𝐶)‘𝑥)(Hom ‘𝐷)((Hom ‘𝐶)‘𝑦)))
106104, 105eleqtrrd 2838 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) ∈ (((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)))
107106ralrimivva 3188 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ∀𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥))∀𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) ∈ (((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)))
108 eqid 2736 . . . . . . 7 (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))) = (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))
109108fmpo 8072 . . . . . 6 (∀𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥))∀𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) ∈ (((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)) ↔ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))):(((1st𝑦)(Hom ‘𝐶)(1st𝑥)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))⟶(((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)))
110107, 109sylib 218 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))):(((1st𝑦)(Hom ‘𝐶)(1st𝑥)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))⟶(((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)))
11112oveqd 7427 . . . . . . 7 (𝜑 → (𝑥(2nd𝑀)𝑦) = (𝑥(𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))𝑦))
11242ovmpt4g 7559 . . . . . . . 8 ((𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))) ∈ V) → (𝑥(𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))𝑦) = (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))
11345, 112mp3an3 1452 . . . . . . 7 ((𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (𝑥(𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))𝑦) = (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))
114111, 113sylan9eq 2791 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (𝑥(2nd𝑀)𝑦) = (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))
115 eqid 2736 . . . . . . . 8 (Hom ‘𝑂) = (Hom ‘𝑂)
116 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)))
117 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))
11815, 18, 115, 4, 20, 116, 117xpchom 18197 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) = (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
1194, 16oppchom 17732 . . . . . . . 8 ((1st𝑥)(Hom ‘𝑂)(1st𝑦)) = ((1st𝑦)(Hom ‘𝐶)(1st𝑥))
120119xpeq1i 5685 . . . . . . 7 (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))) = (((1st𝑦)(Hom ‘𝐶)(1st𝑥)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))
121118, 120eqtrdi 2787 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) = (((1st𝑦)(Hom ‘𝐶)(1st𝑥)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
122114, 121feq12d 6699 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((𝑥(2nd𝑀)𝑦):(𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦)⟶(((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)) ↔ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))):(((1st𝑦)(Hom ‘𝐶)(1st𝑥)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))⟶(((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦))))
123110, 122mpbird 257 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (𝑥(2nd𝑀)𝑦):(𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦)⟶(((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)))
124 eqid 2736 . . . . . . . . . 10 (Id‘𝐶) = (Id‘𝐶)
1252ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → 𝐶 ∈ Cat)
12655adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (1st𝑥) ∈ (Base‘𝐶))
127126adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → (1st𝑥) ∈ (Base‘𝐶))
12867adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (2nd𝑥) ∈ (Base‘𝐶))
129128adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → (2nd𝑥) ∈ (Base‘𝐶))
130 simpr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
1313, 4, 124, 125, 127, 5, 129, 130catlid 17700 . . . . . . . . 9 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → (((Id‘𝐶)‘(2nd𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑥))𝑓) = 𝑓)
132131oveq1d 7425 . . . . . . . 8 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → ((((Id‘𝐶)‘(2nd𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑥))𝑓)(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥))) = (𝑓(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥))))
1333, 4, 124, 125, 127, 5, 129, 130catrid 17701 . . . . . . . 8 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → (𝑓(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥))) = 𝑓)
134132, 133eqtrd 2771 . . . . . . 7 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → ((((Id‘𝐶)‘(2nd𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑥))𝑓)(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥))) = 𝑓)
135134mpteq2dva 5219 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) ↦ ((((Id‘𝐶)‘(2nd𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑥))𝑓)(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥)))) = (𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) ↦ 𝑓))
136 df-ov 7413 . . . . . . 7 (((Id‘𝐶)‘(1st𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩)((Id‘𝐶)‘(2nd𝑥))) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩)‘⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩)
1372adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → 𝐶 ∈ Cat)
1383, 4, 124, 137, 126catidcl 17699 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘𝐶)‘(1st𝑥)) ∈ ((1st𝑥)(Hom ‘𝐶)(1st𝑥)))
1393, 4, 124, 137, 128catidcl 17699 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘𝐶)‘(2nd𝑥)) ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑥)))
1401, 137, 3, 4, 126, 128, 126, 128, 5, 138, 139hof2val 18273 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (((Id‘𝐶)‘(1st𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩)((Id‘𝐶)‘(2nd𝑥))) = (𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) ↦ ((((Id‘𝐶)‘(2nd𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑥))𝑓)(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥)))))
141136, 140eqtr3id 2785 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩)‘⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩) = (𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) ↦ ((((Id‘𝐶)‘(2nd𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑥))𝑓)(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥)))))
14262adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
143142fveq2d 6885 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Homf𝐶)‘𝑥) = ((Homf𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
144143, 90eqtr4di 2789 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Homf𝐶)‘𝑥) = ((1st𝑥)(Homf𝐶)(2nd𝑥)))
14533, 3, 4, 126, 128homfval 17709 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((1st𝑥)(Homf𝐶)(2nd𝑥)) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
146144, 145eqtrd 2771 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Homf𝐶)‘𝑥) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
147146reseq2d 5971 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ( I ↾ ((Homf𝐶)‘𝑥)) = ( I ↾ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))))
148 mptresid 6043 . . . . . . 7 ( I ↾ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) = (𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) ↦ 𝑓)
149147, 148eqtrdi 2787 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ( I ↾ ((Homf𝐶)‘𝑥)) = (𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) ↦ 𝑓))
150135, 141, 1493eqtr4d 2781 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩)‘⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩) = ( I ↾ ((Homf𝐶)‘𝑥)))
151142, 142oveq12d 7428 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (𝑥(2nd𝑀)𝑥) = (⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩))
152142fveq2d 6885 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘(𝑂 ×c 𝐶))‘𝑥) = ((Id‘(𝑂 ×c 𝐶))‘⟨(1st𝑥), (2nd𝑥)⟩))
15327adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → 𝑂 ∈ Cat)
154 eqid 2736 . . . . . . . 8 (Id‘𝑂) = (Id‘𝑂)
15515, 153, 137, 17, 3, 154, 124, 22, 126, 128xpcid 18206 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘(𝑂 ×c 𝐶))‘⟨(1st𝑥), (2nd𝑥)⟩) = ⟨((Id‘𝑂)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩)
15616, 124oppcid 17738 . . . . . . . . . 10 (𝐶 ∈ Cat → (Id‘𝑂) = (Id‘𝐶))
157137, 156syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (Id‘𝑂) = (Id‘𝐶))
158157fveq1d 6883 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘𝑂)‘(1st𝑥)) = ((Id‘𝐶)‘(1st𝑥)))
159158opeq1d 4860 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ⟨((Id‘𝑂)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩ = ⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩)
160152, 155, 1593eqtrd 2775 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘(𝑂 ×c 𝐶))‘𝑥) = ⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩)
161151, 160fveq12d 6888 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((𝑥(2nd𝑀)𝑥)‘((Id‘(𝑂 ×c 𝐶))‘𝑥)) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩)‘⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩))
16229adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → 𝑈𝑉)
16338ffvelcdmda 7079 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Homf𝐶)‘𝑥) ∈ 𝑈)
16430, 23, 162, 163setcid 18104 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘𝐷)‘((Homf𝐶)‘𝑥)) = ( I ↾ ((Homf𝐶)‘𝑥)))
165150, 161, 1643eqtr4d 2781 . . . 4 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((𝑥(2nd𝑀)𝑥)‘((Id‘(𝑂 ×c 𝐶))‘𝑥)) = ((Id‘𝐷)‘((Homf𝐶)‘𝑥)))
16623ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝐶 ∈ Cat)
167293ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑈𝑉)
168363ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ran (Homf𝐶) ⊆ 𝑈)
169 simp21 1207 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)))
170169, 55syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑥) ∈ (Base‘𝐶))
171169, 67syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (2nd𝑥) ∈ (Base‘𝐶))
172 simp22 1208 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))
173172, 51syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑦) ∈ (Base‘𝐶))
174172, 58syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (2nd𝑦) ∈ (Base‘𝐶))
175 simp23 1209 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)))
176 xp1st 8025 . . . . . . 7 (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (1st𝑧) ∈ (Base‘𝐶))
177175, 176syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑧) ∈ (Base‘𝐶))
178 xp2nd 8026 . . . . . . 7 (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (2nd𝑧) ∈ (Base‘𝐶))
179175, 178syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (2nd𝑧) ∈ (Base‘𝐶))
180 simp3l 1202 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦))
18115, 18, 115, 4, 20, 169, 172xpchom 18197 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) = (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
182180, 181eleqtrd 2837 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑓 ∈ (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
183 xp1st 8025 . . . . . . . 8 (𝑓 ∈ (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))) → (1st𝑓) ∈ ((1st𝑥)(Hom ‘𝑂)(1st𝑦)))
184182, 183syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑓) ∈ ((1st𝑥)(Hom ‘𝑂)(1st𝑦)))
185184, 119eleqtrdi 2845 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑓) ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)))
186 xp2nd 8026 . . . . . . 7 (𝑓 ∈ (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))) → (2nd𝑓) ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))
187182, 186syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (2nd𝑓) ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))
188 simp3r 1203 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))
18915, 18, 115, 4, 20, 172, 175xpchom 18197 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧) = (((1st𝑦)(Hom ‘𝑂)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
190188, 189eleqtrd 2837 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑔 ∈ (((1st𝑦)(Hom ‘𝑂)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
191 xp1st 8025 . . . . . . . 8 (𝑔 ∈ (((1st𝑦)(Hom ‘𝑂)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))) → (1st𝑔) ∈ ((1st𝑦)(Hom ‘𝑂)(1st𝑧)))
192190, 191syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑔) ∈ ((1st𝑦)(Hom ‘𝑂)(1st𝑧)))
1934, 16oppchom 17732 . . . . . . 7 ((1st𝑦)(Hom ‘𝑂)(1st𝑧)) = ((1st𝑧)(Hom ‘𝐶)(1st𝑦))
194192, 193eleqtrdi 2845 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑔) ∈ ((1st𝑧)(Hom ‘𝐶)(1st𝑦)))
195 xp2nd 8026 . . . . . . 7 (𝑔 ∈ (((1st𝑦)(Hom ‘𝑂)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))) → (2nd𝑔) ∈ ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧)))
196190, 195syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (2nd𝑔) ∈ ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧)))
1971, 16, 30, 166, 167, 168, 3, 4, 170, 171, 173, 174, 177, 179, 185, 187, 194, 196hofcllem 18275 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔))(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))) = (((1st𝑔)(⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)(2nd𝑔))(⟨((1st𝑥)(Hom ‘𝐶)(2nd𝑥)), ((1st𝑦)(Hom ‘𝐶)(2nd𝑦))⟩(comp‘𝐷)((1st𝑧)(Hom ‘𝐶)(2nd𝑧)))((1st𝑓)(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩)(2nd𝑓))))
198169, 62syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
199 1st2nd2 8032 . . . . . . . . 9 (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
200175, 199syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
201198, 200oveq12d 7428 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑥(2nd𝑀)𝑧) = (⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩))
202172, 79syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
203198, 202opeq12d 4862 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ⟨𝑥, 𝑦⟩ = ⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩)
204203, 200oveq12d 7428 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (⟨𝑥, 𝑦⟩(comp‘(𝑂 ×c 𝐶))𝑧) = (⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑂 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩))
205 1st2nd2 8032 . . . . . . . . . 10 (𝑔 ∈ (((1st𝑦)(Hom ‘𝑂)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
206190, 205syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
207 1st2nd2 8032 . . . . . . . . . 10 (𝑓 ∈ (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))) → 𝑓 = ⟨(1st𝑓), (2nd𝑓)⟩)
208182, 207syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑓 = ⟨(1st𝑓), (2nd𝑓)⟩)
209204, 206, 208oveq123d 7431 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑂 ×c 𝐶))𝑧)𝑓) = (⟨(1st𝑔), (2nd𝑔)⟩(⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑂 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩)⟨(1st𝑓), (2nd𝑓)⟩))
210 eqid 2736 . . . . . . . . 9 (comp‘𝑂) = (comp‘𝑂)
21115, 17, 3, 115, 4, 170, 171, 173, 174, 210, 5, 24, 177, 179, 184, 187, 192, 196xpcco2 18204 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (⟨(1st𝑔), (2nd𝑔)⟩(⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑂 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩)⟨(1st𝑓), (2nd𝑓)⟩) = ⟨((1st𝑔)(⟨(1st𝑥), (1st𝑦)⟩(comp‘𝑂)(1st𝑧))(1st𝑓)), ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))⟩)
2123, 5, 16, 170, 173, 177oppcco 17734 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((1st𝑔)(⟨(1st𝑥), (1st𝑦)⟩(comp‘𝑂)(1st𝑧))(1st𝑓)) = ((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔)))
213212opeq1d 4860 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ⟨((1st𝑔)(⟨(1st𝑥), (1st𝑦)⟩(comp‘𝑂)(1st𝑧))(1st𝑓)), ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))⟩ = ⟨((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔)), ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))⟩)
214209, 211, 2133eqtrd 2775 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑂 ×c 𝐶))𝑧)𝑓) = ⟨((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔)), ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))⟩)
215201, 214fveq12d 6888 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑥(2nd𝑀)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑂 ×c 𝐶))𝑧)𝑓)) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔)), ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))⟩))
216 df-ov 7413 . . . . . 6 (((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔))(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔)), ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))⟩)
217215, 216eqtr4di 2789 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑥(2nd𝑀)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑂 ×c 𝐶))𝑧)𝑓)) = (((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔))(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))))
218198fveq2d 6885 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑥) = ((Homf𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
219218, 90eqtr4di 2789 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑥) = ((1st𝑥)(Homf𝐶)(2nd𝑥)))
22033, 3, 4, 170, 171homfval 17709 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((1st𝑥)(Homf𝐶)(2nd𝑥)) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
221219, 220eqtrd 2771 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑥) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
222202fveq2d 6885 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑦) = ((Homf𝐶)‘⟨(1st𝑦), (2nd𝑦)⟩))
223222, 98eqtr4di 2789 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑦) = ((1st𝑦)(Homf𝐶)(2nd𝑦)))
22433, 3, 4, 173, 174homfval 17709 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((1st𝑦)(Homf𝐶)(2nd𝑦)) = ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)))
225223, 224eqtrd 2771 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑦) = ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)))
226221, 225opeq12d 4862 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ⟨((Homf𝐶)‘𝑥), ((Homf𝐶)‘𝑦)⟩ = ⟨((1st𝑥)(Hom ‘𝐶)(2nd𝑥)), ((1st𝑦)(Hom ‘𝐶)(2nd𝑦))⟩)
227200fveq2d 6885 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑧) = ((Homf𝐶)‘⟨(1st𝑧), (2nd𝑧)⟩))
228 df-ov 7413 . . . . . . . . 9 ((1st𝑧)(Homf𝐶)(2nd𝑧)) = ((Homf𝐶)‘⟨(1st𝑧), (2nd𝑧)⟩)
229227, 228eqtr4di 2789 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑧) = ((1st𝑧)(Homf𝐶)(2nd𝑧)))
23033, 3, 4, 177, 179homfval 17709 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((1st𝑧)(Homf𝐶)(2nd𝑧)) = ((1st𝑧)(Hom ‘𝐶)(2nd𝑧)))
231229, 230eqtrd 2771 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑧) = ((1st𝑧)(Hom ‘𝐶)(2nd𝑧)))
232226, 231oveq12d 7428 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (⟨((Homf𝐶)‘𝑥), ((Homf𝐶)‘𝑦)⟩(comp‘𝐷)((Homf𝐶)‘𝑧)) = (⟨((1st𝑥)(Hom ‘𝐶)(2nd𝑥)), ((1st𝑦)(Hom ‘𝐶)(2nd𝑦))⟩(comp‘𝐷)((1st𝑧)(Hom ‘𝐶)(2nd𝑧))))
233202, 200oveq12d 7428 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑦(2nd𝑀)𝑧) = (⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩))
234233, 206fveq12d 6888 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑦(2nd𝑀)𝑧)‘𝑔) = ((⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩))
235 df-ov 7413 . . . . . . 7 ((1st𝑔)(⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)(2nd𝑔)) = ((⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩)
236234, 235eqtr4di 2789 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑦(2nd𝑀)𝑧)‘𝑔) = ((1st𝑔)(⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)(2nd𝑔)))
237198, 202oveq12d 7428 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑥(2nd𝑀)𝑦) = (⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩))
238237, 208fveq12d 6888 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑥(2nd𝑀)𝑦)‘𝑓) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩)‘⟨(1st𝑓), (2nd𝑓)⟩))
239 df-ov 7413 . . . . . . 7 ((1st𝑓)(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩)(2nd𝑓)) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩)‘⟨(1st𝑓), (2nd𝑓)⟩)
240238, 239eqtr4di 2789 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑥(2nd𝑀)𝑦)‘𝑓) = ((1st𝑓)(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩)(2nd𝑓)))
241232, 236, 240oveq123d 7431 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (((𝑦(2nd𝑀)𝑧)‘𝑔)(⟨((Homf𝐶)‘𝑥), ((Homf𝐶)‘𝑦)⟩(comp‘𝐷)((Homf𝐶)‘𝑧))((𝑥(2nd𝑀)𝑦)‘𝑓)) = (((1st𝑔)(⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)(2nd𝑔))(⟨((1st𝑥)(Hom ‘𝐶)(2nd𝑥)), ((1st𝑦)(Hom ‘𝐶)(2nd𝑦))⟩(comp‘𝐷)((1st𝑧)(Hom ‘𝐶)(2nd𝑧)))((1st𝑓)(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩)(2nd𝑓))))
242197, 217, 2413eqtr4d 2781 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑥(2nd𝑀)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑂 ×c 𝐶))𝑧)𝑓)) = (((𝑦(2nd𝑀)𝑧)‘𝑔)(⟨((Homf𝐶)‘𝑥), ((Homf𝐶)‘𝑦)⟩(comp‘𝐷)((Homf𝐶)‘𝑧))((𝑥(2nd𝑀)𝑦)‘𝑓)))
24318, 19, 20, 21, 22, 23, 24, 25, 28, 32, 41, 48, 123, 165, 242isfuncd 17883 . . 3 (𝜑 → (Homf𝐶)((𝑂 ×c 𝐶) Func 𝐷)(2nd𝑀))
244 df-br 5125 . . 3 ((Homf𝐶)((𝑂 ×c 𝐶) Func 𝐷)(2nd𝑀) ↔ ⟨(Homf𝐶), (2nd𝑀)⟩ ∈ ((𝑂 ×c 𝐶) Func 𝐷))
245243, 244sylib 218 . 2 (𝜑 → ⟨(Homf𝐶), (2nd𝑀)⟩ ∈ ((𝑂 ×c 𝐶) Func 𝐷))
24614, 245eqeltrd 2835 1 (𝜑𝑀 ∈ ((𝑂 ×c 𝐶) Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  wss 3931  cop 4612   class class class wbr 5124  cmpt 5206   I cid 5552   × cxp 5657  ran crn 5660  cres 5661   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  cmpo 7412  1st c1st 7991  2nd c2nd 7992  Basecbs 17233  Hom chom 17287  compcco 17288  Catccat 17681  Idccid 17682  Homf chomf 17683  oppCatcoppc 17728   Func cfunc 17872  SetCatcsetc 18093   ×c cxpc 18185  HomFchof 18265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-hom 17300  df-cco 17301  df-cat 17685  df-cid 17686  df-homf 17687  df-oppc 17729  df-func 17876  df-setc 18094  df-xpc 18189  df-hof 18267
This theorem is referenced by:  oppchofcl  18277  oppcyon  18286  yonedalem1  18289  yonedalem21  18290  yonedalem22  18295
  Copyright terms: Public domain W3C validator