MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hofcl Structured version   Visualization version   GIF version

Theorem hofcl 18194
Description: Closure of the Hom functor. Note that the codomain is the category SetCat‘𝑈 for any universe 𝑈 which contains each Hom-set. This corresponds to the assertion that 𝐶 be locally small (with respect to 𝑈). (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofcl.m 𝑀 = (HomF𝐶)
hofcl.o 𝑂 = (oppCat‘𝐶)
hofcl.d 𝐷 = (SetCat‘𝑈)
hofcl.c (𝜑𝐶 ∈ Cat)
hofcl.u (𝜑𝑈𝑉)
hofcl.h (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
Assertion
Ref Expression
hofcl (𝜑𝑀 ∈ ((𝑂 ×c 𝐶) Func 𝐷))

Proof of Theorem hofcl
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofcl.m . . . 4 𝑀 = (HomF𝐶)
2 hofcl.c . . . 4 (𝜑𝐶 ∈ Cat)
3 eqid 2731 . . . 4 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2731 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
5 eqid 2731 . . . 4 (comp‘𝐶) = (comp‘𝐶)
61, 2, 3, 4, 5hofval 18187 . . 3 (𝜑𝑀 = ⟨(Homf𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))⟩)
7 fvex 6891 . . . . . 6 (Homf𝐶) ∈ V
8 fvex 6891 . . . . . . . 8 (Base‘𝐶) ∈ V
98, 8xpex 7723 . . . . . . 7 ((Base‘𝐶) × (Base‘𝐶)) ∈ V
109, 9mpoex 8048 . . . . . 6 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))) ∈ V
117, 10op2ndd 7968 . . . . 5 (𝑀 = ⟨(Homf𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))⟩ → (2nd𝑀) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))))
126, 11syl 17 . . . 4 (𝜑 → (2nd𝑀) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))))
1312opeq2d 4873 . . 3 (𝜑 → ⟨(Homf𝐶), (2nd𝑀)⟩ = ⟨(Homf𝐶), (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))⟩)
146, 13eqtr4d 2774 . 2 (𝜑𝑀 = ⟨(Homf𝐶), (2nd𝑀)⟩)
15 eqid 2731 . . . . 5 (𝑂 ×c 𝐶) = (𝑂 ×c 𝐶)
16 hofcl.o . . . . . 6 𝑂 = (oppCat‘𝐶)
1716, 3oppcbas 17645 . . . . 5 (Base‘𝐶) = (Base‘𝑂)
1815, 17, 3xpcbas 18112 . . . 4 ((Base‘𝐶) × (Base‘𝐶)) = (Base‘(𝑂 ×c 𝐶))
19 eqid 2731 . . . 4 (Base‘𝐷) = (Base‘𝐷)
20 eqid 2731 . . . 4 (Hom ‘(𝑂 ×c 𝐶)) = (Hom ‘(𝑂 ×c 𝐶))
21 eqid 2731 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
22 eqid 2731 . . . 4 (Id‘(𝑂 ×c 𝐶)) = (Id‘(𝑂 ×c 𝐶))
23 eqid 2731 . . . 4 (Id‘𝐷) = (Id‘𝐷)
24 eqid 2731 . . . 4 (comp‘(𝑂 ×c 𝐶)) = (comp‘(𝑂 ×c 𝐶))
25 eqid 2731 . . . 4 (comp‘𝐷) = (comp‘𝐷)
2616oppccat 17650 . . . . . 6 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
272, 26syl 17 . . . . 5 (𝜑𝑂 ∈ Cat)
2815, 27, 2xpccat 18124 . . . 4 (𝜑 → (𝑂 ×c 𝐶) ∈ Cat)
29 hofcl.u . . . . 5 (𝜑𝑈𝑉)
30 hofcl.d . . . . . 6 𝐷 = (SetCat‘𝑈)
3130setccat 18017 . . . . 5 (𝑈𝑉𝐷 ∈ Cat)
3229, 31syl 17 . . . 4 (𝜑𝐷 ∈ Cat)
33 eqid 2731 . . . . . . . 8 (Homf𝐶) = (Homf𝐶)
3433, 3homffn 17619 . . . . . . 7 (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))
3534a1i 11 . . . . . 6 (𝜑 → (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
36 hofcl.h . . . . . 6 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
37 df-f 6536 . . . . . 6 ((Homf𝐶):((Base‘𝐶) × (Base‘𝐶))⟶𝑈 ↔ ((Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ran (Homf𝐶) ⊆ 𝑈))
3835, 36, 37sylanbrc 583 . . . . 5 (𝜑 → (Homf𝐶):((Base‘𝐶) × (Base‘𝐶))⟶𝑈)
3930, 29setcbas 18010 . . . . . 6 (𝜑𝑈 = (Base‘𝐷))
4039feq3d 6691 . . . . 5 (𝜑 → ((Homf𝐶):((Base‘𝐶) × (Base‘𝐶))⟶𝑈 ↔ (Homf𝐶):((Base‘𝐶) × (Base‘𝐶))⟶(Base‘𝐷)))
4138, 40mpbid 231 . . . 4 (𝜑 → (Homf𝐶):((Base‘𝐶) × (Base‘𝐶))⟶(Base‘𝐷))
42 eqid 2731 . . . . . 6 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))) = (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))
43 ovex 7426 . . . . . . 7 ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∈ V
44 ovex 7426 . . . . . . 7 ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ∈ V
4543, 44mpoex 8048 . . . . . 6 (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))) ∈ V
4642, 45fnmpoi 8038 . . . . 5 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))) Fn (((Base‘𝐶) × (Base‘𝐶)) × ((Base‘𝐶) × (Base‘𝐶)))
4712fneq1d 6631 . . . . 5 (𝜑 → ((2nd𝑀) Fn (((Base‘𝐶) × (Base‘𝐶)) × ((Base‘𝐶) × (Base‘𝐶))) ↔ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))) Fn (((Base‘𝐶) × (Base‘𝐶)) × ((Base‘𝐶) × (Base‘𝐶)))))
4846, 47mpbiri 257 . . . 4 (𝜑 → (2nd𝑀) Fn (((Base‘𝐶) × (Base‘𝐶)) × ((Base‘𝐶) × (Base‘𝐶))))
492ad3antrrr 728 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝐶 ∈ Cat)
50 simplrr 776 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))
51 xp1st 7989 . . . . . . . . . . . . . 14 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (1st𝑦) ∈ (Base‘𝐶))
5250, 51syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (1st𝑦) ∈ (Base‘𝐶))
5352adantr 481 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (1st𝑦) ∈ (Base‘𝐶))
54 simplrl 775 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)))
55 xp1st 7989 . . . . . . . . . . . . . 14 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (1st𝑥) ∈ (Base‘𝐶))
5654, 55syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (1st𝑥) ∈ (Base‘𝐶))
5756adantr 481 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (1st𝑥) ∈ (Base‘𝐶))
58 xp2nd 7990 . . . . . . . . . . . . . 14 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (2nd𝑦) ∈ (Base‘𝐶))
5950, 58syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (2nd𝑦) ∈ (Base‘𝐶))
6059adantr 481 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (2nd𝑦) ∈ (Base‘𝐶))
61 simplrl 775 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)))
62 1st2nd2 7996 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6354, 62syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6463adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6564oveq1d 7408 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑥(comp‘𝐶)(2nd𝑦)) = (⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦)))
6665oveqd 7410 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(𝑥(comp‘𝐶)(2nd𝑦))) = (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦))))
67 xp2nd 7990 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (2nd𝑥) ∈ (Base‘𝐶))
6854, 67syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (2nd𝑥) ∈ (Base‘𝐶))
6968adantr 481 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (2nd𝑥) ∈ (Base‘𝐶))
7063fveq2d 6882 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑥) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
71 df-ov 7396 . . . . . . . . . . . . . . . . 17 ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) = ((Hom ‘𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩)
7270, 71eqtr4di 2789 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑥) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
7372eleq2d 2818 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ( ∈ ((Hom ‘𝐶)‘𝑥) ↔ ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))))
7473biimpa 477 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
75 simplrr 776 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))
763, 4, 5, 49, 57, 69, 60, 74, 75catcocl 17611 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑦))) ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑦)))
7766, 76eqeltrd 2832 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → (𝑔(𝑥(comp‘𝐶)(2nd𝑦))) ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑦)))
783, 4, 5, 49, 53, 57, 60, 61, 77catcocl 17611 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓) ∈ ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)))
79 1st2nd2 7996 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
8050, 79syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
8180fveq2d 6882 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑦) = ((Hom ‘𝐶)‘⟨(1st𝑦), (2nd𝑦)⟩))
82 df-ov 7396 . . . . . . . . . . . . 13 ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)) = ((Hom ‘𝐶)‘⟨(1st𝑦), (2nd𝑦)⟩)
8381, 82eqtr4di 2789 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑦) = ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)))
8483adantr 481 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ((Hom ‘𝐶)‘𝑦) = ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)))
8578, 84eleqtrrd 2835 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) ∧ ∈ ((Hom ‘𝐶)‘𝑥)) → ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓) ∈ ((Hom ‘𝐶)‘𝑦))
8685fmpttd 7099 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)):((Hom ‘𝐶)‘𝑥)⟶((Hom ‘𝐶)‘𝑦))
8729ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → 𝑈𝑉)
8833, 3, 4, 56, 68homfval 17618 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((1st𝑥)(Homf𝐶)(2nd𝑥)) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
8963fveq2d 6882 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑥) = ((Homf𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
90 df-ov 7396 . . . . . . . . . . . . 13 ((1st𝑥)(Homf𝐶)(2nd𝑥)) = ((Homf𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩)
9189, 90eqtr4di 2789 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑥) = ((1st𝑥)(Homf𝐶)(2nd𝑥)))
9288, 91, 723eqtr4d 2781 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑥) = ((Hom ‘𝐶)‘𝑥))
9338ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (Homf𝐶):((Base‘𝐶) × (Base‘𝐶))⟶𝑈)
9493, 54ffvelcdmd 7072 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑥) ∈ 𝑈)
9592, 94eqeltrrd 2833 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑥) ∈ 𝑈)
9633, 3, 4, 52, 59homfval 17618 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((1st𝑦)(Homf𝐶)(2nd𝑦)) = ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)))
9780fveq2d 6882 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑦) = ((Homf𝐶)‘⟨(1st𝑦), (2nd𝑦)⟩))
98 df-ov 7396 . . . . . . . . . . . . 13 ((1st𝑦)(Homf𝐶)(2nd𝑦)) = ((Homf𝐶)‘⟨(1st𝑦), (2nd𝑦)⟩)
9997, 98eqtr4di 2789 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑦) = ((1st𝑦)(Homf𝐶)(2nd𝑦)))
10096, 99, 833eqtr4d 2781 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑦) = ((Hom ‘𝐶)‘𝑦))
10193, 50ffvelcdmd 7072 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Homf𝐶)‘𝑦) ∈ 𝑈)
102100, 101eqeltrrd 2833 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ((Hom ‘𝐶)‘𝑦) ∈ 𝑈)
10330, 87, 21, 95, 102elsetchom 18013 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) ∈ (((Hom ‘𝐶)‘𝑥)(Hom ‘𝐷)((Hom ‘𝐶)‘𝑦)) ↔ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)):((Hom ‘𝐶)‘𝑥)⟶((Hom ‘𝐶)‘𝑦)))
10486, 103mpbird 256 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) ∈ (((Hom ‘𝐶)‘𝑥)(Hom ‘𝐷)((Hom ‘𝐶)‘𝑦)))
10592, 100oveq12d 7411 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → (((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)) = (((Hom ‘𝐶)‘𝑥)(Hom ‘𝐷)((Hom ‘𝐶)‘𝑦)))
106104, 105eleqtrrd 2835 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)) ∧ 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))) → ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) ∈ (((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)))
107106ralrimivva 3199 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ∀𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥))∀𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) ∈ (((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)))
108 eqid 2731 . . . . . . 7 (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))) = (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)))
109108fmpo 8036 . . . . . 6 (∀𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥))∀𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓)) ∈ (((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)) ↔ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))):(((1st𝑦)(Hom ‘𝐶)(1st𝑥)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))⟶(((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)))
110107, 109sylib 217 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))):(((1st𝑦)(Hom ‘𝐶)(1st𝑥)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))⟶(((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)))
11112oveqd 7410 . . . . . . 7 (𝜑 → (𝑥(2nd𝑀)𝑦) = (𝑥(𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))𝑦))
11242ovmpt4g 7538 . . . . . . . 8 ((𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))) ∈ V) → (𝑥(𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))𝑦) = (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))
11345, 112mp3an3 1450 . . . . . . 7 ((𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (𝑥(𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))𝑦) = (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))
114111, 113sylan9eq 2791 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (𝑥(2nd𝑀)𝑦) = (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))))
115 eqid 2731 . . . . . . . 8 (Hom ‘𝑂) = (Hom ‘𝑂)
116 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)))
117 simprr 771 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))
11815, 18, 115, 4, 20, 116, 117xpchom 18114 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) = (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
1194, 16oppchom 17642 . . . . . . . 8 ((1st𝑥)(Hom ‘𝑂)(1st𝑦)) = ((1st𝑦)(Hom ‘𝐶)(1st𝑥))
120119xpeq1i 5695 . . . . . . 7 (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))) = (((1st𝑦)(Hom ‘𝐶)(1st𝑥)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))
121118, 120eqtrdi 2787 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) = (((1st𝑦)(Hom ‘𝐶)(1st𝑥)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
122114, 121feq12d 6692 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → ((𝑥(2nd𝑀)𝑦):(𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦)⟶(((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)) ↔ (𝑓 ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝐶)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝐶)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝐶)(2nd𝑦))𝑓))):(((1st𝑦)(Hom ‘𝐶)(1st𝑥)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))⟶(((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦))))
123110, 122mpbird 256 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))) → (𝑥(2nd𝑀)𝑦):(𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦)⟶(((Homf𝐶)‘𝑥)(Hom ‘𝐷)((Homf𝐶)‘𝑦)))
124 eqid 2731 . . . . . . . . . 10 (Id‘𝐶) = (Id‘𝐶)
1252ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → 𝐶 ∈ Cat)
12655adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (1st𝑥) ∈ (Base‘𝐶))
127126adantr 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → (1st𝑥) ∈ (Base‘𝐶))
12867adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (2nd𝑥) ∈ (Base‘𝐶))
129128adantr 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → (2nd𝑥) ∈ (Base‘𝐶))
130 simpr 485 . . . . . . . . . 10 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
1313, 4, 124, 125, 127, 5, 129, 130catlid 17609 . . . . . . . . 9 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → (((Id‘𝐶)‘(2nd𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑥))𝑓) = 𝑓)
132131oveq1d 7408 . . . . . . . 8 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → ((((Id‘𝐶)‘(2nd𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑥))𝑓)(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥))) = (𝑓(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥))))
1333, 4, 124, 125, 127, 5, 129, 130catrid 17610 . . . . . . . 8 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → (𝑓(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥))) = 𝑓)
134132, 133eqtrd 2771 . . . . . . 7 (((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ 𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) → ((((Id‘𝐶)‘(2nd𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑥))𝑓)(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥))) = 𝑓)
135134mpteq2dva 5241 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) ↦ ((((Id‘𝐶)‘(2nd𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑥))𝑓)(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥)))) = (𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) ↦ 𝑓))
136 df-ov 7396 . . . . . . 7 (((Id‘𝐶)‘(1st𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩)((Id‘𝐶)‘(2nd𝑥))) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩)‘⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩)
1372adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → 𝐶 ∈ Cat)
1383, 4, 124, 137, 126catidcl 17608 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘𝐶)‘(1st𝑥)) ∈ ((1st𝑥)(Hom ‘𝐶)(1st𝑥)))
1393, 4, 124, 137, 128catidcl 17608 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘𝐶)‘(2nd𝑥)) ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑥)))
1401, 137, 3, 4, 126, 128, 126, 128, 5, 138, 139hof2val 18191 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (((Id‘𝐶)‘(1st𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩)((Id‘𝐶)‘(2nd𝑥))) = (𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) ↦ ((((Id‘𝐶)‘(2nd𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑥))𝑓)(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥)))))
141136, 140eqtr3id 2785 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩)‘⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩) = (𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) ↦ ((((Id‘𝐶)‘(2nd𝑥))(⟨(1st𝑥), (2nd𝑥)⟩(comp‘𝐶)(2nd𝑥))𝑓)(⟨(1st𝑥), (1st𝑥)⟩(comp‘𝐶)(2nd𝑥))((Id‘𝐶)‘(1st𝑥)))))
14262adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
143142fveq2d 6882 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Homf𝐶)‘𝑥) = ((Homf𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
144143, 90eqtr4di 2789 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Homf𝐶)‘𝑥) = ((1st𝑥)(Homf𝐶)(2nd𝑥)))
14533, 3, 4, 126, 128homfval 17618 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((1st𝑥)(Homf𝐶)(2nd𝑥)) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
146144, 145eqtrd 2771 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Homf𝐶)‘𝑥) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
147146reseq2d 5973 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ( I ↾ ((Homf𝐶)‘𝑥)) = ( I ↾ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))))
148 mptresid 6040 . . . . . . 7 ( I ↾ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥))) = (𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) ↦ 𝑓)
149147, 148eqtrdi 2787 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ( I ↾ ((Homf𝐶)‘𝑥)) = (𝑓 ∈ ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)) ↦ 𝑓))
150135, 141, 1493eqtr4d 2781 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩)‘⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩) = ( I ↾ ((Homf𝐶)‘𝑥)))
151142, 142oveq12d 7411 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (𝑥(2nd𝑀)𝑥) = (⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩))
152142fveq2d 6882 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘(𝑂 ×c 𝐶))‘𝑥) = ((Id‘(𝑂 ×c 𝐶))‘⟨(1st𝑥), (2nd𝑥)⟩))
15327adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → 𝑂 ∈ Cat)
154 eqid 2731 . . . . . . . 8 (Id‘𝑂) = (Id‘𝑂)
15515, 153, 137, 17, 3, 154, 124, 22, 126, 128xpcid 18123 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘(𝑂 ×c 𝐶))‘⟨(1st𝑥), (2nd𝑥)⟩) = ⟨((Id‘𝑂)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩)
15616, 124oppcid 17649 . . . . . . . . . 10 (𝐶 ∈ Cat → (Id‘𝑂) = (Id‘𝐶))
157137, 156syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (Id‘𝑂) = (Id‘𝐶))
158157fveq1d 6880 . . . . . . . 8 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘𝑂)‘(1st𝑥)) = ((Id‘𝐶)‘(1st𝑥)))
159158opeq1d 4872 . . . . . . 7 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ⟨((Id‘𝑂)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩ = ⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩)
160152, 155, 1593eqtrd 2775 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘(𝑂 ×c 𝐶))‘𝑥) = ⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩)
161151, 160fveq12d 6885 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((𝑥(2nd𝑀)𝑥)‘((Id‘(𝑂 ×c 𝐶))‘𝑥)) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑥), (2nd𝑥)⟩)‘⟨((Id‘𝐶)‘(1st𝑥)), ((Id‘𝐶)‘(2nd𝑥))⟩))
16229adantr 481 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → 𝑈𝑉)
16338ffvelcdmda 7071 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Homf𝐶)‘𝑥) ∈ 𝑈)
16430, 23, 162, 163setcid 18018 . . . . 5 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Id‘𝐷)‘((Homf𝐶)‘𝑥)) = ( I ↾ ((Homf𝐶)‘𝑥)))
165150, 161, 1643eqtr4d 2781 . . . 4 ((𝜑𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((𝑥(2nd𝑀)𝑥)‘((Id‘(𝑂 ×c 𝐶))‘𝑥)) = ((Id‘𝐷)‘((Homf𝐶)‘𝑥)))
16623ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝐶 ∈ Cat)
167293ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑈𝑉)
168363ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ran (Homf𝐶) ⊆ 𝑈)
169 simp21 1206 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)))
170169, 55syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑥) ∈ (Base‘𝐶))
171169, 67syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (2nd𝑥) ∈ (Base‘𝐶))
172 simp22 1207 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)))
173172, 51syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑦) ∈ (Base‘𝐶))
174172, 58syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (2nd𝑦) ∈ (Base‘𝐶))
175 simp23 1208 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)))
176 xp1st 7989 . . . . . . 7 (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (1st𝑧) ∈ (Base‘𝐶))
177175, 176syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑧) ∈ (Base‘𝐶))
178 xp2nd 7990 . . . . . . 7 (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (2nd𝑧) ∈ (Base‘𝐶))
179175, 178syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (2nd𝑧) ∈ (Base‘𝐶))
180 simp3l 1201 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦))
18115, 18, 115, 4, 20, 169, 172xpchom 18114 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) = (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
182180, 181eleqtrd 2834 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑓 ∈ (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
183 xp1st 7989 . . . . . . . 8 (𝑓 ∈ (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))) → (1st𝑓) ∈ ((1st𝑥)(Hom ‘𝑂)(1st𝑦)))
184182, 183syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑓) ∈ ((1st𝑥)(Hom ‘𝑂)(1st𝑦)))
185184, 119eleqtrdi 2842 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑓) ∈ ((1st𝑦)(Hom ‘𝐶)(1st𝑥)))
186 xp2nd 7990 . . . . . . 7 (𝑓 ∈ (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))) → (2nd𝑓) ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))
187182, 186syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (2nd𝑓) ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)))
188 simp3r 1202 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))
18915, 18, 115, 4, 20, 172, 175xpchom 18114 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧) = (((1st𝑦)(Hom ‘𝑂)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
190188, 189eleqtrd 2834 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑔 ∈ (((1st𝑦)(Hom ‘𝑂)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
191 xp1st 7989 . . . . . . . 8 (𝑔 ∈ (((1st𝑦)(Hom ‘𝑂)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))) → (1st𝑔) ∈ ((1st𝑦)(Hom ‘𝑂)(1st𝑧)))
192190, 191syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑔) ∈ ((1st𝑦)(Hom ‘𝑂)(1st𝑧)))
1934, 16oppchom 17642 . . . . . . 7 ((1st𝑦)(Hom ‘𝑂)(1st𝑧)) = ((1st𝑧)(Hom ‘𝐶)(1st𝑦))
194192, 193eleqtrdi 2842 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (1st𝑔) ∈ ((1st𝑧)(Hom ‘𝐶)(1st𝑦)))
195 xp2nd 7990 . . . . . . 7 (𝑔 ∈ (((1st𝑦)(Hom ‘𝑂)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))) → (2nd𝑔) ∈ ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧)))
196190, 195syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (2nd𝑔) ∈ ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧)))
1971, 16, 30, 166, 167, 168, 3, 4, 170, 171, 173, 174, 177, 179, 185, 187, 194, 196hofcllem 18193 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔))(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))) = (((1st𝑔)(⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)(2nd𝑔))(⟨((1st𝑥)(Hom ‘𝐶)(2nd𝑥)), ((1st𝑦)(Hom ‘𝐶)(2nd𝑦))⟩(comp‘𝐷)((1st𝑧)(Hom ‘𝐶)(2nd𝑧)))((1st𝑓)(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩)(2nd𝑓))))
198169, 62syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
199 1st2nd2 7996 . . . . . . . . 9 (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
200175, 199syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
201198, 200oveq12d 7411 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑥(2nd𝑀)𝑧) = (⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩))
202172, 79syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
203198, 202opeq12d 4874 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ⟨𝑥, 𝑦⟩ = ⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩)
204203, 200oveq12d 7411 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (⟨𝑥, 𝑦⟩(comp‘(𝑂 ×c 𝐶))𝑧) = (⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑂 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩))
205 1st2nd2 7996 . . . . . . . . . 10 (𝑔 ∈ (((1st𝑦)(Hom ‘𝑂)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
206190, 205syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
207 1st2nd2 7996 . . . . . . . . . 10 (𝑓 ∈ (((1st𝑥)(Hom ‘𝑂)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))) → 𝑓 = ⟨(1st𝑓), (2nd𝑓)⟩)
208182, 207syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → 𝑓 = ⟨(1st𝑓), (2nd𝑓)⟩)
209204, 206, 208oveq123d 7414 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑂 ×c 𝐶))𝑧)𝑓) = (⟨(1st𝑔), (2nd𝑔)⟩(⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑂 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩)⟨(1st𝑓), (2nd𝑓)⟩))
210 eqid 2731 . . . . . . . . 9 (comp‘𝑂) = (comp‘𝑂)
21115, 17, 3, 115, 4, 170, 171, 173, 174, 210, 5, 24, 177, 179, 184, 187, 192, 196xpcco2 18121 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (⟨(1st𝑔), (2nd𝑔)⟩(⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑂 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩)⟨(1st𝑓), (2nd𝑓)⟩) = ⟨((1st𝑔)(⟨(1st𝑥), (1st𝑦)⟩(comp‘𝑂)(1st𝑧))(1st𝑓)), ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))⟩)
2123, 5, 16, 170, 173, 177oppcco 17644 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((1st𝑔)(⟨(1st𝑥), (1st𝑦)⟩(comp‘𝑂)(1st𝑧))(1st𝑓)) = ((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔)))
213212opeq1d 4872 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ⟨((1st𝑔)(⟨(1st𝑥), (1st𝑦)⟩(comp‘𝑂)(1st𝑧))(1st𝑓)), ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))⟩ = ⟨((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔)), ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))⟩)
214209, 211, 2133eqtrd 2775 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑂 ×c 𝐶))𝑧)𝑓) = ⟨((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔)), ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))⟩)
215201, 214fveq12d 6885 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑥(2nd𝑀)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑂 ×c 𝐶))𝑧)𝑓)) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔)), ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))⟩))
216 df-ov 7396 . . . . . 6 (((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔))(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔)), ((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))⟩)
217215, 216eqtr4di 2789 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑥(2nd𝑀)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑂 ×c 𝐶))𝑧)𝑓)) = (((1st𝑓)(⟨(1st𝑧), (1st𝑦)⟩(comp‘𝐶)(1st𝑥))(1st𝑔))(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)((2nd𝑔)(⟨(2nd𝑥), (2nd𝑦)⟩(comp‘𝐶)(2nd𝑧))(2nd𝑓))))
218198fveq2d 6882 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑥) = ((Homf𝐶)‘⟨(1st𝑥), (2nd𝑥)⟩))
219218, 90eqtr4di 2789 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑥) = ((1st𝑥)(Homf𝐶)(2nd𝑥)))
22033, 3, 4, 170, 171homfval 17618 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((1st𝑥)(Homf𝐶)(2nd𝑥)) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
221219, 220eqtrd 2771 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑥) = ((1st𝑥)(Hom ‘𝐶)(2nd𝑥)))
222202fveq2d 6882 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑦) = ((Homf𝐶)‘⟨(1st𝑦), (2nd𝑦)⟩))
223222, 98eqtr4di 2789 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑦) = ((1st𝑦)(Homf𝐶)(2nd𝑦)))
22433, 3, 4, 173, 174homfval 17618 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((1st𝑦)(Homf𝐶)(2nd𝑦)) = ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)))
225223, 224eqtrd 2771 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑦) = ((1st𝑦)(Hom ‘𝐶)(2nd𝑦)))
226221, 225opeq12d 4874 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ⟨((Homf𝐶)‘𝑥), ((Homf𝐶)‘𝑦)⟩ = ⟨((1st𝑥)(Hom ‘𝐶)(2nd𝑥)), ((1st𝑦)(Hom ‘𝐶)(2nd𝑦))⟩)
227200fveq2d 6882 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑧) = ((Homf𝐶)‘⟨(1st𝑧), (2nd𝑧)⟩))
228 df-ov 7396 . . . . . . . . 9 ((1st𝑧)(Homf𝐶)(2nd𝑧)) = ((Homf𝐶)‘⟨(1st𝑧), (2nd𝑧)⟩)
229227, 228eqtr4di 2789 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑧) = ((1st𝑧)(Homf𝐶)(2nd𝑧)))
23033, 3, 4, 177, 179homfval 17618 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((1st𝑧)(Homf𝐶)(2nd𝑧)) = ((1st𝑧)(Hom ‘𝐶)(2nd𝑧)))
231229, 230eqtrd 2771 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((Homf𝐶)‘𝑧) = ((1st𝑧)(Hom ‘𝐶)(2nd𝑧)))
232226, 231oveq12d 7411 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (⟨((Homf𝐶)‘𝑥), ((Homf𝐶)‘𝑦)⟩(comp‘𝐷)((Homf𝐶)‘𝑧)) = (⟨((1st𝑥)(Hom ‘𝐶)(2nd𝑥)), ((1st𝑦)(Hom ‘𝐶)(2nd𝑦))⟩(comp‘𝐷)((1st𝑧)(Hom ‘𝐶)(2nd𝑧))))
233202, 200oveq12d 7411 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑦(2nd𝑀)𝑧) = (⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩))
234233, 206fveq12d 6885 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑦(2nd𝑀)𝑧)‘𝑔) = ((⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩))
235 df-ov 7396 . . . . . . 7 ((1st𝑔)(⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)(2nd𝑔)) = ((⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩)
236234, 235eqtr4di 2789 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑦(2nd𝑀)𝑧)‘𝑔) = ((1st𝑔)(⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)(2nd𝑔)))
237198, 202oveq12d 7411 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (𝑥(2nd𝑀)𝑦) = (⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩))
238237, 208fveq12d 6885 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑥(2nd𝑀)𝑦)‘𝑓) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩)‘⟨(1st𝑓), (2nd𝑓)⟩))
239 df-ov 7396 . . . . . . 7 ((1st𝑓)(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩)(2nd𝑓)) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩)‘⟨(1st𝑓), (2nd𝑓)⟩)
240238, 239eqtr4di 2789 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑥(2nd𝑀)𝑦)‘𝑓) = ((1st𝑓)(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩)(2nd𝑓)))
241232, 236, 240oveq123d 7414 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → (((𝑦(2nd𝑀)𝑧)‘𝑔)(⟨((Homf𝐶)‘𝑥), ((Homf𝐶)‘𝑦)⟩(comp‘𝐷)((Homf𝐶)‘𝑧))((𝑥(2nd𝑀)𝑦)‘𝑓)) = (((1st𝑔)(⟨(1st𝑦), (2nd𝑦)⟩(2nd𝑀)⟨(1st𝑧), (2nd𝑧)⟩)(2nd𝑔))(⟨((1st𝑥)(Hom ‘𝐶)(2nd𝑥)), ((1st𝑦)(Hom ‘𝐶)(2nd𝑦))⟩(comp‘𝐷)((1st𝑧)(Hom ‘𝐶)(2nd𝑧)))((1st𝑓)(⟨(1st𝑥), (2nd𝑥)⟩(2nd𝑀)⟨(1st𝑦), (2nd𝑦)⟩)(2nd𝑓))))
242197, 217, 2413eqtr4d 2781 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑦 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑂 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑂 ×c 𝐶))𝑧))) → ((𝑥(2nd𝑀)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑂 ×c 𝐶))𝑧)𝑓)) = (((𝑦(2nd𝑀)𝑧)‘𝑔)(⟨((Homf𝐶)‘𝑥), ((Homf𝐶)‘𝑦)⟩(comp‘𝐷)((Homf𝐶)‘𝑧))((𝑥(2nd𝑀)𝑦)‘𝑓)))
24318, 19, 20, 21, 22, 23, 24, 25, 28, 32, 41, 48, 123, 165, 242isfuncd 17797 . . 3 (𝜑 → (Homf𝐶)((𝑂 ×c 𝐶) Func 𝐷)(2nd𝑀))
244 df-br 5142 . . 3 ((Homf𝐶)((𝑂 ×c 𝐶) Func 𝐷)(2nd𝑀) ↔ ⟨(Homf𝐶), (2nd𝑀)⟩ ∈ ((𝑂 ×c 𝐶) Func 𝐷))
245243, 244sylib 217 . 2 (𝜑 → ⟨(Homf𝐶), (2nd𝑀)⟩ ∈ ((𝑂 ×c 𝐶) Func 𝐷))
24614, 245eqeltrd 2832 1 (𝜑𝑀 ∈ ((𝑂 ×c 𝐶) Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3060  Vcvv 3473  wss 3944  cop 4628   class class class wbr 5141  cmpt 5224   I cid 5566   × cxp 5667  ran crn 5670  cres 5671   Fn wfn 6527  wf 6528  cfv 6532  (class class class)co 7393  cmpo 7395  1st c1st 7955  2nd c2nd 7956  Basecbs 17126  Hom chom 17190  compcco 17191  Catccat 17590  Idccid 17591  Homf chomf 17592  oppCatcoppc 17637   Func cfunc 17786  SetCatcsetc 18007   ×c cxpc 18102  HomFchof 18183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-tpos 8193  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-map 8805  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-uz 12805  df-fz 13467  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-hom 17203  df-cco 17204  df-cat 17594  df-cid 17595  df-homf 17596  df-oppc 17638  df-func 17790  df-setc 18008  df-xpc 18106  df-hof 18185
This theorem is referenced by:  oppchofcl  18195  oppcyon  18204  yonedalem1  18207  yonedalem21  18208  yonedalem22  18213
  Copyright terms: Public domain W3C validator