Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxp2o Structured version   Visualization version   GIF version

Theorem finxp2o 37422
Description: The value of Cartesian exponentiation at two. (Contributed by ML, 19-Oct-2020.)
Assertion
Ref Expression
finxp2o (𝑈↑↑2o) = (𝑈 × 𝑈)

Proof of Theorem finxp2o
StepHypRef Expression
1 df-2o 8486 . . 3 2o = suc 1o
2 finxpeq2 37410 . . 3 (2o = suc 1o → (𝑈↑↑2o) = (𝑈↑↑suc 1o))
31, 2ax-mp 5 . 2 (𝑈↑↑2o) = (𝑈↑↑suc 1o)
4 1onn 8657 . . 3 1o ∈ ω
5 1n0 8505 . . 3 1o ≠ ∅
6 finxpsuc 37421 . . 3 ((1o ∈ ω ∧ 1o ≠ ∅) → (𝑈↑↑suc 1o) = ((𝑈↑↑1o) × 𝑈))
74, 5, 6mp2an 692 . 2 (𝑈↑↑suc 1o) = ((𝑈↑↑1o) × 𝑈)
8 finxp1o 37415 . . 3 (𝑈↑↑1o) = 𝑈
98xpeq1i 5685 . 2 ((𝑈↑↑1o) × 𝑈) = (𝑈 × 𝑈)
103, 7, 93eqtri 2763 1 (𝑈↑↑2o) = (𝑈 × 𝑈)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wne 2933  c0 4313   × cxp 5657  suc csuc 6359  ωcom 7866  1oc1o 8478  2oc2o 8479  ↑↑cfinxp 37406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-en 8965  df-fin 8968  df-finxp 37407
This theorem is referenced by:  finxp3o  37423
  Copyright terms: Public domain W3C validator