MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsnconst Structured version   Visualization version   GIF version

Theorem mapsnconst 8906
Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s 𝑆 = {𝑋}
mapsncnv.b 𝐵 ∈ V
mapsncnv.x 𝑋 ∈ V
Assertion
Ref Expression
mapsnconst (𝐹 ∈ (𝐵m 𝑆) → 𝐹 = (𝑆 × {(𝐹𝑋)}))

Proof of Theorem mapsnconst
StepHypRef Expression
1 mapsncnv.b . . . 4 𝐵 ∈ V
2 snex 5406 . . . 4 {𝑋} ∈ V
31, 2elmap 8885 . . 3 (𝐹 ∈ (𝐵m {𝑋}) ↔ 𝐹:{𝑋}⟶𝐵)
4 mapsncnv.x . . . . . 6 𝑋 ∈ V
54fsn2 7126 . . . . 5 (𝐹:{𝑋}⟶𝐵 ↔ ((𝐹𝑋) ∈ 𝐵𝐹 = {⟨𝑋, (𝐹𝑋)⟩}))
65simprbi 496 . . . 4 (𝐹:{𝑋}⟶𝐵𝐹 = {⟨𝑋, (𝐹𝑋)⟩})
7 mapsncnv.s . . . . . 6 𝑆 = {𝑋}
87xpeq1i 5680 . . . . 5 (𝑆 × {(𝐹𝑋)}) = ({𝑋} × {(𝐹𝑋)})
9 fvex 6889 . . . . . 6 (𝐹𝑋) ∈ V
104, 9xpsn 7131 . . . . 5 ({𝑋} × {(𝐹𝑋)}) = {⟨𝑋, (𝐹𝑋)⟩}
118, 10eqtr2i 2759 . . . 4 {⟨𝑋, (𝐹𝑋)⟩} = (𝑆 × {(𝐹𝑋)})
126, 11eqtrdi 2786 . . 3 (𝐹:{𝑋}⟶𝐵𝐹 = (𝑆 × {(𝐹𝑋)}))
133, 12sylbi 217 . 2 (𝐹 ∈ (𝐵m {𝑋}) → 𝐹 = (𝑆 × {(𝐹𝑋)}))
147oveq2i 7416 . 2 (𝐵m 𝑆) = (𝐵m {𝑋})
1513, 14eleq2s 2852 1 (𝐹 ∈ (𝐵m 𝑆) → 𝐹 = (𝑆 × {(𝐹𝑋)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  {csn 4601  cop 4607   × cxp 5652  wf 6527  cfv 6531  (class class class)co 7405  m cmap 8840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842
This theorem is referenced by:  mapsncnv  8907  fvcoe1  22143  coe1mul2lem1  22204  coe1mul2  22206  0prjspnrel  42650
  Copyright terms: Public domain W3C validator