![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapsnconst | Structured version Visualization version GIF version |
Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
Ref | Expression |
---|---|
mapsncnv.s | ⊢ 𝑆 = {𝑋} |
mapsncnv.b | ⊢ 𝐵 ∈ V |
mapsncnv.x | ⊢ 𝑋 ∈ V |
Ref | Expression |
---|---|
mapsnconst | ⊢ (𝐹 ∈ (𝐵 ↑m 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapsncnv.b | . . . 4 ⊢ 𝐵 ∈ V | |
2 | snex 5431 | . . . 4 ⊢ {𝑋} ∈ V | |
3 | 1, 2 | elmap 8864 | . . 3 ⊢ (𝐹 ∈ (𝐵 ↑m {𝑋}) ↔ 𝐹:{𝑋}⟶𝐵) |
4 | mapsncnv.x | . . . . . 6 ⊢ 𝑋 ∈ V | |
5 | 4 | fsn2 7133 | . . . . 5 ⊢ (𝐹:{𝑋}⟶𝐵 ↔ ((𝐹‘𝑋) ∈ 𝐵 ∧ 𝐹 = {⟨𝑋, (𝐹‘𝑋)⟩})) |
6 | 5 | simprbi 497 | . . . 4 ⊢ (𝐹:{𝑋}⟶𝐵 → 𝐹 = {⟨𝑋, (𝐹‘𝑋)⟩}) |
7 | mapsncnv.s | . . . . . 6 ⊢ 𝑆 = {𝑋} | |
8 | 7 | xpeq1i 5702 | . . . . 5 ⊢ (𝑆 × {(𝐹‘𝑋)}) = ({𝑋} × {(𝐹‘𝑋)}) |
9 | fvex 6904 | . . . . . 6 ⊢ (𝐹‘𝑋) ∈ V | |
10 | 4, 9 | xpsn 7138 | . . . . 5 ⊢ ({𝑋} × {(𝐹‘𝑋)}) = {⟨𝑋, (𝐹‘𝑋)⟩} |
11 | 8, 10 | eqtr2i 2761 | . . . 4 ⊢ {⟨𝑋, (𝐹‘𝑋)⟩} = (𝑆 × {(𝐹‘𝑋)}) |
12 | 6, 11 | eqtrdi 2788 | . . 3 ⊢ (𝐹:{𝑋}⟶𝐵 → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
13 | 3, 12 | sylbi 216 | . 2 ⊢ (𝐹 ∈ (𝐵 ↑m {𝑋}) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
14 | 7 | oveq2i 7419 | . 2 ⊢ (𝐵 ↑m 𝑆) = (𝐵 ↑m {𝑋}) |
15 | 13, 14 | eleq2s 2851 | 1 ⊢ (𝐹 ∈ (𝐵 ↑m 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 {csn 4628 ⟨cop 4634 × cxp 5674 ⟶wf 6539 ‘cfv 6543 (class class class)co 7408 ↑m cmap 8819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-map 8821 |
This theorem is referenced by: mapsncnv 8886 fvcoe1 21730 coe1mul2lem1 21788 coe1mul2 21790 0prjspnrel 41370 |
Copyright terms: Public domain | W3C validator |