MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsnconst Structured version   Visualization version   GIF version

Theorem mapsnconst 8826
Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s 𝑆 = {𝑋}
mapsncnv.b 𝐵 ∈ V
mapsncnv.x 𝑋 ∈ V
Assertion
Ref Expression
mapsnconst (𝐹 ∈ (𝐵m 𝑆) → 𝐹 = (𝑆 × {(𝐹𝑋)}))

Proof of Theorem mapsnconst
StepHypRef Expression
1 mapsncnv.b . . . 4 𝐵 ∈ V
2 snex 5378 . . . 4 {𝑋} ∈ V
31, 2elmap 8805 . . 3 (𝐹 ∈ (𝐵m {𝑋}) ↔ 𝐹:{𝑋}⟶𝐵)
4 mapsncnv.x . . . . . 6 𝑋 ∈ V
54fsn2 7074 . . . . 5 (𝐹:{𝑋}⟶𝐵 ↔ ((𝐹𝑋) ∈ 𝐵𝐹 = {⟨𝑋, (𝐹𝑋)⟩}))
65simprbi 496 . . . 4 (𝐹:{𝑋}⟶𝐵𝐹 = {⟨𝑋, (𝐹𝑋)⟩})
7 mapsncnv.s . . . . . 6 𝑆 = {𝑋}
87xpeq1i 5649 . . . . 5 (𝑆 × {(𝐹𝑋)}) = ({𝑋} × {(𝐹𝑋)})
9 fvex 6839 . . . . . 6 (𝐹𝑋) ∈ V
104, 9xpsn 7079 . . . . 5 ({𝑋} × {(𝐹𝑋)}) = {⟨𝑋, (𝐹𝑋)⟩}
118, 10eqtr2i 2753 . . . 4 {⟨𝑋, (𝐹𝑋)⟩} = (𝑆 × {(𝐹𝑋)})
126, 11eqtrdi 2780 . . 3 (𝐹:{𝑋}⟶𝐵𝐹 = (𝑆 × {(𝐹𝑋)}))
133, 12sylbi 217 . 2 (𝐹 ∈ (𝐵m {𝑋}) → 𝐹 = (𝑆 × {(𝐹𝑋)}))
147oveq2i 7364 . 2 (𝐵m 𝑆) = (𝐵m {𝑋})
1513, 14eleq2s 2846 1 (𝐹 ∈ (𝐵m 𝑆) → 𝐹 = (𝑆 × {(𝐹𝑋)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  {csn 4579  cop 4585   × cxp 5621  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762
This theorem is referenced by:  mapsncnv  8827  fvcoe1  22108  coe1mul2lem1  22169  coe1mul2  22171  0prjspnrel  42600
  Copyright terms: Public domain W3C validator