| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapsnconst | Structured version Visualization version GIF version | ||
| Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapsncnv.s | ⊢ 𝑆 = {𝑋} |
| mapsncnv.b | ⊢ 𝐵 ∈ V |
| mapsncnv.x | ⊢ 𝑋 ∈ V |
| Ref | Expression |
|---|---|
| mapsnconst | ⊢ (𝐹 ∈ (𝐵 ↑m 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapsncnv.b | . . . 4 ⊢ 𝐵 ∈ V | |
| 2 | snex 5374 | . . . 4 ⊢ {𝑋} ∈ V | |
| 3 | 1, 2 | elmap 8795 | . . 3 ⊢ (𝐹 ∈ (𝐵 ↑m {𝑋}) ↔ 𝐹:{𝑋}⟶𝐵) |
| 4 | mapsncnv.x | . . . . . 6 ⊢ 𝑋 ∈ V | |
| 5 | 4 | fsn2 7069 | . . . . 5 ⊢ (𝐹:{𝑋}⟶𝐵 ↔ ((𝐹‘𝑋) ∈ 𝐵 ∧ 𝐹 = {〈𝑋, (𝐹‘𝑋)〉})) |
| 6 | 5 | simprbi 496 | . . . 4 ⊢ (𝐹:{𝑋}⟶𝐵 → 𝐹 = {〈𝑋, (𝐹‘𝑋)〉}) |
| 7 | mapsncnv.s | . . . . . 6 ⊢ 𝑆 = {𝑋} | |
| 8 | 7 | xpeq1i 5642 | . . . . 5 ⊢ (𝑆 × {(𝐹‘𝑋)}) = ({𝑋} × {(𝐹‘𝑋)}) |
| 9 | fvex 6835 | . . . . . 6 ⊢ (𝐹‘𝑋) ∈ V | |
| 10 | 4, 9 | xpsn 7074 | . . . . 5 ⊢ ({𝑋} × {(𝐹‘𝑋)}) = {〈𝑋, (𝐹‘𝑋)〉} |
| 11 | 8, 10 | eqtr2i 2755 | . . . 4 ⊢ {〈𝑋, (𝐹‘𝑋)〉} = (𝑆 × {(𝐹‘𝑋)}) |
| 12 | 6, 11 | eqtrdi 2782 | . . 3 ⊢ (𝐹:{𝑋}⟶𝐵 → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
| 13 | 3, 12 | sylbi 217 | . 2 ⊢ (𝐹 ∈ (𝐵 ↑m {𝑋}) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
| 14 | 7 | oveq2i 7357 | . 2 ⊢ (𝐵 ↑m 𝑆) = (𝐵 ↑m {𝑋}) |
| 15 | 13, 14 | eleq2s 2849 | 1 ⊢ (𝐹 ∈ (𝐵 ↑m 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4576 〈cop 4582 × cxp 5614 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 |
| This theorem is referenced by: mapsncnv 8817 fvcoe1 22118 coe1mul2lem1 22179 coe1mul2 22181 0prjspnrel 42659 |
| Copyright terms: Public domain | W3C validator |