Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mapsnconst | Structured version Visualization version GIF version |
Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
Ref | Expression |
---|---|
mapsncnv.s | ⊢ 𝑆 = {𝑋} |
mapsncnv.b | ⊢ 𝐵 ∈ V |
mapsncnv.x | ⊢ 𝑋 ∈ V |
Ref | Expression |
---|---|
mapsnconst | ⊢ (𝐹 ∈ (𝐵 ↑m 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapsncnv.b | . . . 4 ⊢ 𝐵 ∈ V | |
2 | snex 5354 | . . . 4 ⊢ {𝑋} ∈ V | |
3 | 1, 2 | elmap 8659 | . . 3 ⊢ (𝐹 ∈ (𝐵 ↑m {𝑋}) ↔ 𝐹:{𝑋}⟶𝐵) |
4 | mapsncnv.x | . . . . . 6 ⊢ 𝑋 ∈ V | |
5 | 4 | fsn2 7008 | . . . . 5 ⊢ (𝐹:{𝑋}⟶𝐵 ↔ ((𝐹‘𝑋) ∈ 𝐵 ∧ 𝐹 = {〈𝑋, (𝐹‘𝑋)〉})) |
6 | 5 | simprbi 497 | . . . 4 ⊢ (𝐹:{𝑋}⟶𝐵 → 𝐹 = {〈𝑋, (𝐹‘𝑋)〉}) |
7 | mapsncnv.s | . . . . . 6 ⊢ 𝑆 = {𝑋} | |
8 | 7 | xpeq1i 5615 | . . . . 5 ⊢ (𝑆 × {(𝐹‘𝑋)}) = ({𝑋} × {(𝐹‘𝑋)}) |
9 | fvex 6787 | . . . . . 6 ⊢ (𝐹‘𝑋) ∈ V | |
10 | 4, 9 | xpsn 7013 | . . . . 5 ⊢ ({𝑋} × {(𝐹‘𝑋)}) = {〈𝑋, (𝐹‘𝑋)〉} |
11 | 8, 10 | eqtr2i 2767 | . . . 4 ⊢ {〈𝑋, (𝐹‘𝑋)〉} = (𝑆 × {(𝐹‘𝑋)}) |
12 | 6, 11 | eqtrdi 2794 | . . 3 ⊢ (𝐹:{𝑋}⟶𝐵 → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
13 | 3, 12 | sylbi 216 | . 2 ⊢ (𝐹 ∈ (𝐵 ↑m {𝑋}) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
14 | 7 | oveq2i 7286 | . 2 ⊢ (𝐵 ↑m 𝑆) = (𝐵 ↑m {𝑋}) |
15 | 13, 14 | eleq2s 2857 | 1 ⊢ (𝐹 ∈ (𝐵 ↑m 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 〈cop 4567 × cxp 5587 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 |
This theorem is referenced by: mapsncnv 8681 fvcoe1 21378 coe1mul2lem1 21438 coe1mul2 21440 0prjspnrel 40464 |
Copyright terms: Public domain | W3C validator |