![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapsnconst | Structured version Visualization version GIF version |
Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
Ref | Expression |
---|---|
mapsncnv.s | ⊢ 𝑆 = {𝑋} |
mapsncnv.b | ⊢ 𝐵 ∈ V |
mapsncnv.x | ⊢ 𝑋 ∈ V |
Ref | Expression |
---|---|
mapsnconst | ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapsncnv.b | . . . 4 ⊢ 𝐵 ∈ V | |
2 | snex 5140 | . . . 4 ⊢ {𝑋} ∈ V | |
3 | 1, 2 | elmap 8169 | . . 3 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 {𝑋}) ↔ 𝐹:{𝑋}⟶𝐵) |
4 | mapsncnv.x | . . . . . 6 ⊢ 𝑋 ∈ V | |
5 | 4 | fsn2 6668 | . . . . 5 ⊢ (𝐹:{𝑋}⟶𝐵 ↔ ((𝐹‘𝑋) ∈ 𝐵 ∧ 𝐹 = {〈𝑋, (𝐹‘𝑋)〉})) |
6 | 5 | simprbi 492 | . . . 4 ⊢ (𝐹:{𝑋}⟶𝐵 → 𝐹 = {〈𝑋, (𝐹‘𝑋)〉}) |
7 | mapsncnv.s | . . . . . 6 ⊢ 𝑆 = {𝑋} | |
8 | 7 | xpeq1i 5381 | . . . . 5 ⊢ (𝑆 × {(𝐹‘𝑋)}) = ({𝑋} × {(𝐹‘𝑋)}) |
9 | fvex 6459 | . . . . . 6 ⊢ (𝐹‘𝑋) ∈ V | |
10 | 4, 9 | xpsn 6672 | . . . . 5 ⊢ ({𝑋} × {(𝐹‘𝑋)}) = {〈𝑋, (𝐹‘𝑋)〉} |
11 | 8, 10 | eqtr2i 2802 | . . . 4 ⊢ {〈𝑋, (𝐹‘𝑋)〉} = (𝑆 × {(𝐹‘𝑋)}) |
12 | 6, 11 | syl6eq 2829 | . . 3 ⊢ (𝐹:{𝑋}⟶𝐵 → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
13 | 3, 12 | sylbi 209 | . 2 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 {𝑋}) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
14 | 7 | oveq2i 6933 | . 2 ⊢ (𝐵 ↑𝑚 𝑆) = (𝐵 ↑𝑚 {𝑋}) |
15 | 13, 14 | eleq2s 2876 | 1 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2106 Vcvv 3397 {csn 4397 〈cop 4403 × cxp 5353 ⟶wf 6131 ‘cfv 6135 (class class class)co 6922 ↑𝑚 cmap 8140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-map 8142 |
This theorem is referenced by: mapsncnv 8190 fvcoe1 19973 coe1mul2lem1 20033 coe1mul2 20035 |
Copyright terms: Public domain | W3C validator |