| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapsnconst | Structured version Visualization version GIF version | ||
| Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapsncnv.s | ⊢ 𝑆 = {𝑋} |
| mapsncnv.b | ⊢ 𝐵 ∈ V |
| mapsncnv.x | ⊢ 𝑋 ∈ V |
| Ref | Expression |
|---|---|
| mapsnconst | ⊢ (𝐹 ∈ (𝐵 ↑m 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapsncnv.b | . . . 4 ⊢ 𝐵 ∈ V | |
| 2 | snex 5391 | . . . 4 ⊢ {𝑋} ∈ V | |
| 3 | 1, 2 | elmap 8844 | . . 3 ⊢ (𝐹 ∈ (𝐵 ↑m {𝑋}) ↔ 𝐹:{𝑋}⟶𝐵) |
| 4 | mapsncnv.x | . . . . . 6 ⊢ 𝑋 ∈ V | |
| 5 | 4 | fsn2 7108 | . . . . 5 ⊢ (𝐹:{𝑋}⟶𝐵 ↔ ((𝐹‘𝑋) ∈ 𝐵 ∧ 𝐹 = {〈𝑋, (𝐹‘𝑋)〉})) |
| 6 | 5 | simprbi 496 | . . . 4 ⊢ (𝐹:{𝑋}⟶𝐵 → 𝐹 = {〈𝑋, (𝐹‘𝑋)〉}) |
| 7 | mapsncnv.s | . . . . . 6 ⊢ 𝑆 = {𝑋} | |
| 8 | 7 | xpeq1i 5664 | . . . . 5 ⊢ (𝑆 × {(𝐹‘𝑋)}) = ({𝑋} × {(𝐹‘𝑋)}) |
| 9 | fvex 6871 | . . . . . 6 ⊢ (𝐹‘𝑋) ∈ V | |
| 10 | 4, 9 | xpsn 7113 | . . . . 5 ⊢ ({𝑋} × {(𝐹‘𝑋)}) = {〈𝑋, (𝐹‘𝑋)〉} |
| 11 | 8, 10 | eqtr2i 2753 | . . . 4 ⊢ {〈𝑋, (𝐹‘𝑋)〉} = (𝑆 × {(𝐹‘𝑋)}) |
| 12 | 6, 11 | eqtrdi 2780 | . . 3 ⊢ (𝐹:{𝑋}⟶𝐵 → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
| 13 | 3, 12 | sylbi 217 | . 2 ⊢ (𝐹 ∈ (𝐵 ↑m {𝑋}) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
| 14 | 7 | oveq2i 7398 | . 2 ⊢ (𝐵 ↑m 𝑆) = (𝐵 ↑m {𝑋}) |
| 15 | 13, 14 | eleq2s 2846 | 1 ⊢ (𝐹 ∈ (𝐵 ↑m 𝑆) → 𝐹 = (𝑆 × {(𝐹‘𝑋)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 〈cop 4595 × cxp 5636 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 |
| This theorem is referenced by: mapsncnv 8866 fvcoe1 22092 coe1mul2lem1 22153 coe1mul2 22155 0prjspnrel 42615 |
| Copyright terms: Public domain | W3C validator |