Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itscnhlinecirc02plem3 Structured version   Visualization version   GIF version

Theorem itscnhlinecirc02plem3 48767
Description: Lemma 3 for itscnhlinecirc02p 48768. (Contributed by AV, 10-Mar-2023.)
Hypotheses
Ref Expression
itscnhlinecirc02p.i 𝐼 = {1, 2}
itscnhlinecirc02p.e 𝐸 = (ℝ^‘𝐼)
itscnhlinecirc02p.p 𝑃 = (ℝ ↑m 𝐼)
itscnhlinecirc02p.s 𝑆 = (Sphere‘𝐸)
itscnhlinecirc02p.0 0 = (𝐼 × {0})
itscnhlinecirc02p.l 𝐿 = (LineM𝐸)
itscnhlinecirc02p.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
itscnhlinecirc02plem3 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))

Proof of Theorem itscnhlinecirc02plem3
StepHypRef Expression
1 itscnhlinecirc02p.i . . . . . 6 𝐼 = {1, 2}
2 itscnhlinecirc02p.p . . . . . 6 𝑃 = (ℝ ↑m 𝐼)
31, 2rrx2pxel 48694 . . . . 5 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
41, 2rrx2pyel 48695 . . . . 5 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
53, 4jca 511 . . . 4 (𝑋𝑃 → ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))
653ad2ant1 1133 . . 3 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))
76adantr 480 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))
81, 2rrx2pxel 48694 . . . . 5 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
91, 2rrx2pyel 48695 . . . . 5 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
108, 9jca 511 . . . 4 (𝑌𝑃 → ((𝑌‘1) ∈ ℝ ∧ (𝑌‘2) ∈ ℝ))
11103ad2ant2 1134 . . 3 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((𝑌‘1) ∈ ℝ ∧ (𝑌‘2) ∈ ℝ))
1211adantr 480 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑌‘1) ∈ ℝ ∧ (𝑌‘2) ∈ ℝ))
13 simpl3 1194 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋‘2) ≠ (𝑌‘2))
14 rpre 12938 . . . 4 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
1514adantr 480 . . 3 ((𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅) → 𝑅 ∈ ℝ)
1615adantl 481 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 𝑅 ∈ ℝ)
17 simpl1 1192 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → 𝑋𝑃)
18 itscnhlinecirc02p.e . . . . . . . 8 𝐸 = (ℝ^‘𝐼)
19 2nn0 12437 . . . . . . . . . 10 2 ∈ ℕ0
20 eqid 2729 . . . . . . . . . . 11 (𝔼hil‘2) = (𝔼hil‘2)
2120ehlval 25348 . . . . . . . . . 10 (2 ∈ ℕ0 → (𝔼hil‘2) = (ℝ^‘(1...2)))
2219, 21ax-mp 5 . . . . . . . . 9 (𝔼hil‘2) = (ℝ^‘(1...2))
23 fz12pr 13520 . . . . . . . . . . 11 (1...2) = {1, 2}
2423, 1eqtr4i 2755 . . . . . . . . . 10 (1...2) = 𝐼
2524fveq2i 6843 . . . . . . . . 9 (ℝ^‘(1...2)) = (ℝ^‘𝐼)
2622, 25eqtri 2752 . . . . . . . 8 (𝔼hil‘2) = (ℝ^‘𝐼)
2718, 26eqtr4i 2755 . . . . . . 7 𝐸 = (𝔼hil‘2)
281oveq2i 7380 . . . . . . . 8 (ℝ ↑m 𝐼) = (ℝ ↑m {1, 2})
292, 28eqtri 2752 . . . . . . 7 𝑃 = (ℝ ↑m {1, 2})
30 itscnhlinecirc02p.d . . . . . . 7 𝐷 = (dist‘𝐸)
31 itscnhlinecirc02p.0 . . . . . . . 8 0 = (𝐼 × {0})
321xpeq1i 5657 . . . . . . . 8 (𝐼 × {0}) = ({1, 2} × {0})
3331, 32eqtri 2752 . . . . . . 7 0 = ({1, 2} × {0})
3427, 29, 30, 33ehl2eudisval0 48708 . . . . . 6 (𝑋𝑃 → (𝑋𝐷 0 ) = (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))))
3517, 34syl 17 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → (𝑋𝐷 0 ) = (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))))
3635breq1d 5112 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 ↔ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅))
37 rpge0 12943 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
3814, 37sqrtsqd 15363 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (√‘(𝑅↑2)) = 𝑅)
3938eqcomd 2735 . . . . . . . . 9 (𝑅 ∈ ℝ+𝑅 = (√‘(𝑅↑2)))
4039adantl 481 . . . . . . . 8 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → 𝑅 = (√‘(𝑅↑2)))
4140breq2d 5114 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → ((√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅 ↔ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < (√‘(𝑅↑2))))
4241biimpa 476 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < (√‘(𝑅↑2)))
4317, 3syl 17 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → (𝑋‘1) ∈ ℝ)
4443adantr 480 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (𝑋‘1) ∈ ℝ)
4544resqcld 14068 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → ((𝑋‘1)↑2) ∈ ℝ)
4617, 4syl 17 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → (𝑋‘2) ∈ ℝ)
4746adantr 480 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (𝑋‘2) ∈ ℝ)
4847resqcld 14068 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → ((𝑋‘2)↑2) ∈ ℝ)
4945, 48readdcld 11181 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) ∈ ℝ)
5044sqge0d 14080 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 0 ≤ ((𝑋‘1)↑2))
5147sqge0d 14080 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 0 ≤ ((𝑋‘2)↑2))
5245, 48, 50, 51addge0d 11732 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 0 ≤ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)))
5314adantl 481 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈ ℝ)
5453adantr 480 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 𝑅 ∈ ℝ)
5554resqcld 14068 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (𝑅↑2) ∈ ℝ)
5654sqge0d 14080 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 0 ≤ (𝑅↑2))
5749, 52, 55, 56sqrtltd 15371 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → ((((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2) ↔ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < (√‘(𝑅↑2))))
5842, 57mpbird 257 . . . . 5 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2))
5958ex 412 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → ((√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅 → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
6036, 59sylbid 240 . . 3 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
6160impr 454 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2))
62 eqid 2729 . . 3 ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑋‘1))
63 eqid 2729 . . 3 ((𝑋‘2) − (𝑌‘2)) = ((𝑋‘2) − (𝑌‘2))
64 eqid 2729 . . 3 (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
6562, 63, 64itscnhlinecirc02plem2 48766 . 2 (((((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ) ∧ ((𝑌‘1) ∈ ℝ ∧ (𝑌‘2) ∈ ℝ) ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ ∧ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2))) → 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))
667, 12, 13, 16, 61, 65syl32anc 1380 1 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {csn 4585  {cpr 4587   class class class wbr 5102   × cxp 5629  cfv 6499  (class class class)co 7369  m cmap 8776  cr 11045  0cc0 11046  1c1 11047   + caddc 11049   · cmul 11051   < clt 11186  cmin 11383  -cneg 11384  2c2 12219  4c4 12221  0cn0 12420  +crp 12929  ...cfz 13446  cexp 14004  csqrt 15176  distcds 17206  ℝ^crrx 25317  𝔼hilcehl 25318  LineMcline 48710  Spherecsph 48711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9572  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124  ax-addf 11125  ax-mulf 11126
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-z 12508  df-dec 12628  df-uz 12772  df-rp 12930  df-fz 13447  df-fzo 13594  df-seq 13945  df-exp 14005  df-hash 14274  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15431  df-sum 15630  df-struct 17094  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-0g 17381  df-gsum 17382  df-prds 17387  df-pws 17389  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-ghm 19128  df-cntz 19232  df-cmn 19697  df-abl 19698  df-mgp 20062  df-rng 20074  df-ur 20103  df-ring 20156  df-cring 20157  df-oppr 20258  df-dvdsr 20278  df-unit 20279  df-invr 20309  df-dvr 20322  df-rhm 20393  df-subrng 20467  df-subrg 20491  df-drng 20652  df-field 20653  df-staf 20760  df-srng 20761  df-lmod 20801  df-lss 20871  df-sra 21113  df-rgmod 21114  df-cnfld 21298  df-refld 21548  df-dsmm 21675  df-frlm 21690  df-nm 24504  df-tng 24506  df-tcph 25103  df-rrx 25319  df-ehl 25320
This theorem is referenced by:  itscnhlinecirc02p  48768
  Copyright terms: Public domain W3C validator