Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itscnhlinecirc02plem3 Structured version   Visualization version   GIF version

Theorem itscnhlinecirc02plem3 44960
Description: Lemma 3 for itscnhlinecirc02p 44961. (Contributed by AV, 10-Mar-2023.)
Hypotheses
Ref Expression
itscnhlinecirc02p.i 𝐼 = {1, 2}
itscnhlinecirc02p.e 𝐸 = (ℝ^‘𝐼)
itscnhlinecirc02p.p 𝑃 = (ℝ ↑m 𝐼)
itscnhlinecirc02p.s 𝑆 = (Sphere‘𝐸)
itscnhlinecirc02p.0 0 = (𝐼 × {0})
itscnhlinecirc02p.l 𝐿 = (LineM𝐸)
itscnhlinecirc02p.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
itscnhlinecirc02plem3 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))

Proof of Theorem itscnhlinecirc02plem3
StepHypRef Expression
1 itscnhlinecirc02p.i . . . . . 6 𝐼 = {1, 2}
2 itscnhlinecirc02p.p . . . . . 6 𝑃 = (ℝ ↑m 𝐼)
31, 2rrx2pxel 44887 . . . . 5 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
41, 2rrx2pyel 44888 . . . . 5 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
53, 4jca 515 . . . 4 (𝑋𝑃 → ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))
653ad2ant1 1130 . . 3 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))
76adantr 484 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))
81, 2rrx2pxel 44887 . . . . 5 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
91, 2rrx2pyel 44888 . . . . 5 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
108, 9jca 515 . . . 4 (𝑌𝑃 → ((𝑌‘1) ∈ ℝ ∧ (𝑌‘2) ∈ ℝ))
11103ad2ant2 1131 . . 3 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((𝑌‘1) ∈ ℝ ∧ (𝑌‘2) ∈ ℝ))
1211adantr 484 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑌‘1) ∈ ℝ ∧ (𝑌‘2) ∈ ℝ))
13 simpl3 1190 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋‘2) ≠ (𝑌‘2))
14 rpre 12375 . . . 4 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
1514adantr 484 . . 3 ((𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅) → 𝑅 ∈ ℝ)
1615adantl 485 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 𝑅 ∈ ℝ)
17 simpl1 1188 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → 𝑋𝑃)
18 itscnhlinecirc02p.e . . . . . . . 8 𝐸 = (ℝ^‘𝐼)
19 2nn0 11892 . . . . . . . . . 10 2 ∈ ℕ0
20 eqid 2821 . . . . . . . . . . 11 (𝔼hil‘2) = (𝔼hil‘2)
2120ehlval 23996 . . . . . . . . . 10 (2 ∈ ℕ0 → (𝔼hil‘2) = (ℝ^‘(1...2)))
2219, 21ax-mp 5 . . . . . . . . 9 (𝔼hil‘2) = (ℝ^‘(1...2))
23 fz12pr 12947 . . . . . . . . . . 11 (1...2) = {1, 2}
2423, 1eqtr4i 2847 . . . . . . . . . 10 (1...2) = 𝐼
2524fveq2i 6646 . . . . . . . . 9 (ℝ^‘(1...2)) = (ℝ^‘𝐼)
2622, 25eqtri 2844 . . . . . . . 8 (𝔼hil‘2) = (ℝ^‘𝐼)
2718, 26eqtr4i 2847 . . . . . . 7 𝐸 = (𝔼hil‘2)
281oveq2i 7141 . . . . . . . 8 (ℝ ↑m 𝐼) = (ℝ ↑m {1, 2})
292, 28eqtri 2844 . . . . . . 7 𝑃 = (ℝ ↑m {1, 2})
30 itscnhlinecirc02p.d . . . . . . 7 𝐷 = (dist‘𝐸)
31 itscnhlinecirc02p.0 . . . . . . . 8 0 = (𝐼 × {0})
321xpeq1i 5554 . . . . . . . 8 (𝐼 × {0}) = ({1, 2} × {0})
3331, 32eqtri 2844 . . . . . . 7 0 = ({1, 2} × {0})
3427, 29, 30, 33ehl2eudisval0 44901 . . . . . 6 (𝑋𝑃 → (𝑋𝐷 0 ) = (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))))
3517, 34syl 17 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → (𝑋𝐷 0 ) = (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))))
3635breq1d 5049 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 ↔ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅))
37 rpge0 12380 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
3814, 37sqrtsqd 14758 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (√‘(𝑅↑2)) = 𝑅)
3938eqcomd 2827 . . . . . . . . 9 (𝑅 ∈ ℝ+𝑅 = (√‘(𝑅↑2)))
4039adantl 485 . . . . . . . 8 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → 𝑅 = (√‘(𝑅↑2)))
4140breq2d 5051 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → ((√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅 ↔ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < (√‘(𝑅↑2))))
4241biimpa 480 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < (√‘(𝑅↑2)))
4317, 3syl 17 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → (𝑋‘1) ∈ ℝ)
4443adantr 484 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (𝑋‘1) ∈ ℝ)
4544resqcld 13595 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → ((𝑋‘1)↑2) ∈ ℝ)
4617, 4syl 17 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → (𝑋‘2) ∈ ℝ)
4746adantr 484 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (𝑋‘2) ∈ ℝ)
4847resqcld 13595 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → ((𝑋‘2)↑2) ∈ ℝ)
4945, 48readdcld 10647 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) ∈ ℝ)
5044sqge0d 13596 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 0 ≤ ((𝑋‘1)↑2))
5147sqge0d 13596 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 0 ≤ ((𝑋‘2)↑2))
5245, 48, 50, 51addge0d 11193 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 0 ≤ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)))
5314adantl 485 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈ ℝ)
5453adantr 484 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 𝑅 ∈ ℝ)
5554resqcld 13595 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (𝑅↑2) ∈ ℝ)
5654sqge0d 13596 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 0 ≤ (𝑅↑2))
5749, 52, 55, 56sqrtltd 14766 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → ((((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2) ↔ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < (√‘(𝑅↑2))))
5842, 57mpbird 260 . . . . 5 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2))
5958ex 416 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → ((√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅 → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
6036, 59sylbid 243 . . 3 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
6160impr 458 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2))
62 eqid 2821 . . 3 ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑋‘1))
63 eqid 2821 . . 3 ((𝑋‘2) − (𝑌‘2)) = ((𝑋‘2) − (𝑌‘2))
64 eqid 2821 . . 3 (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
6562, 63, 64itscnhlinecirc02plem2 44959 . 2 (((((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ) ∧ ((𝑌‘1) ∈ ℝ ∧ (𝑌‘2) ∈ ℝ) ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ ∧ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2))) → 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))
667, 12, 13, 16, 61, 65syl32anc 1375 1 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3007  {csn 4540  {cpr 4542   class class class wbr 5039   × cxp 5526  cfv 6328  (class class class)co 7130  m cmap 8381  cr 10513  0cc0 10514  1c1 10515   + caddc 10517   · cmul 10519   < clt 10652  cmin 10847  -cneg 10848  2c2 11670  4c4 11672  0cn0 11875  +crp 12367  ...cfz 12875  cexp 13413  csqrt 14571  distcds 16552  ℝ^crrx 23965  𝔼hilcehl 23966  LineMcline 44903  Spherecsph 44904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592  ax-addf 10593  ax-mulf 10594
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-of 7384  df-om 7556  df-1st 7664  df-2nd 7665  df-supp 7806  df-tpos 7867  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-map 8383  df-ixp 8437  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-fsupp 8810  df-sup 8882  df-oi 8950  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-dec 12077  df-uz 12222  df-rp 12368  df-fz 12876  df-fzo 13017  df-seq 13353  df-exp 13414  df-hash 13675  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-clim 14824  df-sum 15022  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-plusg 16556  df-mulr 16557  df-starv 16558  df-sca 16559  df-vsca 16560  df-ip 16561  df-tset 16562  df-ple 16563  df-ds 16565  df-unif 16566  df-hom 16567  df-cco 16568  df-0g 16693  df-gsum 16694  df-prds 16699  df-pws 16701  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-mhm 17934  df-grp 18084  df-minusg 18085  df-sbg 18086  df-subg 18254  df-ghm 18334  df-cntz 18425  df-cmn 18886  df-abl 18887  df-mgp 19218  df-ur 19230  df-ring 19277  df-cring 19278  df-oppr 19351  df-dvdsr 19369  df-unit 19370  df-invr 19400  df-dvr 19411  df-rnghom 19445  df-drng 19479  df-field 19480  df-subrg 19508  df-staf 19591  df-srng 19592  df-lmod 19611  df-lss 19679  df-sra 19919  df-rgmod 19920  df-cnfld 20521  df-refld 20724  df-dsmm 20851  df-frlm 20866  df-nm 23167  df-tng 23169  df-tcph 23752  df-rrx 23967  df-ehl 23968
This theorem is referenced by:  itscnhlinecirc02p  44961
  Copyright terms: Public domain W3C validator