Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itscnhlinecirc02plem3 Structured version   Visualization version   GIF version

Theorem itscnhlinecirc02plem3 48884
Description: Lemma 3 for itscnhlinecirc02p 48885. (Contributed by AV, 10-Mar-2023.)
Hypotheses
Ref Expression
itscnhlinecirc02p.i 𝐼 = {1, 2}
itscnhlinecirc02p.e 𝐸 = (ℝ^‘𝐼)
itscnhlinecirc02p.p 𝑃 = (ℝ ↑m 𝐼)
itscnhlinecirc02p.s 𝑆 = (Sphere‘𝐸)
itscnhlinecirc02p.0 0 = (𝐼 × {0})
itscnhlinecirc02p.l 𝐿 = (LineM𝐸)
itscnhlinecirc02p.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
itscnhlinecirc02plem3 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))

Proof of Theorem itscnhlinecirc02plem3
StepHypRef Expression
1 itscnhlinecirc02p.i . . . . . 6 𝐼 = {1, 2}
2 itscnhlinecirc02p.p . . . . . 6 𝑃 = (ℝ ↑m 𝐼)
31, 2rrx2pxel 48811 . . . . 5 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
41, 2rrx2pyel 48812 . . . . 5 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
53, 4jca 511 . . . 4 (𝑋𝑃 → ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))
653ad2ant1 1133 . . 3 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))
76adantr 480 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))
81, 2rrx2pxel 48811 . . . . 5 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
91, 2rrx2pyel 48812 . . . . 5 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
108, 9jca 511 . . . 4 (𝑌𝑃 → ((𝑌‘1) ∈ ℝ ∧ (𝑌‘2) ∈ ℝ))
11103ad2ant2 1134 . . 3 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((𝑌‘1) ∈ ℝ ∧ (𝑌‘2) ∈ ℝ))
1211adantr 480 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑌‘1) ∈ ℝ ∧ (𝑌‘2) ∈ ℝ))
13 simpl3 1194 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋‘2) ≠ (𝑌‘2))
14 rpre 12899 . . . 4 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
1514adantr 480 . . 3 ((𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅) → 𝑅 ∈ ℝ)
1615adantl 481 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 𝑅 ∈ ℝ)
17 simpl1 1192 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → 𝑋𝑃)
18 itscnhlinecirc02p.e . . . . . . . 8 𝐸 = (ℝ^‘𝐼)
19 2nn0 12398 . . . . . . . . . 10 2 ∈ ℕ0
20 eqid 2731 . . . . . . . . . . 11 (𝔼hil‘2) = (𝔼hil‘2)
2120ehlval 25341 . . . . . . . . . 10 (2 ∈ ℕ0 → (𝔼hil‘2) = (ℝ^‘(1...2)))
2219, 21ax-mp 5 . . . . . . . . 9 (𝔼hil‘2) = (ℝ^‘(1...2))
23 fz12pr 13481 . . . . . . . . . . 11 (1...2) = {1, 2}
2423, 1eqtr4i 2757 . . . . . . . . . 10 (1...2) = 𝐼
2524fveq2i 6825 . . . . . . . . 9 (ℝ^‘(1...2)) = (ℝ^‘𝐼)
2622, 25eqtri 2754 . . . . . . . 8 (𝔼hil‘2) = (ℝ^‘𝐼)
2718, 26eqtr4i 2757 . . . . . . 7 𝐸 = (𝔼hil‘2)
281oveq2i 7357 . . . . . . . 8 (ℝ ↑m 𝐼) = (ℝ ↑m {1, 2})
292, 28eqtri 2754 . . . . . . 7 𝑃 = (ℝ ↑m {1, 2})
30 itscnhlinecirc02p.d . . . . . . 7 𝐷 = (dist‘𝐸)
31 itscnhlinecirc02p.0 . . . . . . . 8 0 = (𝐼 × {0})
321xpeq1i 5640 . . . . . . . 8 (𝐼 × {0}) = ({1, 2} × {0})
3331, 32eqtri 2754 . . . . . . 7 0 = ({1, 2} × {0})
3427, 29, 30, 33ehl2eudisval0 48825 . . . . . 6 (𝑋𝑃 → (𝑋𝐷 0 ) = (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))))
3517, 34syl 17 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → (𝑋𝐷 0 ) = (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))))
3635breq1d 5099 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 ↔ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅))
37 rpge0 12904 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
3814, 37sqrtsqd 15327 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (√‘(𝑅↑2)) = 𝑅)
3938eqcomd 2737 . . . . . . . . 9 (𝑅 ∈ ℝ+𝑅 = (√‘(𝑅↑2)))
4039adantl 481 . . . . . . . 8 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → 𝑅 = (√‘(𝑅↑2)))
4140breq2d 5101 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → ((√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅 ↔ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < (√‘(𝑅↑2))))
4241biimpa 476 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < (√‘(𝑅↑2)))
4317, 3syl 17 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → (𝑋‘1) ∈ ℝ)
4443adantr 480 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (𝑋‘1) ∈ ℝ)
4544resqcld 14032 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → ((𝑋‘1)↑2) ∈ ℝ)
4617, 4syl 17 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → (𝑋‘2) ∈ ℝ)
4746adantr 480 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (𝑋‘2) ∈ ℝ)
4847resqcld 14032 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → ((𝑋‘2)↑2) ∈ ℝ)
4945, 48readdcld 11141 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) ∈ ℝ)
5044sqge0d 14044 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 0 ≤ ((𝑋‘1)↑2))
5147sqge0d 14044 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 0 ≤ ((𝑋‘2)↑2))
5245, 48, 50, 51addge0d 11693 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 0 ≤ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)))
5314adantl 481 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈ ℝ)
5453adantr 480 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 𝑅 ∈ ℝ)
5554resqcld 14032 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (𝑅↑2) ∈ ℝ)
5654sqge0d 14044 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 0 ≤ (𝑅↑2))
5749, 52, 55, 56sqrtltd 15335 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → ((((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2) ↔ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < (√‘(𝑅↑2))))
5842, 57mpbird 257 . . . . 5 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2))
5958ex 412 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → ((√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅 → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
6036, 59sylbid 240 . . 3 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
6160impr 454 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2))
62 eqid 2731 . . 3 ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑋‘1))
63 eqid 2731 . . 3 ((𝑋‘2) − (𝑌‘2)) = ((𝑋‘2) − (𝑌‘2))
64 eqid 2731 . . 3 (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
6562, 63, 64itscnhlinecirc02plem2 48883 . 2 (((((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ) ∧ ((𝑌‘1) ∈ ℝ ∧ (𝑌‘2) ∈ ℝ) ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ ∧ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2))) → 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))
667, 12, 13, 16, 61, 65syl32anc 1380 1 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  {csn 4573  {cpr 4575   class class class wbr 5089   × cxp 5612  cfv 6481  (class class class)co 7346  m cmap 8750  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cmin 11344  -cneg 11345  2c2 12180  4c4 12182  0cn0 12381  +crp 12890  ...cfz 13407  cexp 13968  csqrt 15140  distcds 17170  ℝ^crrx 25310  𝔼hilcehl 25311  LineMcline 48827  Spherecsph 48828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-drng 20646  df-field 20647  df-staf 20754  df-srng 20755  df-lmod 20795  df-lss 20865  df-sra 21107  df-rgmod 21108  df-cnfld 21292  df-refld 21542  df-dsmm 21669  df-frlm 21684  df-nm 24497  df-tng 24499  df-tcph 25096  df-rrx 25312  df-ehl 25313
This theorem is referenced by:  itscnhlinecirc02p  48885
  Copyright terms: Public domain W3C validator