Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itscnhlinecirc02plem3 Structured version   Visualization version   GIF version

Theorem itscnhlinecirc02plem3 48773
Description: Lemma 3 for itscnhlinecirc02p 48774. (Contributed by AV, 10-Mar-2023.)
Hypotheses
Ref Expression
itscnhlinecirc02p.i 𝐼 = {1, 2}
itscnhlinecirc02p.e 𝐸 = (ℝ^‘𝐼)
itscnhlinecirc02p.p 𝑃 = (ℝ ↑m 𝐼)
itscnhlinecirc02p.s 𝑆 = (Sphere‘𝐸)
itscnhlinecirc02p.0 0 = (𝐼 × {0})
itscnhlinecirc02p.l 𝐿 = (LineM𝐸)
itscnhlinecirc02p.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
itscnhlinecirc02plem3 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))

Proof of Theorem itscnhlinecirc02plem3
StepHypRef Expression
1 itscnhlinecirc02p.i . . . . . 6 𝐼 = {1, 2}
2 itscnhlinecirc02p.p . . . . . 6 𝑃 = (ℝ ↑m 𝐼)
31, 2rrx2pxel 48700 . . . . 5 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
41, 2rrx2pyel 48701 . . . . 5 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
53, 4jca 511 . . . 4 (𝑋𝑃 → ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))
653ad2ant1 1133 . . 3 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))
76adantr 480 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))
81, 2rrx2pxel 48700 . . . . 5 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
91, 2rrx2pyel 48701 . . . . 5 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
108, 9jca 511 . . . 4 (𝑌𝑃 → ((𝑌‘1) ∈ ℝ ∧ (𝑌‘2) ∈ ℝ))
11103ad2ant2 1134 . . 3 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((𝑌‘1) ∈ ℝ ∧ (𝑌‘2) ∈ ℝ))
1211adantr 480 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑌‘1) ∈ ℝ ∧ (𝑌‘2) ∈ ℝ))
13 simpl3 1194 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋‘2) ≠ (𝑌‘2))
14 rpre 12960 . . . 4 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
1514adantr 480 . . 3 ((𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅) → 𝑅 ∈ ℝ)
1615adantl 481 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 𝑅 ∈ ℝ)
17 simpl1 1192 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → 𝑋𝑃)
18 itscnhlinecirc02p.e . . . . . . . 8 𝐸 = (ℝ^‘𝐼)
19 2nn0 12459 . . . . . . . . . 10 2 ∈ ℕ0
20 eqid 2729 . . . . . . . . . . 11 (𝔼hil‘2) = (𝔼hil‘2)
2120ehlval 25314 . . . . . . . . . 10 (2 ∈ ℕ0 → (𝔼hil‘2) = (ℝ^‘(1...2)))
2219, 21ax-mp 5 . . . . . . . . 9 (𝔼hil‘2) = (ℝ^‘(1...2))
23 fz12pr 13542 . . . . . . . . . . 11 (1...2) = {1, 2}
2423, 1eqtr4i 2755 . . . . . . . . . 10 (1...2) = 𝐼
2524fveq2i 6861 . . . . . . . . 9 (ℝ^‘(1...2)) = (ℝ^‘𝐼)
2622, 25eqtri 2752 . . . . . . . 8 (𝔼hil‘2) = (ℝ^‘𝐼)
2718, 26eqtr4i 2755 . . . . . . 7 𝐸 = (𝔼hil‘2)
281oveq2i 7398 . . . . . . . 8 (ℝ ↑m 𝐼) = (ℝ ↑m {1, 2})
292, 28eqtri 2752 . . . . . . 7 𝑃 = (ℝ ↑m {1, 2})
30 itscnhlinecirc02p.d . . . . . . 7 𝐷 = (dist‘𝐸)
31 itscnhlinecirc02p.0 . . . . . . . 8 0 = (𝐼 × {0})
321xpeq1i 5664 . . . . . . . 8 (𝐼 × {0}) = ({1, 2} × {0})
3331, 32eqtri 2752 . . . . . . 7 0 = ({1, 2} × {0})
3427, 29, 30, 33ehl2eudisval0 48714 . . . . . 6 (𝑋𝑃 → (𝑋𝐷 0 ) = (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))))
3517, 34syl 17 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → (𝑋𝐷 0 ) = (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))))
3635breq1d 5117 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 ↔ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅))
37 rpge0 12965 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
3814, 37sqrtsqd 15386 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (√‘(𝑅↑2)) = 𝑅)
3938eqcomd 2735 . . . . . . . . 9 (𝑅 ∈ ℝ+𝑅 = (√‘(𝑅↑2)))
4039adantl 481 . . . . . . . 8 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → 𝑅 = (√‘(𝑅↑2)))
4140breq2d 5119 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → ((√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅 ↔ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < (√‘(𝑅↑2))))
4241biimpa 476 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < (√‘(𝑅↑2)))
4317, 3syl 17 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → (𝑋‘1) ∈ ℝ)
4443adantr 480 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (𝑋‘1) ∈ ℝ)
4544resqcld 14090 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → ((𝑋‘1)↑2) ∈ ℝ)
4617, 4syl 17 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → (𝑋‘2) ∈ ℝ)
4746adantr 480 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (𝑋‘2) ∈ ℝ)
4847resqcld 14090 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → ((𝑋‘2)↑2) ∈ ℝ)
4945, 48readdcld 11203 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) ∈ ℝ)
5044sqge0d 14102 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 0 ≤ ((𝑋‘1)↑2))
5147sqge0d 14102 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 0 ≤ ((𝑋‘2)↑2))
5245, 48, 50, 51addge0d 11754 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 0 ≤ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)))
5314adantl 481 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈ ℝ)
5453adantr 480 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 𝑅 ∈ ℝ)
5554resqcld 14090 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (𝑅↑2) ∈ ℝ)
5654sqge0d 14102 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 0 ≤ (𝑅↑2))
5749, 52, 55, 56sqrtltd 15394 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → ((((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2) ↔ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < (√‘(𝑅↑2))))
5842, 57mpbird 257 . . . . 5 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2))
5958ex 412 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → ((√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅 → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
6036, 59sylbid 240 . . 3 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
6160impr 454 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2))
62 eqid 2729 . . 3 ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑋‘1))
63 eqid 2729 . . 3 ((𝑋‘2) − (𝑌‘2)) = ((𝑋‘2) − (𝑌‘2))
64 eqid 2729 . . 3 (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
6562, 63, 64itscnhlinecirc02plem2 48772 . 2 (((((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ) ∧ ((𝑌‘1) ∈ ℝ ∧ (𝑌‘2) ∈ ℝ) ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ ∧ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2))) → 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))
667, 12, 13, 16, 61, 65syl32anc 1380 1 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {csn 4589  {cpr 4591   class class class wbr 5107   × cxp 5636  cfv 6511  (class class class)co 7387  m cmap 8799  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cmin 11405  -cneg 11406  2c2 12241  4c4 12243  0cn0 12442  +crp 12951  ...cfz 13468  cexp 14026  csqrt 15199  distcds 17229  ℝ^crrx 25283  𝔼hilcehl 25284  LineMcline 48716  Spherecsph 48717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-drng 20640  df-field 20641  df-staf 20748  df-srng 20749  df-lmod 20768  df-lss 20838  df-sra 21080  df-rgmod 21081  df-cnfld 21265  df-refld 21514  df-dsmm 21641  df-frlm 21656  df-nm 24470  df-tng 24472  df-tcph 25069  df-rrx 25285  df-ehl 25286
This theorem is referenced by:  itscnhlinecirc02p  48774
  Copyright terms: Public domain W3C validator