MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matvsca2 Structured version   Visualization version   GIF version

Theorem matvsca2 21577
Description: Scalar multiplication in the matrix ring is cell-wise. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
matvsca2.a 𝐴 = (𝑁 Mat 𝑅)
matvsca2.b 𝐵 = (Base‘𝐴)
matvsca2.k 𝐾 = (Base‘𝑅)
matvsca2.v · = ( ·𝑠𝐴)
matvsca2.t × = (.r𝑅)
matvsca2.c 𝐶 = (𝑁 × 𝑁)
Assertion
Ref Expression
matvsca2 ((𝑋𝐾𝑌𝐵) → (𝑋 · 𝑌) = ((𝐶 × {𝑋}) ∘f × 𝑌))

Proof of Theorem matvsca2
StepHypRef Expression
1 matvsca2.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
2 matvsca2.b . . . . . . 7 𝐵 = (Base‘𝐴)
31, 2matrcl 21559 . . . . . 6 (𝑌𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43adantl 482 . . . . 5 ((𝑋𝐾𝑌𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
5 eqid 2738 . . . . . 6 (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁))
61, 5matvsca 21564 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = ( ·𝑠𝐴))
74, 6syl 17 . . . 4 ((𝑋𝐾𝑌𝐵) → ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = ( ·𝑠𝐴))
8 matvsca2.v . . . 4 · = ( ·𝑠𝐴)
97, 8eqtr4di 2796 . . 3 ((𝑋𝐾𝑌𝐵) → ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = · )
109oveqd 7292 . 2 ((𝑋𝐾𝑌𝐵) → (𝑋( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (𝑋 · 𝑌))
11 eqid 2738 . . . 4 (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))
12 matvsca2.k . . . 4 𝐾 = (Base‘𝑅)
134simpld 495 . . . . 5 ((𝑋𝐾𝑌𝐵) → 𝑁 ∈ Fin)
14 xpfi 9085 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
1513, 13, 14syl2anc 584 . . . 4 ((𝑋𝐾𝑌𝐵) → (𝑁 × 𝑁) ∈ Fin)
16 simpl 483 . . . 4 ((𝑋𝐾𝑌𝐵) → 𝑋𝐾)
17 simpr 485 . . . . 5 ((𝑋𝐾𝑌𝐵) → 𝑌𝐵)
181, 5matbas 21560 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
194, 18syl 17 . . . . . 6 ((𝑋𝐾𝑌𝐵) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
2019, 2eqtr4di 2796 . . . . 5 ((𝑋𝐾𝑌𝐵) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = 𝐵)
2117, 20eleqtrrd 2842 . . . 4 ((𝑋𝐾𝑌𝐵) → 𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
22 eqid 2738 . . . 4 ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))
23 matvsca2.t . . . 4 × = (.r𝑅)
245, 11, 12, 15, 16, 21, 22, 23frlmvscafval 20973 . . 3 ((𝑋𝐾𝑌𝐵) → (𝑋( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌))
25 matvsca2.c . . . . 5 𝐶 = (𝑁 × 𝑁)
2625xpeq1i 5615 . . . 4 (𝐶 × {𝑋}) = ((𝑁 × 𝑁) × {𝑋})
2726oveq1i 7285 . . 3 ((𝐶 × {𝑋}) ∘f × 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)
2824, 27eqtr4di 2796 . 2 ((𝑋𝐾𝑌𝐵) → (𝑋( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = ((𝐶 × {𝑋}) ∘f × 𝑌))
2910, 28eqtr3d 2780 1 ((𝑋𝐾𝑌𝐵) → (𝑋 · 𝑌) = ((𝐶 × {𝑋}) ∘f × 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561   × cxp 5587  cfv 6433  (class class class)co 7275  f cof 7531  Fincfn 8733  Basecbs 16912  .rcmulr 16963   ·𝑠 cvsca 16966   freeLMod cfrlm 20953   Mat cmat 21554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-prds 17158  df-pws 17160  df-sra 20434  df-rgmod 20435  df-dsmm 20939  df-frlm 20954  df-mat 21555
This theorem is referenced by:  matvscacell  21585  matassa  21593  matsc  21599  mattposvs  21604  mat1dimscm  21624
  Copyright terms: Public domain W3C validator