MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matvsca2 Structured version   Visualization version   GIF version

Theorem matvsca2 21912
Description: Scalar multiplication in the matrix ring is cell-wise. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
matvsca2.a 𝐴 = (𝑁 Mat 𝑅)
matvsca2.b 𝐵 = (Base‘𝐴)
matvsca2.k 𝐾 = (Base‘𝑅)
matvsca2.v · = ( ·𝑠𝐴)
matvsca2.t × = (.r𝑅)
matvsca2.c 𝐶 = (𝑁 × 𝑁)
Assertion
Ref Expression
matvsca2 ((𝑋𝐾𝑌𝐵) → (𝑋 · 𝑌) = ((𝐶 × {𝑋}) ∘f × 𝑌))

Proof of Theorem matvsca2
StepHypRef Expression
1 matvsca2.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
2 matvsca2.b . . . . . . 7 𝐵 = (Base‘𝐴)
31, 2matrcl 21894 . . . . . 6 (𝑌𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43adantl 483 . . . . 5 ((𝑋𝐾𝑌𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
5 eqid 2733 . . . . . 6 (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁))
61, 5matvsca 21899 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = ( ·𝑠𝐴))
74, 6syl 17 . . . 4 ((𝑋𝐾𝑌𝐵) → ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = ( ·𝑠𝐴))
8 matvsca2.v . . . 4 · = ( ·𝑠𝐴)
97, 8eqtr4di 2791 . . 3 ((𝑋𝐾𝑌𝐵) → ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = · )
109oveqd 7421 . 2 ((𝑋𝐾𝑌𝐵) → (𝑋( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (𝑋 · 𝑌))
11 eqid 2733 . . . 4 (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))
12 matvsca2.k . . . 4 𝐾 = (Base‘𝑅)
134simpld 496 . . . . 5 ((𝑋𝐾𝑌𝐵) → 𝑁 ∈ Fin)
14 xpfi 9313 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
1513, 13, 14syl2anc 585 . . . 4 ((𝑋𝐾𝑌𝐵) → (𝑁 × 𝑁) ∈ Fin)
16 simpl 484 . . . 4 ((𝑋𝐾𝑌𝐵) → 𝑋𝐾)
17 simpr 486 . . . . 5 ((𝑋𝐾𝑌𝐵) → 𝑌𝐵)
181, 5matbas 21895 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
194, 18syl 17 . . . . . 6 ((𝑋𝐾𝑌𝐵) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
2019, 2eqtr4di 2791 . . . . 5 ((𝑋𝐾𝑌𝐵) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = 𝐵)
2117, 20eleqtrrd 2837 . . . 4 ((𝑋𝐾𝑌𝐵) → 𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
22 eqid 2733 . . . 4 ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))
23 matvsca2.t . . . 4 × = (.r𝑅)
245, 11, 12, 15, 16, 21, 22, 23frlmvscafval 21305 . . 3 ((𝑋𝐾𝑌𝐵) → (𝑋( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌))
25 matvsca2.c . . . . 5 𝐶 = (𝑁 × 𝑁)
2625xpeq1i 5701 . . . 4 (𝐶 × {𝑋}) = ((𝑁 × 𝑁) × {𝑋})
2726oveq1i 7414 . . 3 ((𝐶 × {𝑋}) ∘f × 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)
2824, 27eqtr4di 2791 . 2 ((𝑋𝐾𝑌𝐵) → (𝑋( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = ((𝐶 × {𝑋}) ∘f × 𝑌))
2910, 28eqtr3d 2775 1 ((𝑋𝐾𝑌𝐵) → (𝑋 · 𝑌) = ((𝐶 × {𝑋}) ∘f × 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  {csn 4627   × cxp 5673  cfv 6540  (class class class)co 7404  f cof 7663  Fincfn 8935  Basecbs 17140  .rcmulr 17194   ·𝑠 cvsca 17197   freeLMod cfrlm 21285   Mat cmat 21889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-ot 4636  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7665  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-hom 17217  df-cco 17218  df-prds 17389  df-pws 17391  df-sra 20773  df-rgmod 20774  df-dsmm 21271  df-frlm 21286  df-mat 21890
This theorem is referenced by:  matvscacell  21920  matassa  21928  matsc  21934  mattposvs  21939  mat1dimscm  21959
  Copyright terms: Public domain W3C validator