MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matvsca2 Structured version   Visualization version   GIF version

Theorem matvsca2 22343
Description: Scalar multiplication in the matrix ring is cell-wise. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
matvsca2.a 𝐴 = (𝑁 Mat 𝑅)
matvsca2.b 𝐵 = (Base‘𝐴)
matvsca2.k 𝐾 = (Base‘𝑅)
matvsca2.v · = ( ·𝑠𝐴)
matvsca2.t × = (.r𝑅)
matvsca2.c 𝐶 = (𝑁 × 𝑁)
Assertion
Ref Expression
matvsca2 ((𝑋𝐾𝑌𝐵) → (𝑋 · 𝑌) = ((𝐶 × {𝑋}) ∘f × 𝑌))

Proof of Theorem matvsca2
StepHypRef Expression
1 matvsca2.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
2 matvsca2.b . . . . . . 7 𝐵 = (Base‘𝐴)
31, 2matrcl 22327 . . . . . 6 (𝑌𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43adantl 481 . . . . 5 ((𝑋𝐾𝑌𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
5 eqid 2731 . . . . . 6 (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁))
61, 5matvsca 22331 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = ( ·𝑠𝐴))
74, 6syl 17 . . . 4 ((𝑋𝐾𝑌𝐵) → ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = ( ·𝑠𝐴))
8 matvsca2.v . . . 4 · = ( ·𝑠𝐴)
97, 8eqtr4di 2784 . . 3 ((𝑋𝐾𝑌𝐵) → ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = · )
109oveqd 7363 . 2 ((𝑋𝐾𝑌𝐵) → (𝑋( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (𝑋 · 𝑌))
11 eqid 2731 . . . 4 (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))
12 matvsca2.k . . . 4 𝐾 = (Base‘𝑅)
134simpld 494 . . . . 5 ((𝑋𝐾𝑌𝐵) → 𝑁 ∈ Fin)
14 xpfi 9204 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
1513, 13, 14syl2anc 584 . . . 4 ((𝑋𝐾𝑌𝐵) → (𝑁 × 𝑁) ∈ Fin)
16 simpl 482 . . . 4 ((𝑋𝐾𝑌𝐵) → 𝑋𝐾)
17 simpr 484 . . . . 5 ((𝑋𝐾𝑌𝐵) → 𝑌𝐵)
181, 5matbas 22328 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
194, 18syl 17 . . . . . 6 ((𝑋𝐾𝑌𝐵) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
2019, 2eqtr4di 2784 . . . . 5 ((𝑋𝐾𝑌𝐵) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = 𝐵)
2117, 20eleqtrrd 2834 . . . 4 ((𝑋𝐾𝑌𝐵) → 𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
22 eqid 2731 . . . 4 ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))
23 matvsca2.t . . . 4 × = (.r𝑅)
245, 11, 12, 15, 16, 21, 22, 23frlmvscafval 21703 . . 3 ((𝑋𝐾𝑌𝐵) → (𝑋( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌))
25 matvsca2.c . . . . 5 𝐶 = (𝑁 × 𝑁)
2625xpeq1i 5640 . . . 4 (𝐶 × {𝑋}) = ((𝑁 × 𝑁) × {𝑋})
2726oveq1i 7356 . . 3 ((𝐶 × {𝑋}) ∘f × 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)
2824, 27eqtr4di 2784 . 2 ((𝑋𝐾𝑌𝐵) → (𝑋( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = ((𝐶 × {𝑋}) ∘f × 𝑌))
2910, 28eqtr3d 2768 1 ((𝑋𝐾𝑌𝐵) → (𝑋 · 𝑌) = ((𝐶 × {𝑋}) ∘f × 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4573   × cxp 5612  cfv 6481  (class class class)co 7346  f cof 7608  Fincfn 8869  Basecbs 17120  .rcmulr 17162   ·𝑠 cvsca 17165   freeLMod cfrlm 21683   Mat cmat 22322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-prds 17351  df-pws 17353  df-sra 21107  df-rgmod 21108  df-dsmm 21669  df-frlm 21684  df-mat 22323
This theorem is referenced by:  matvscacell  22351  matassa  22359  matsc  22365  mattposvs  22370  mat1dimscm  22390
  Copyright terms: Public domain W3C validator