| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > matvsca2 | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication in the matrix ring is cell-wise. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| matvsca2.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| matvsca2.b | ⊢ 𝐵 = (Base‘𝐴) |
| matvsca2.k | ⊢ 𝐾 = (Base‘𝑅) |
| matvsca2.v | ⊢ · = ( ·𝑠 ‘𝐴) |
| matvsca2.t | ⊢ × = (.r‘𝑅) |
| matvsca2.c | ⊢ 𝐶 = (𝑁 × 𝑁) |
| Ref | Expression |
|---|---|
| matvsca2 | ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = ((𝐶 × {𝑋}) ∘f × 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matvsca2.a | . . . . . . 7 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | matvsca2.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | 1, 2 | matrcl 22416 | . . . . . 6 ⊢ (𝑌 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 4 | 3 | adantl 481 | . . . . 5 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 5 | eqid 2737 | . . . . . 6 ⊢ (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁)) | |
| 6 | 1, 5 | matvsca 22421 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = ( ·𝑠 ‘𝐴)) |
| 7 | 4, 6 | syl 17 | . . . 4 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = ( ·𝑠 ‘𝐴)) |
| 8 | matvsca2.v | . . . 4 ⊢ · = ( ·𝑠 ‘𝐴) | |
| 9 | 7, 8 | eqtr4di 2795 | . . 3 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = · ) |
| 10 | 9 | oveqd 7448 | . 2 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (𝑋 · 𝑌)) |
| 11 | eqid 2737 | . . . 4 ⊢ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) | |
| 12 | matvsca2.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 13 | 4 | simpld 494 | . . . . 5 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑁 ∈ Fin) |
| 14 | xpfi 9358 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin) | |
| 15 | 13, 13, 14 | syl2anc 584 | . . . 4 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑁 × 𝑁) ∈ Fin) |
| 16 | simpl 482 | . . . 4 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐾) | |
| 17 | simpr 484 | . . . . 5 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 18 | 1, 5 | matbas 22417 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴)) |
| 19 | 4, 18 | syl 17 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴)) |
| 20 | 19, 2 | eqtr4di 2795 | . . . . 5 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = 𝐵) |
| 21 | 17, 20 | eleqtrrd 2844 | . . . 4 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))) |
| 22 | eqid 2737 | . . . 4 ⊢ ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) | |
| 23 | matvsca2.t | . . . 4 ⊢ × = (.r‘𝑅) | |
| 24 | 5, 11, 12, 15, 16, 21, 22, 23 | frlmvscafval 21786 | . . 3 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)) |
| 25 | matvsca2.c | . . . . 5 ⊢ 𝐶 = (𝑁 × 𝑁) | |
| 26 | 25 | xpeq1i 5711 | . . . 4 ⊢ (𝐶 × {𝑋}) = ((𝑁 × 𝑁) × {𝑋}) |
| 27 | 26 | oveq1i 7441 | . . 3 ⊢ ((𝐶 × {𝑋}) ∘f × 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌) |
| 28 | 24, 27 | eqtr4di 2795 | . 2 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = ((𝐶 × {𝑋}) ∘f × 𝑌)) |
| 29 | 10, 28 | eqtr3d 2779 | 1 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = ((𝐶 × {𝑋}) ∘f × 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 {csn 4626 × cxp 5683 ‘cfv 6561 (class class class)co 7431 ∘f cof 7695 Fincfn 8985 Basecbs 17247 .rcmulr 17298 ·𝑠 cvsca 17301 freeLMod cfrlm 21766 Mat cmat 22411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-ot 4635 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-prds 17492 df-pws 17494 df-sra 21172 df-rgmod 21173 df-dsmm 21752 df-frlm 21767 df-mat 22412 |
| This theorem is referenced by: matvscacell 22442 matassa 22450 matsc 22456 mattposvs 22461 mat1dimscm 22481 |
| Copyright terms: Public domain | W3C validator |