MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matvsca2 Structured version   Visualization version   GIF version

Theorem matvsca2 21040
Description: Scalar multiplication in the matrix ring is cell-wise. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
matvsca2.a 𝐴 = (𝑁 Mat 𝑅)
matvsca2.b 𝐵 = (Base‘𝐴)
matvsca2.k 𝐾 = (Base‘𝑅)
matvsca2.v · = ( ·𝑠𝐴)
matvsca2.t × = (.r𝑅)
matvsca2.c 𝐶 = (𝑁 × 𝑁)
Assertion
Ref Expression
matvsca2 ((𝑋𝐾𝑌𝐵) → (𝑋 · 𝑌) = ((𝐶 × {𝑋}) ∘f × 𝑌))

Proof of Theorem matvsca2
StepHypRef Expression
1 matvsca2.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
2 matvsca2.b . . . . . . 7 𝐵 = (Base‘𝐴)
31, 2matrcl 21024 . . . . . 6 (𝑌𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43adantl 484 . . . . 5 ((𝑋𝐾𝑌𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
5 eqid 2824 . . . . . 6 (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁))
61, 5matvsca 21028 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = ( ·𝑠𝐴))
74, 6syl 17 . . . 4 ((𝑋𝐾𝑌𝐵) → ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = ( ·𝑠𝐴))
8 matvsca2.v . . . 4 · = ( ·𝑠𝐴)
97, 8syl6eqr 2877 . . 3 ((𝑋𝐾𝑌𝐵) → ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = · )
109oveqd 7176 . 2 ((𝑋𝐾𝑌𝐵) → (𝑋( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (𝑋 · 𝑌))
11 eqid 2824 . . . 4 (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))
12 matvsca2.k . . . 4 𝐾 = (Base‘𝑅)
134simpld 497 . . . . 5 ((𝑋𝐾𝑌𝐵) → 𝑁 ∈ Fin)
14 xpfi 8792 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
1513, 13, 14syl2anc 586 . . . 4 ((𝑋𝐾𝑌𝐵) → (𝑁 × 𝑁) ∈ Fin)
16 simpl 485 . . . 4 ((𝑋𝐾𝑌𝐵) → 𝑋𝐾)
17 simpr 487 . . . . 5 ((𝑋𝐾𝑌𝐵) → 𝑌𝐵)
181, 5matbas 21025 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
194, 18syl 17 . . . . . 6 ((𝑋𝐾𝑌𝐵) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
2019, 2syl6eqr 2877 . . . . 5 ((𝑋𝐾𝑌𝐵) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = 𝐵)
2117, 20eleqtrrd 2919 . . . 4 ((𝑋𝐾𝑌𝐵) → 𝑌 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
22 eqid 2824 . . . 4 ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))
23 matvsca2.t . . . 4 × = (.r𝑅)
245, 11, 12, 15, 16, 21, 22, 23frlmvscafval 20913 . . 3 ((𝑋𝐾𝑌𝐵) → (𝑋( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌))
25 matvsca2.c . . . . 5 𝐶 = (𝑁 × 𝑁)
2625xpeq1i 5584 . . . 4 (𝐶 × {𝑋}) = ((𝑁 × 𝑁) × {𝑋})
2726oveq1i 7169 . . 3 ((𝐶 × {𝑋}) ∘f × 𝑌) = (((𝑁 × 𝑁) × {𝑋}) ∘f × 𝑌)
2824, 27syl6eqr 2877 . 2 ((𝑋𝐾𝑌𝐵) → (𝑋( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑌) = ((𝐶 × {𝑋}) ∘f × 𝑌))
2910, 28eqtr3d 2861 1 ((𝑋𝐾𝑌𝐵) → (𝑋 · 𝑌) = ((𝐶 × {𝑋}) ∘f × 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  Vcvv 3497  {csn 4570   × cxp 5556  cfv 6358  (class class class)co 7159  f cof 7410  Fincfn 8512  Basecbs 16486  .rcmulr 16569   ·𝑠 cvsca 16572   freeLMod cfrlm 20893   Mat cmat 21019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-ot 4579  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-hom 16592  df-cco 16593  df-prds 16724  df-pws 16726  df-sra 19947  df-rgmod 19948  df-dsmm 20879  df-frlm 20894  df-mat 21020
This theorem is referenced by:  matvscacell  21048  matassa  21056  matsc  21062  mattposvs  21067  mat1dimscm  21087
  Copyright terms: Public domain W3C validator