MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ehl0 Structured version   Visualization version   GIF version

Theorem ehl0 25339
Description: The Euclidean space of dimension 0 consists of the neutral element only. (Contributed by AV, 12-Feb-2023.)
Hypotheses
Ref Expression
ehl0base.e 𝐸 = (𝔼hil‘0)
ehl0base.0 0 = (0g𝐸)
Assertion
Ref Expression
ehl0 (Base‘𝐸) = { 0 }

Proof of Theorem ehl0
StepHypRef Expression
1 ehl0base.e . . 3 𝐸 = (𝔼hil‘0)
21ehl0base 25338 . 2 (Base‘𝐸) = {∅}
3 ehl0base.0 . . . . . 6 0 = (0g𝐸)
4 ovex 7448 . . . . . . 7 (1...0) ∈ V
5 0nn0 12512 . . . . . . . . 9 0 ∈ ℕ0
61ehlval 25336 . . . . . . . . 9 (0 ∈ ℕ0𝐸 = (ℝ^‘(1...0)))
75, 6ax-mp 5 . . . . . . . 8 𝐸 = (ℝ^‘(1...0))
8 fz10 13549 . . . . . . . . . 10 (1...0) = ∅
98xpeq1i 5699 . . . . . . . . 9 ((1...0) × {0}) = (∅ × {0})
109eqcomi 2737 . . . . . . . 8 (∅ × {0}) = ((1...0) × {0})
117, 10rrx0 25319 . . . . . . 7 ((1...0) ∈ V → (0g𝐸) = (∅ × {0}))
124, 11ax-mp 5 . . . . . 6 (0g𝐸) = (∅ × {0})
133, 12eqtri 2756 . . . . 5 0 = (∅ × {0})
14 0xp 5771 . . . . 5 (∅ × {0}) = ∅
1513, 14eqtri 2756 . . . 4 0 = ∅
1615eqcomi 2737 . . 3 ∅ = 0
1716sneqi 4636 . 2 {∅} = { 0 }
182, 17eqtri 2756 1 (Base‘𝐸) = { 0 }
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  Vcvv 3470  c0 4319  {csn 4625   × cxp 5671  cfv 6543  (class class class)co 7415  0cc0 11133  1c1 11134  0cn0 12497  ...cfz 13511  Basecbs 17174  0gc0g 17415  ℝ^crrx 25305  𝔼hilcehl 25306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211  ax-addf 11212
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-1st 7988  df-2nd 7989  df-supp 8161  df-tpos 8226  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-er 8719  df-map 8841  df-ixp 8911  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-fsupp 9381  df-sup 9460  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-z 12584  df-dec 12703  df-uz 12848  df-rp 13002  df-fz 13512  df-seq 13994  df-exp 14054  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-struct 17110  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ress 17204  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17417  df-prds 17423  df-pws 17425  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-grp 18887  df-minusg 18888  df-sbg 18889  df-subg 19072  df-cmn 19731  df-abl 19732  df-mgp 20069  df-rng 20087  df-ur 20116  df-ring 20169  df-cring 20170  df-oppr 20267  df-dvdsr 20290  df-unit 20291  df-invr 20321  df-dvr 20334  df-subrng 20477  df-subrg 20502  df-drng 20620  df-field 20621  df-lmod 20739  df-lss 20810  df-sra 21052  df-rgmod 21053  df-cnfld 21274  df-refld 21531  df-dsmm 21660  df-frlm 21675  df-tng 24487  df-tcph 25091  df-rrx 25307  df-ehl 25308
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator