![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ehl0 | Structured version Visualization version GIF version |
Description: The Euclidean space of dimension 0 consists of the neutral element only. (Contributed by AV, 12-Feb-2023.) |
Ref | Expression |
---|---|
ehl0base.e | ⊢ 𝐸 = (𝔼hil‘0) |
ehl0base.0 | ⊢ 0 = (0g‘𝐸) |
Ref | Expression |
---|---|
ehl0 | ⊢ (Base‘𝐸) = { 0 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ehl0base.e | . . 3 ⊢ 𝐸 = (𝔼hil‘0) | |
2 | 1 | ehl0base 25338 | . 2 ⊢ (Base‘𝐸) = {∅} |
3 | ehl0base.0 | . . . . . 6 ⊢ 0 = (0g‘𝐸) | |
4 | ovex 7448 | . . . . . . 7 ⊢ (1...0) ∈ V | |
5 | 0nn0 12512 | . . . . . . . . 9 ⊢ 0 ∈ ℕ0 | |
6 | 1 | ehlval 25336 | . . . . . . . . 9 ⊢ (0 ∈ ℕ0 → 𝐸 = (ℝ^‘(1...0))) |
7 | 5, 6 | ax-mp 5 | . . . . . . . 8 ⊢ 𝐸 = (ℝ^‘(1...0)) |
8 | fz10 13549 | . . . . . . . . . 10 ⊢ (1...0) = ∅ | |
9 | 8 | xpeq1i 5699 | . . . . . . . . 9 ⊢ ((1...0) × {0}) = (∅ × {0}) |
10 | 9 | eqcomi 2737 | . . . . . . . 8 ⊢ (∅ × {0}) = ((1...0) × {0}) |
11 | 7, 10 | rrx0 25319 | . . . . . . 7 ⊢ ((1...0) ∈ V → (0g‘𝐸) = (∅ × {0})) |
12 | 4, 11 | ax-mp 5 | . . . . . 6 ⊢ (0g‘𝐸) = (∅ × {0}) |
13 | 3, 12 | eqtri 2756 | . . . . 5 ⊢ 0 = (∅ × {0}) |
14 | 0xp 5771 | . . . . 5 ⊢ (∅ × {0}) = ∅ | |
15 | 13, 14 | eqtri 2756 | . . . 4 ⊢ 0 = ∅ |
16 | 15 | eqcomi 2737 | . . 3 ⊢ ∅ = 0 |
17 | 16 | sneqi 4636 | . 2 ⊢ {∅} = { 0 } |
18 | 2, 17 | eqtri 2756 | 1 ⊢ (Base‘𝐸) = { 0 } |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 Vcvv 3470 ∅c0 4319 {csn 4625 × cxp 5671 ‘cfv 6543 (class class class)co 7415 0cc0 11133 1c1 11134 ℕ0cn0 12497 ...cfz 13511 Basecbs 17174 0gc0g 17415 ℝ^crrx 25305 𝔼hilcehl 25306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 ax-addf 11212 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-supp 8161 df-tpos 8226 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-er 8719 df-map 8841 df-ixp 8911 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-fsupp 9381 df-sup 9460 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-rp 13002 df-fz 13512 df-seq 13994 df-exp 14054 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-0g 17417 df-prds 17423 df-pws 17425 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-grp 18887 df-minusg 18888 df-sbg 18889 df-subg 19072 df-cmn 19731 df-abl 19732 df-mgp 20069 df-rng 20087 df-ur 20116 df-ring 20169 df-cring 20170 df-oppr 20267 df-dvdsr 20290 df-unit 20291 df-invr 20321 df-dvr 20334 df-subrng 20477 df-subrg 20502 df-drng 20620 df-field 20621 df-lmod 20739 df-lss 20810 df-sra 21052 df-rgmod 21053 df-cnfld 21274 df-refld 21531 df-dsmm 21660 df-frlm 21675 df-tng 24487 df-tcph 25091 df-rrx 25307 df-ehl 25308 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |