MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geomulcvg Structured version   Visualization version   GIF version

Theorem geomulcvg 15909
Description: The geometric series converges even if it is multiplied by 𝑘 to result in the larger series 𝑘 · 𝐴𝑘. (Contributed by Mario Carneiro, 27-Mar-2015.)
Hypothesis
Ref Expression
geomulcvg.1 𝐹 = (𝑘 ∈ ℕ0 ↦ (𝑘 · (𝐴𝑘)))
Assertion
Ref Expression
geomulcvg ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , 𝐹) ∈ dom ⇝ )
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝐹(𝑘)

Proof of Theorem geomulcvg
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 geomulcvg.1 . . . . . . 7 𝐹 = (𝑘 ∈ ℕ0 ↦ (𝑘 · (𝐴𝑘)))
2 elnn0 12526 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
3 simpr 484 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → 𝐴 = 0)
43oveq1d 7446 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → (𝐴𝑘) = (0↑𝑘))
5 0exp 14135 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (0↑𝑘) = 0)
64, 5sylan9eq 2795 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) = 0)
76oveq2d 7447 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ) → (𝑘 · (𝐴𝑘)) = (𝑘 · 0))
8 nncn 12272 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
98adantl 481 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
109mul01d 11458 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ) → (𝑘 · 0) = 0)
117, 10eqtrd 2775 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ) → (𝑘 · (𝐴𝑘)) = 0)
12 simpr 484 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → 𝑘 = 0)
1312oveq1d 7446 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → (𝑘 · (𝐴𝑘)) = (0 · (𝐴𝑘)))
14 simplll 775 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → 𝐴 ∈ ℂ)
15 0nn0 12539 . . . . . . . . . . . . . 14 0 ∈ ℕ0
1612, 15eqeltrdi 2847 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → 𝑘 ∈ ℕ0)
1714, 16expcld 14183 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → (𝐴𝑘) ∈ ℂ)
1817mul02d 11457 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → (0 · (𝐴𝑘)) = 0)
1913, 18eqtrd 2775 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → (𝑘 · (𝐴𝑘)) = 0)
2011, 19jaodan 959 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ (𝑘 ∈ ℕ ∨ 𝑘 = 0)) → (𝑘 · (𝐴𝑘)) = 0)
212, 20sylan2b 594 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ0) → (𝑘 · (𝐴𝑘)) = 0)
2221mpteq2dva 5248 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → (𝑘 ∈ ℕ0 ↦ (𝑘 · (𝐴𝑘))) = (𝑘 ∈ ℕ0 ↦ 0))
231, 22eqtrid 2787 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → 𝐹 = (𝑘 ∈ ℕ0 ↦ 0))
24 fconstmpt 5751 . . . . . . 7 (ℕ0 × {0}) = (𝑘 ∈ ℕ0 ↦ 0)
25 nn0uz 12918 . . . . . . . 8 0 = (ℤ‘0)
2625xpeq1i 5715 . . . . . . 7 (ℕ0 × {0}) = ((ℤ‘0) × {0})
2724, 26eqtr3i 2765 . . . . . 6 (𝑘 ∈ ℕ0 ↦ 0) = ((ℤ‘0) × {0})
2823, 27eqtrdi 2791 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → 𝐹 = ((ℤ‘0) × {0}))
2928seqeq3d 14047 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → seq0( + , 𝐹) = seq0( + , ((ℤ‘0) × {0})))
30 0z 12622 . . . . 5 0 ∈ ℤ
31 serclim0 15610 . . . . 5 (0 ∈ ℤ → seq0( + , ((ℤ‘0) × {0})) ⇝ 0)
3230, 31ax-mp 5 . . . 4 seq0( + , ((ℤ‘0) × {0})) ⇝ 0
3329, 32eqbrtrdi 5187 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → seq0( + , 𝐹) ⇝ 0)
34 seqex 14041 . . . 4 seq0( + , 𝐹) ∈ V
35 c0ex 11253 . . . 4 0 ∈ V
3634, 35breldm 5922 . . 3 (seq0( + , 𝐹) ⇝ 0 → seq0( + , 𝐹) ∈ dom ⇝ )
3733, 36syl 17 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → seq0( + , 𝐹) ∈ dom ⇝ )
38 1red 11260 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → 1 ∈ ℝ)
39 abscl 15314 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
4039adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℝ)
41 peano2re 11432 . . . . . . . 8 ((abs‘𝐴) ∈ ℝ → ((abs‘𝐴) + 1) ∈ ℝ)
4240, 41syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴) + 1) ∈ ℝ)
4342rehalfcld 12511 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (((abs‘𝐴) + 1) / 2) ∈ ℝ)
4443adantr 480 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) + 1) / 2) ∈ ℝ)
45 absrpcl 15324 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
4645adantlr 715 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
4744, 46rerpdivcld 13106 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → ((((abs‘𝐴) + 1) / 2) / (abs‘𝐴)) ∈ ℝ)
4840recnd 11287 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℂ)
4948mullidd 11277 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 · (abs‘𝐴)) = (abs‘𝐴))
50 simpr 484 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1)
51 1re 11259 . . . . . . . . 9 1 ∈ ℝ
52 avglt1 12502 . . . . . . . . 9 (((abs‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝐴) < 1 ↔ (abs‘𝐴) < (((abs‘𝐴) + 1) / 2)))
5340, 51, 52sylancl 586 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴) < 1 ↔ (abs‘𝐴) < (((abs‘𝐴) + 1) / 2)))
5450, 53mpbid 232 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < (((abs‘𝐴) + 1) / 2))
5549, 54eqbrtrd 5170 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 · (abs‘𝐴)) < (((abs‘𝐴) + 1) / 2))
5655adantr 480 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → (1 · (abs‘𝐴)) < (((abs‘𝐴) + 1) / 2))
5738, 44, 46ltmuldivd 13122 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → ((1 · (abs‘𝐴)) < (((abs‘𝐴) + 1) / 2) ↔ 1 < ((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))))
5856, 57mpbid 232 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → 1 < ((((abs‘𝐴) + 1) / 2) / (abs‘𝐴)))
59 expmulnbnd 14271 . . . 4 ((1 ∈ ℝ ∧ ((((abs‘𝐴) + 1) / 2) / (abs‘𝐴)) ∈ ℝ ∧ 1 < ((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))) → ∃𝑛 ∈ ℕ0𝑘 ∈ (ℤ𝑛)(1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘))
6038, 47, 58, 59syl3anc 1370 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ0𝑘 ∈ (ℤ𝑛)(1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘))
61 eluznn0 12957 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ0)
62 nn0cn 12534 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
6362adantl 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
6463mullidd 11277 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (1 · 𝑘) = 𝑘)
6543recnd 11287 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (((abs‘𝐴) + 1) / 2) ∈ ℂ)
6665ad2antrr 726 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (((abs‘𝐴) + 1) / 2) ∈ ℂ)
6748ad2antrr 726 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (abs‘𝐴) ∈ ℂ)
6846adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ+)
6968rpne0d 13080 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (abs‘𝐴) ≠ 0)
70 simpr 484 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
7166, 67, 69, 70expdivd 14197 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) = (((((abs‘𝐴) + 1) / 2)↑𝑘) / ((abs‘𝐴)↑𝑘)))
7264, 71breq12d 5161 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → ((1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) ↔ 𝑘 < (((((abs‘𝐴) + 1) / 2)↑𝑘) / ((abs‘𝐴)↑𝑘))))
73 nn0re 12533 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
7473adantl 481 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
75 reexpcl 14116 . . . . . . . . . . 11 (((((abs‘𝐴) + 1) / 2) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((((abs‘𝐴) + 1) / 2)↑𝑘) ∈ ℝ)
7644, 75sylan 580 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → ((((abs‘𝐴) + 1) / 2)↑𝑘) ∈ ℝ)
7740adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
78 reexpcl 14116 . . . . . . . . . . 11 (((abs‘𝐴) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
7977, 78sylan 580 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
8077adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
81 nn0z 12636 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
8281adantl 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
8368rpgt0d 13078 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → 0 < (abs‘𝐴))
84 expgt0 14133 . . . . . . . . . . 11 (((abs‘𝐴) ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < (abs‘𝐴)) → 0 < ((abs‘𝐴)↑𝑘))
8580, 82, 83, 84syl3anc 1370 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → 0 < ((abs‘𝐴)↑𝑘))
86 ltmuldiv 12139 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ ((((abs‘𝐴) + 1) / 2)↑𝑘) ∈ ℝ ∧ (((abs‘𝐴)↑𝑘) ∈ ℝ ∧ 0 < ((abs‘𝐴)↑𝑘))) → ((𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘) ↔ 𝑘 < (((((abs‘𝐴) + 1) / 2)↑𝑘) / ((abs‘𝐴)↑𝑘))))
8774, 76, 79, 85, 86syl112anc 1373 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → ((𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘) ↔ 𝑘 < (((((abs‘𝐴) + 1) / 2)↑𝑘) / ((abs‘𝐴)↑𝑘))))
8872, 87bitr4d 282 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → ((1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) ↔ (𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘)))
8961, 88sylan2 593 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ (𝑛 ∈ ℕ0𝑘 ∈ (ℤ𝑛))) → ((1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) ↔ (𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘)))
9089anassrs 467 . . . . . 6 (((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ𝑛)) → ((1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) ↔ (𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘)))
9190ralbidva 3174 . . . . 5 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ0) → (∀𝑘 ∈ (ℤ𝑛)(1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) ↔ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘)))
92 simprl 771 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) → 𝑛 ∈ ℕ0)
93 oveq2 7439 . . . . . . . . . . 11 (𝑘 = 𝑚 → ((((abs‘𝐴) + 1) / 2)↑𝑘) = ((((abs‘𝐴) + 1) / 2)↑𝑚))
94 eqid 2735 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘)) = (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))
95 ovex 7464 . . . . . . . . . . 11 ((((abs‘𝐴) + 1) / 2)↑𝑚) ∈ V
9693, 94, 95fvmpt 7016 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑚) = ((((abs‘𝐴) + 1) / 2)↑𝑚))
9796adantl 481 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑚) = ((((abs‘𝐴) + 1) / 2)↑𝑚))
9843ad2antrr 726 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → (((abs‘𝐴) + 1) / 2) ∈ ℝ)
99 simpr 484 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
10098, 99reexpcld 14200 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → ((((abs‘𝐴) + 1) / 2)↑𝑚) ∈ ℝ)
10197, 100eqeltrd 2839 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑚) ∈ ℝ)
102 id 22 . . . . . . . . . . . 12 (𝑘 = 𝑚𝑘 = 𝑚)
103 oveq2 7439 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (𝐴𝑘) = (𝐴𝑚))
104102, 103oveq12d 7449 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑘 · (𝐴𝑘)) = (𝑚 · (𝐴𝑚)))
105 ovex 7464 . . . . . . . . . . 11 (𝑚 · (𝐴𝑚)) ∈ V
106104, 1, 105fvmpt 7016 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → (𝐹𝑚) = (𝑚 · (𝐴𝑚)))
107106adantl 481 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → (𝐹𝑚) = (𝑚 · (𝐴𝑚)))
108 nn0cn 12534 . . . . . . . . . . 11 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
109108adantl 481 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
110 expcl 14117 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (𝐴𝑚) ∈ ℂ)
111110ad4ant14 752 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → (𝐴𝑚) ∈ ℂ)
112109, 111mulcld 11279 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → (𝑚 · (𝐴𝑚)) ∈ ℂ)
113107, 112eqeltrd 2839 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → (𝐹𝑚) ∈ ℂ)
114 0red 11262 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ∈ ℝ)
115 absge0 15323 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
116115adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ≤ (abs‘𝐴))
117114, 40, 43, 116, 54lelttrd 11417 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 < (((abs‘𝐴) + 1) / 2))
118114, 43, 117ltled 11407 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ≤ (((abs‘𝐴) + 1) / 2))
11943, 118absidd 15458 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(((abs‘𝐴) + 1) / 2)) = (((abs‘𝐴) + 1) / 2))
120 avglt2 12503 . . . . . . . . . . . . . 14 (((abs‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝐴) < 1 ↔ (((abs‘𝐴) + 1) / 2) < 1))
12140, 51, 120sylancl 586 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴) < 1 ↔ (((abs‘𝐴) + 1) / 2) < 1))
12250, 121mpbid 232 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (((abs‘𝐴) + 1) / 2) < 1)
123119, 122eqbrtrd 5170 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(((abs‘𝐴) + 1) / 2)) < 1)
124 oveq2 7439 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((((abs‘𝐴) + 1) / 2)↑𝑘) = ((((abs‘𝐴) + 1) / 2)↑𝑛))
125 ovex 7464 . . . . . . . . . . . . 13 ((((abs‘𝐴) + 1) / 2)↑𝑛) ∈ V
126124, 94, 125fvmpt 7016 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑛) = ((((abs‘𝐴) + 1) / 2)↑𝑛))
127126adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑛) = ((((abs‘𝐴) + 1) / 2)↑𝑛))
12865, 123, 127geolim 15903 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))) ⇝ (1 / (1 − (((abs‘𝐴) + 1) / 2))))
129 seqex 14041 . . . . . . . . . . 11 seq0( + , (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∈ V
130 ovex 7464 . . . . . . . . . . 11 (1 / (1 − (((abs‘𝐴) + 1) / 2))) ∈ V
131129, 130breldm 5922 . . . . . . . . . 10 (seq0( + , (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))) ⇝ (1 / (1 − (((abs‘𝐴) + 1) / 2))) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∈ dom ⇝ )
132128, 131syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∈ dom ⇝ )
133132adantr 480 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∈ dom ⇝ )
134 1red 11260 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) → 1 ∈ ℝ)
135 eluznn0 12957 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ ℕ0)
13692, 135sylan 580 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ ℕ0)
137136nn0red 12586 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ ℝ)
138 simplll 775 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐴 ∈ ℂ)
139138abscld 15472 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘𝐴) ∈ ℝ)
140139, 136reexpcld 14200 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → ((abs‘𝐴)↑𝑚) ∈ ℝ)
141137, 140remulcld 11289 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚 · ((abs‘𝐴)↑𝑚)) ∈ ℝ)
142136, 100syldan 591 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → ((((abs‘𝐴) + 1) / 2)↑𝑚) ∈ ℝ)
143 simprr 773 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) → ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))
144 oveq2 7439 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → ((abs‘𝐴)↑𝑘) = ((abs‘𝐴)↑𝑚))
145102, 144oveq12d 7449 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (𝑘 · ((abs‘𝐴)↑𝑘)) = (𝑚 · ((abs‘𝐴)↑𝑚)))
146145, 93breq12d 5161 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ((𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘) ↔ (𝑚 · ((abs‘𝐴)↑𝑚)) < ((((abs‘𝐴) + 1) / 2)↑𝑚)))
147146rspccva 3621 . . . . . . . . . . . 12 ((∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚 · ((abs‘𝐴)↑𝑚)) < ((((abs‘𝐴) + 1) / 2)↑𝑚))
148143, 147sylan 580 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚 · ((abs‘𝐴)↑𝑚)) < ((((abs‘𝐴) + 1) / 2)↑𝑚))
149141, 142, 148ltled 11407 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚 · ((abs‘𝐴)↑𝑚)) ≤ ((((abs‘𝐴) + 1) / 2)↑𝑚))
150136nn0cnd 12587 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ ℂ)
151138, 136expcld 14183 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐴𝑚) ∈ ℂ)
152150, 151absmuld 15490 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘(𝑚 · (𝐴𝑚))) = ((abs‘𝑚) · (abs‘(𝐴𝑚))))
153136nn0ge0d 12588 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → 0 ≤ 𝑚)
154137, 153absidd 15458 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘𝑚) = 𝑚)
155138, 136absexpd 15488 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘(𝐴𝑚)) = ((abs‘𝐴)↑𝑚))
156154, 155oveq12d 7449 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → ((abs‘𝑚) · (abs‘(𝐴𝑚))) = (𝑚 · ((abs‘𝐴)↑𝑚)))
157152, 156eqtrd 2775 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘(𝑚 · (𝐴𝑚))) = (𝑚 · ((abs‘𝐴)↑𝑚)))
158142recnd 11287 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → ((((abs‘𝐴) + 1) / 2)↑𝑚) ∈ ℂ)
159158mullidd 11277 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (1 · ((((abs‘𝐴) + 1) / 2)↑𝑚)) = ((((abs‘𝐴) + 1) / 2)↑𝑚))
160149, 157, 1593brtr4d 5180 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘(𝑚 · (𝐴𝑚))) ≤ (1 · ((((abs‘𝐴) + 1) / 2)↑𝑚)))
161136, 106syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) = (𝑚 · (𝐴𝑚)))
162161fveq2d 6911 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘(𝐹𝑚)) = (abs‘(𝑚 · (𝐴𝑚))))
163136, 96syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑚) = ((((abs‘𝐴) + 1) / 2)↑𝑚))
164163oveq2d 7447 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (1 · ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑚)) = (1 · ((((abs‘𝐴) + 1) / 2)↑𝑚)))
165160, 162, 1643brtr4d 5180 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘(𝐹𝑚)) ≤ (1 · ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑚)))
16625, 92, 101, 113, 133, 134, 165cvgcmpce 15851 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) → seq0( + , 𝐹) ∈ dom ⇝ )
167166expr 456 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘) → seq0( + , 𝐹) ∈ dom ⇝ ))
168167adantlr 715 . . . . 5 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ0) → (∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘) → seq0( + , 𝐹) ∈ dom ⇝ ))
16991, 168sylbid 240 . . . 4 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ0) → (∀𝑘 ∈ (ℤ𝑛)(1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) → seq0( + , 𝐹) ∈ dom ⇝ ))
170169rexlimdva 3153 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → (∃𝑛 ∈ ℕ0𝑘 ∈ (ℤ𝑛)(1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) → seq0( + , 𝐹) ∈ dom ⇝ ))
17160, 170mpd 15 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → seq0( + , 𝐹) ∈ dom ⇝ )
17237, 171pm2.61dane 3027 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  {csn 4631   class class class wbr 5148  cmpt 5231   × cxp 5687  dom cdm 5689  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  cn 12264  2c2 12319  0cn0 12524  cz 12611  cuz 12876  +crp 13032  seqcseq 14039  cexp 14099  abscabs 15270  cli 15517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720
This theorem is referenced by:  radcnvlem1  26471
  Copyright terms: Public domain W3C validator