MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geomulcvg Structured version   Visualization version   GIF version

Theorem geomulcvg 15011
Description: The geometric series converges even if it is multiplied by 𝑘 to result in the larger series 𝑘 · 𝐴𝑘. (Contributed by Mario Carneiro, 27-Mar-2015.)
Hypothesis
Ref Expression
geomulcvg.1 𝐹 = (𝑘 ∈ ℕ0 ↦ (𝑘 · (𝐴𝑘)))
Assertion
Ref Expression
geomulcvg ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , 𝐹) ∈ dom ⇝ )
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝐹(𝑘)

Proof of Theorem geomulcvg
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 geomulcvg.1 . . . . . . 7 𝐹 = (𝑘 ∈ ℕ0 ↦ (𝑘 · (𝐴𝑘)))
2 elnn0 11644 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
3 simpr 479 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → 𝐴 = 0)
43oveq1d 6937 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → (𝐴𝑘) = (0↑𝑘))
5 0exp 13213 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (0↑𝑘) = 0)
64, 5sylan9eq 2833 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) = 0)
76oveq2d 6938 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ) → (𝑘 · (𝐴𝑘)) = (𝑘 · 0))
8 nncn 11383 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
98adantl 475 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
109mul01d 10575 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ) → (𝑘 · 0) = 0)
117, 10eqtrd 2813 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ) → (𝑘 · (𝐴𝑘)) = 0)
12 simpr 479 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → 𝑘 = 0)
1312oveq1d 6937 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → (𝑘 · (𝐴𝑘)) = (0 · (𝐴𝑘)))
14 simplll 765 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → 𝐴 ∈ ℂ)
15 0nn0 11659 . . . . . . . . . . . . . 14 0 ∈ ℕ0
1612, 15syl6eqel 2866 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → 𝑘 ∈ ℕ0)
1714, 16expcld 13327 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → (𝐴𝑘) ∈ ℂ)
1817mul02d 10574 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → (0 · (𝐴𝑘)) = 0)
1913, 18eqtrd 2813 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → (𝑘 · (𝐴𝑘)) = 0)
2011, 19jaodan 943 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ (𝑘 ∈ ℕ ∨ 𝑘 = 0)) → (𝑘 · (𝐴𝑘)) = 0)
212, 20sylan2b 587 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ0) → (𝑘 · (𝐴𝑘)) = 0)
2221mpteq2dva 4979 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → (𝑘 ∈ ℕ0 ↦ (𝑘 · (𝐴𝑘))) = (𝑘 ∈ ℕ0 ↦ 0))
231, 22syl5eq 2825 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → 𝐹 = (𝑘 ∈ ℕ0 ↦ 0))
24 fconstmpt 5411 . . . . . . 7 (ℕ0 × {0}) = (𝑘 ∈ ℕ0 ↦ 0)
25 nn0uz 12028 . . . . . . . 8 0 = (ℤ‘0)
2625xpeq1i 5381 . . . . . . 7 (ℕ0 × {0}) = ((ℤ‘0) × {0})
2724, 26eqtr3i 2803 . . . . . 6 (𝑘 ∈ ℕ0 ↦ 0) = ((ℤ‘0) × {0})
2823, 27syl6eq 2829 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → 𝐹 = ((ℤ‘0) × {0}))
2928seqeq3d 13127 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → seq0( + , 𝐹) = seq0( + , ((ℤ‘0) × {0})))
30 0z 11739 . . . . 5 0 ∈ ℤ
31 serclim0 14716 . . . . 5 (0 ∈ ℤ → seq0( + , ((ℤ‘0) × {0})) ⇝ 0)
3230, 31ax-mp 5 . . . 4 seq0( + , ((ℤ‘0) × {0})) ⇝ 0
3329, 32syl6eqbr 4925 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → seq0( + , 𝐹) ⇝ 0)
34 seqex 13121 . . . 4 seq0( + , 𝐹) ∈ V
35 c0ex 10370 . . . 4 0 ∈ V
3634, 35breldm 5574 . . 3 (seq0( + , 𝐹) ⇝ 0 → seq0( + , 𝐹) ∈ dom ⇝ )
3733, 36syl 17 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → seq0( + , 𝐹) ∈ dom ⇝ )
38 1red 10377 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → 1 ∈ ℝ)
39 abscl 14425 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
4039adantr 474 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℝ)
41 peano2re 10549 . . . . . . . 8 ((abs‘𝐴) ∈ ℝ → ((abs‘𝐴) + 1) ∈ ℝ)
4240, 41syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴) + 1) ∈ ℝ)
4342rehalfcld 11629 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (((abs‘𝐴) + 1) / 2) ∈ ℝ)
4443adantr 474 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) + 1) / 2) ∈ ℝ)
45 absrpcl 14435 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
4645adantlr 705 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
4744, 46rerpdivcld 12212 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → ((((abs‘𝐴) + 1) / 2) / (abs‘𝐴)) ∈ ℝ)
4840recnd 10405 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℂ)
4948mulid2d 10395 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 · (abs‘𝐴)) = (abs‘𝐴))
50 simpr 479 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1)
51 1re 10376 . . . . . . . . 9 1 ∈ ℝ
52 avglt1 11620 . . . . . . . . 9 (((abs‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝐴) < 1 ↔ (abs‘𝐴) < (((abs‘𝐴) + 1) / 2)))
5340, 51, 52sylancl 580 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴) < 1 ↔ (abs‘𝐴) < (((abs‘𝐴) + 1) / 2)))
5450, 53mpbid 224 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < (((abs‘𝐴) + 1) / 2))
5549, 54eqbrtrd 4908 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 · (abs‘𝐴)) < (((abs‘𝐴) + 1) / 2))
5655adantr 474 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → (1 · (abs‘𝐴)) < (((abs‘𝐴) + 1) / 2))
5738, 44, 46ltmuldivd 12228 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → ((1 · (abs‘𝐴)) < (((abs‘𝐴) + 1) / 2) ↔ 1 < ((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))))
5856, 57mpbid 224 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → 1 < ((((abs‘𝐴) + 1) / 2) / (abs‘𝐴)))
59 expmulnbnd 13315 . . . 4 ((1 ∈ ℝ ∧ ((((abs‘𝐴) + 1) / 2) / (abs‘𝐴)) ∈ ℝ ∧ 1 < ((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))) → ∃𝑛 ∈ ℕ0𝑘 ∈ (ℤ𝑛)(1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘))
6038, 47, 58, 59syl3anc 1439 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ0𝑘 ∈ (ℤ𝑛)(1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘))
61 eluznn0 12064 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ0)
62 nn0cn 11653 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
6362adantl 475 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
6463mulid2d 10395 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (1 · 𝑘) = 𝑘)
6543recnd 10405 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (((abs‘𝐴) + 1) / 2) ∈ ℂ)
6665ad2antrr 716 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (((abs‘𝐴) + 1) / 2) ∈ ℂ)
6748ad2antrr 716 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (abs‘𝐴) ∈ ℂ)
6846adantr 474 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ+)
6968rpne0d 12186 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (abs‘𝐴) ≠ 0)
70 simpr 479 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
7166, 67, 69, 70expdivd 13341 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) = (((((abs‘𝐴) + 1) / 2)↑𝑘) / ((abs‘𝐴)↑𝑘)))
7264, 71breq12d 4899 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → ((1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) ↔ 𝑘 < (((((abs‘𝐴) + 1) / 2)↑𝑘) / ((abs‘𝐴)↑𝑘))))
73 nn0re 11652 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
7473adantl 475 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
75 reexpcl 13195 . . . . . . . . . . 11 (((((abs‘𝐴) + 1) / 2) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((((abs‘𝐴) + 1) / 2)↑𝑘) ∈ ℝ)
7644, 75sylan 575 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → ((((abs‘𝐴) + 1) / 2)↑𝑘) ∈ ℝ)
7740adantr 474 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
78 reexpcl 13195 . . . . . . . . . . 11 (((abs‘𝐴) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
7977, 78sylan 575 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
8077adantr 474 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
81 nn0z 11752 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
8281adantl 475 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
8368rpgt0d 12184 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → 0 < (abs‘𝐴))
84 expgt0 13211 . . . . . . . . . . 11 (((abs‘𝐴) ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < (abs‘𝐴)) → 0 < ((abs‘𝐴)↑𝑘))
8580, 82, 83, 84syl3anc 1439 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → 0 < ((abs‘𝐴)↑𝑘))
86 ltmuldiv 11250 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ ((((abs‘𝐴) + 1) / 2)↑𝑘) ∈ ℝ ∧ (((abs‘𝐴)↑𝑘) ∈ ℝ ∧ 0 < ((abs‘𝐴)↑𝑘))) → ((𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘) ↔ 𝑘 < (((((abs‘𝐴) + 1) / 2)↑𝑘) / ((abs‘𝐴)↑𝑘))))
8774, 76, 79, 85, 86syl112anc 1442 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → ((𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘) ↔ 𝑘 < (((((abs‘𝐴) + 1) / 2)↑𝑘) / ((abs‘𝐴)↑𝑘))))
8872, 87bitr4d 274 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → ((1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) ↔ (𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘)))
8961, 88sylan2 586 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ (𝑛 ∈ ℕ0𝑘 ∈ (ℤ𝑛))) → ((1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) ↔ (𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘)))
9089anassrs 461 . . . . . 6 (((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ𝑛)) → ((1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) ↔ (𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘)))
9190ralbidva 3166 . . . . 5 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ0) → (∀𝑘 ∈ (ℤ𝑛)(1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) ↔ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘)))
92 simprl 761 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) → 𝑛 ∈ ℕ0)
93 oveq2 6930 . . . . . . . . . . 11 (𝑘 = 𝑚 → ((((abs‘𝐴) + 1) / 2)↑𝑘) = ((((abs‘𝐴) + 1) / 2)↑𝑚))
94 eqid 2777 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘)) = (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))
95 ovex 6954 . . . . . . . . . . 11 ((((abs‘𝐴) + 1) / 2)↑𝑚) ∈ V
9693, 94, 95fvmpt 6542 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑚) = ((((abs‘𝐴) + 1) / 2)↑𝑚))
9796adantl 475 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑚) = ((((abs‘𝐴) + 1) / 2)↑𝑚))
9843ad2antrr 716 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → (((abs‘𝐴) + 1) / 2) ∈ ℝ)
99 simpr 479 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
10098, 99reexpcld 13344 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → ((((abs‘𝐴) + 1) / 2)↑𝑚) ∈ ℝ)
10197, 100eqeltrd 2858 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑚) ∈ ℝ)
102 id 22 . . . . . . . . . . . 12 (𝑘 = 𝑚𝑘 = 𝑚)
103 oveq2 6930 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (𝐴𝑘) = (𝐴𝑚))
104102, 103oveq12d 6940 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑘 · (𝐴𝑘)) = (𝑚 · (𝐴𝑚)))
105 ovex 6954 . . . . . . . . . . 11 (𝑚 · (𝐴𝑚)) ∈ V
106104, 1, 105fvmpt 6542 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → (𝐹𝑚) = (𝑚 · (𝐴𝑚)))
107106adantl 475 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → (𝐹𝑚) = (𝑚 · (𝐴𝑚)))
108 nn0cn 11653 . . . . . . . . . . 11 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
109108adantl 475 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
110 expcl 13196 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (𝐴𝑚) ∈ ℂ)
111110ad4ant14 742 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → (𝐴𝑚) ∈ ℂ)
112109, 111mulcld 10397 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → (𝑚 · (𝐴𝑚)) ∈ ℂ)
113107, 112eqeltrd 2858 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → (𝐹𝑚) ∈ ℂ)
114 0red 10380 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ∈ ℝ)
115 absge0 14434 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
116115adantr 474 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ≤ (abs‘𝐴))
117114, 40, 43, 116, 54lelttrd 10534 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 < (((abs‘𝐴) + 1) / 2))
118114, 43, 117ltled 10524 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ≤ (((abs‘𝐴) + 1) / 2))
11943, 118absidd 14569 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(((abs‘𝐴) + 1) / 2)) = (((abs‘𝐴) + 1) / 2))
120 avglt2 11621 . . . . . . . . . . . . . 14 (((abs‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝐴) < 1 ↔ (((abs‘𝐴) + 1) / 2) < 1))
12140, 51, 120sylancl 580 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴) < 1 ↔ (((abs‘𝐴) + 1) / 2) < 1))
12250, 121mpbid 224 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (((abs‘𝐴) + 1) / 2) < 1)
123119, 122eqbrtrd 4908 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(((abs‘𝐴) + 1) / 2)) < 1)
124 oveq2 6930 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((((abs‘𝐴) + 1) / 2)↑𝑘) = ((((abs‘𝐴) + 1) / 2)↑𝑛))
125 ovex 6954 . . . . . . . . . . . . 13 ((((abs‘𝐴) + 1) / 2)↑𝑛) ∈ V
126124, 94, 125fvmpt 6542 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑛) = ((((abs‘𝐴) + 1) / 2)↑𝑛))
127126adantl 475 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑛) = ((((abs‘𝐴) + 1) / 2)↑𝑛))
12865, 123, 127geolim 15005 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))) ⇝ (1 / (1 − (((abs‘𝐴) + 1) / 2))))
129 seqex 13121 . . . . . . . . . . 11 seq0( + , (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∈ V
130 ovex 6954 . . . . . . . . . . 11 (1 / (1 − (((abs‘𝐴) + 1) / 2))) ∈ V
131129, 130breldm 5574 . . . . . . . . . 10 (seq0( + , (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))) ⇝ (1 / (1 − (((abs‘𝐴) + 1) / 2))) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∈ dom ⇝ )
132128, 131syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∈ dom ⇝ )
133132adantr 474 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∈ dom ⇝ )
134 1red 10377 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) → 1 ∈ ℝ)
135 eluznn0 12064 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ ℕ0)
13692, 135sylan 575 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ ℕ0)
137136nn0red 11703 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ ℝ)
138 simplll 765 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐴 ∈ ℂ)
139138abscld 14583 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘𝐴) ∈ ℝ)
140139, 136reexpcld 13344 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → ((abs‘𝐴)↑𝑚) ∈ ℝ)
141137, 140remulcld 10407 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚 · ((abs‘𝐴)↑𝑚)) ∈ ℝ)
142136, 100syldan 585 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → ((((abs‘𝐴) + 1) / 2)↑𝑚) ∈ ℝ)
143 simprr 763 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) → ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))
144 oveq2 6930 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → ((abs‘𝐴)↑𝑘) = ((abs‘𝐴)↑𝑚))
145102, 144oveq12d 6940 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (𝑘 · ((abs‘𝐴)↑𝑘)) = (𝑚 · ((abs‘𝐴)↑𝑚)))
146145, 93breq12d 4899 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ((𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘) ↔ (𝑚 · ((abs‘𝐴)↑𝑚)) < ((((abs‘𝐴) + 1) / 2)↑𝑚)))
147146rspccva 3509 . . . . . . . . . . . 12 ((∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚 · ((abs‘𝐴)↑𝑚)) < ((((abs‘𝐴) + 1) / 2)↑𝑚))
148143, 147sylan 575 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚 · ((abs‘𝐴)↑𝑚)) < ((((abs‘𝐴) + 1) / 2)↑𝑚))
149141, 142, 148ltled 10524 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚 · ((abs‘𝐴)↑𝑚)) ≤ ((((abs‘𝐴) + 1) / 2)↑𝑚))
150136nn0cnd 11704 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ ℂ)
151138, 136expcld 13327 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐴𝑚) ∈ ℂ)
152150, 151absmuld 14601 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘(𝑚 · (𝐴𝑚))) = ((abs‘𝑚) · (abs‘(𝐴𝑚))))
153136nn0ge0d 11705 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → 0 ≤ 𝑚)
154137, 153absidd 14569 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘𝑚) = 𝑚)
155138, 136absexpd 14599 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘(𝐴𝑚)) = ((abs‘𝐴)↑𝑚))
156154, 155oveq12d 6940 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → ((abs‘𝑚) · (abs‘(𝐴𝑚))) = (𝑚 · ((abs‘𝐴)↑𝑚)))
157152, 156eqtrd 2813 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘(𝑚 · (𝐴𝑚))) = (𝑚 · ((abs‘𝐴)↑𝑚)))
158142recnd 10405 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → ((((abs‘𝐴) + 1) / 2)↑𝑚) ∈ ℂ)
159158mulid2d 10395 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (1 · ((((abs‘𝐴) + 1) / 2)↑𝑚)) = ((((abs‘𝐴) + 1) / 2)↑𝑚))
160149, 157, 1593brtr4d 4918 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘(𝑚 · (𝐴𝑚))) ≤ (1 · ((((abs‘𝐴) + 1) / 2)↑𝑚)))
161136, 106syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) = (𝑚 · (𝐴𝑚)))
162161fveq2d 6450 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘(𝐹𝑚)) = (abs‘(𝑚 · (𝐴𝑚))))
163136, 96syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑚) = ((((abs‘𝐴) + 1) / 2)↑𝑚))
164163oveq2d 6938 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (1 · ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑚)) = (1 · ((((abs‘𝐴) + 1) / 2)↑𝑚)))
165160, 162, 1643brtr4d 4918 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘(𝐹𝑚)) ≤ (1 · ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑚)))
16625, 92, 101, 113, 133, 134, 165cvgcmpce 14954 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) → seq0( + , 𝐹) ∈ dom ⇝ )
167166expr 450 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘) → seq0( + , 𝐹) ∈ dom ⇝ ))
168167adantlr 705 . . . . 5 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ0) → (∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘) → seq0( + , 𝐹) ∈ dom ⇝ ))
16991, 168sylbid 232 . . . 4 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ0) → (∀𝑘 ∈ (ℤ𝑛)(1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) → seq0( + , 𝐹) ∈ dom ⇝ ))
170169rexlimdva 3212 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → (∃𝑛 ∈ ℕ0𝑘 ∈ (ℤ𝑛)(1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) → seq0( + , 𝐹) ∈ dom ⇝ ))
17160, 170mpd 15 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → seq0( + , 𝐹) ∈ dom ⇝ )
17237, 171pm2.61dane 3056 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 836   = wceq 1601  wcel 2106  wne 2968  wral 3089  wrex 3090  {csn 4397   class class class wbr 4886  cmpt 4965   × cxp 5353  dom cdm 5355  cfv 6135  (class class class)co 6922  cc 10270  cr 10271  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277   < clt 10411  cle 10412  cmin 10606   / cdiv 11032  cn 11374  2c2 11430  0cn0 11642  cz 11728  cuz 11992  +crp 12137  seqcseq 13119  cexp 13178  abscabs 14381  cli 14623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-ico 12493  df-fz 12644  df-fzo 12785  df-fl 12912  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-limsup 14610  df-clim 14627  df-rlim 14628  df-sum 14825
This theorem is referenced by:  radcnvlem1  24604
  Copyright terms: Public domain W3C validator