MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geomulcvg Structured version   Visualization version   GIF version

Theorem geomulcvg 15588
Description: The geometric series converges even if it is multiplied by 𝑘 to result in the larger series 𝑘 · 𝐴𝑘. (Contributed by Mario Carneiro, 27-Mar-2015.)
Hypothesis
Ref Expression
geomulcvg.1 𝐹 = (𝑘 ∈ ℕ0 ↦ (𝑘 · (𝐴𝑘)))
Assertion
Ref Expression
geomulcvg ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , 𝐹) ∈ dom ⇝ )
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝐹(𝑘)

Proof of Theorem geomulcvg
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 geomulcvg.1 . . . . . . 7 𝐹 = (𝑘 ∈ ℕ0 ↦ (𝑘 · (𝐴𝑘)))
2 elnn0 12235 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
3 simpr 485 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → 𝐴 = 0)
43oveq1d 7290 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → (𝐴𝑘) = (0↑𝑘))
5 0exp 13818 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (0↑𝑘) = 0)
64, 5sylan9eq 2798 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) = 0)
76oveq2d 7291 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ) → (𝑘 · (𝐴𝑘)) = (𝑘 · 0))
8 nncn 11981 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
98adantl 482 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
109mul01d 11174 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ) → (𝑘 · 0) = 0)
117, 10eqtrd 2778 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ) → (𝑘 · (𝐴𝑘)) = 0)
12 simpr 485 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → 𝑘 = 0)
1312oveq1d 7290 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → (𝑘 · (𝐴𝑘)) = (0 · (𝐴𝑘)))
14 simplll 772 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → 𝐴 ∈ ℂ)
15 0nn0 12248 . . . . . . . . . . . . . 14 0 ∈ ℕ0
1612, 15eqeltrdi 2847 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → 𝑘 ∈ ℕ0)
1714, 16expcld 13864 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → (𝐴𝑘) ∈ ℂ)
1817mul02d 11173 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → (0 · (𝐴𝑘)) = 0)
1913, 18eqtrd 2778 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 = 0) → (𝑘 · (𝐴𝑘)) = 0)
2011, 19jaodan 955 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ (𝑘 ∈ ℕ ∨ 𝑘 = 0)) → (𝑘 · (𝐴𝑘)) = 0)
212, 20sylan2b 594 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) ∧ 𝑘 ∈ ℕ0) → (𝑘 · (𝐴𝑘)) = 0)
2221mpteq2dva 5174 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → (𝑘 ∈ ℕ0 ↦ (𝑘 · (𝐴𝑘))) = (𝑘 ∈ ℕ0 ↦ 0))
231, 22eqtrid 2790 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → 𝐹 = (𝑘 ∈ ℕ0 ↦ 0))
24 fconstmpt 5649 . . . . . . 7 (ℕ0 × {0}) = (𝑘 ∈ ℕ0 ↦ 0)
25 nn0uz 12620 . . . . . . . 8 0 = (ℤ‘0)
2625xpeq1i 5615 . . . . . . 7 (ℕ0 × {0}) = ((ℤ‘0) × {0})
2724, 26eqtr3i 2768 . . . . . 6 (𝑘 ∈ ℕ0 ↦ 0) = ((ℤ‘0) × {0})
2823, 27eqtrdi 2794 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → 𝐹 = ((ℤ‘0) × {0}))
2928seqeq3d 13729 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → seq0( + , 𝐹) = seq0( + , ((ℤ‘0) × {0})))
30 0z 12330 . . . . 5 0 ∈ ℤ
31 serclim0 15286 . . . . 5 (0 ∈ ℤ → seq0( + , ((ℤ‘0) × {0})) ⇝ 0)
3230, 31ax-mp 5 . . . 4 seq0( + , ((ℤ‘0) × {0})) ⇝ 0
3329, 32eqbrtrdi 5113 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → seq0( + , 𝐹) ⇝ 0)
34 seqex 13723 . . . 4 seq0( + , 𝐹) ∈ V
35 c0ex 10969 . . . 4 0 ∈ V
3634, 35breldm 5817 . . 3 (seq0( + , 𝐹) ⇝ 0 → seq0( + , 𝐹) ∈ dom ⇝ )
3733, 36syl 17 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 = 0) → seq0( + , 𝐹) ∈ dom ⇝ )
38 1red 10976 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → 1 ∈ ℝ)
39 abscl 14990 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
4039adantr 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℝ)
41 peano2re 11148 . . . . . . . 8 ((abs‘𝐴) ∈ ℝ → ((abs‘𝐴) + 1) ∈ ℝ)
4240, 41syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴) + 1) ∈ ℝ)
4342rehalfcld 12220 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (((abs‘𝐴) + 1) / 2) ∈ ℝ)
4443adantr 481 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → (((abs‘𝐴) + 1) / 2) ∈ ℝ)
45 absrpcl 15000 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
4645adantlr 712 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
4744, 46rerpdivcld 12803 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → ((((abs‘𝐴) + 1) / 2) / (abs‘𝐴)) ∈ ℝ)
4840recnd 11003 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℂ)
4948mulid2d 10993 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 · (abs‘𝐴)) = (abs‘𝐴))
50 simpr 485 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1)
51 1re 10975 . . . . . . . . 9 1 ∈ ℝ
52 avglt1 12211 . . . . . . . . 9 (((abs‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝐴) < 1 ↔ (abs‘𝐴) < (((abs‘𝐴) + 1) / 2)))
5340, 51, 52sylancl 586 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴) < 1 ↔ (abs‘𝐴) < (((abs‘𝐴) + 1) / 2)))
5450, 53mpbid 231 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < (((abs‘𝐴) + 1) / 2))
5549, 54eqbrtrd 5096 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (1 · (abs‘𝐴)) < (((abs‘𝐴) + 1) / 2))
5655adantr 481 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → (1 · (abs‘𝐴)) < (((abs‘𝐴) + 1) / 2))
5738, 44, 46ltmuldivd 12819 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → ((1 · (abs‘𝐴)) < (((abs‘𝐴) + 1) / 2) ↔ 1 < ((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))))
5856, 57mpbid 231 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → 1 < ((((abs‘𝐴) + 1) / 2) / (abs‘𝐴)))
59 expmulnbnd 13950 . . . 4 ((1 ∈ ℝ ∧ ((((abs‘𝐴) + 1) / 2) / (abs‘𝐴)) ∈ ℝ ∧ 1 < ((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))) → ∃𝑛 ∈ ℕ0𝑘 ∈ (ℤ𝑛)(1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘))
6038, 47, 58, 59syl3anc 1370 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ0𝑘 ∈ (ℤ𝑛)(1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘))
61 eluznn0 12657 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ0)
62 nn0cn 12243 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
6362adantl 482 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
6463mulid2d 10993 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (1 · 𝑘) = 𝑘)
6543recnd 11003 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (((abs‘𝐴) + 1) / 2) ∈ ℂ)
6665ad2antrr 723 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (((abs‘𝐴) + 1) / 2) ∈ ℂ)
6748ad2antrr 723 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (abs‘𝐴) ∈ ℂ)
6846adantr 481 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ+)
6968rpne0d 12777 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (abs‘𝐴) ≠ 0)
70 simpr 485 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
7166, 67, 69, 70expdivd 13878 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) = (((((abs‘𝐴) + 1) / 2)↑𝑘) / ((abs‘𝐴)↑𝑘)))
7264, 71breq12d 5087 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → ((1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) ↔ 𝑘 < (((((abs‘𝐴) + 1) / 2)↑𝑘) / ((abs‘𝐴)↑𝑘))))
73 nn0re 12242 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
7473adantl 482 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
75 reexpcl 13799 . . . . . . . . . . 11 (((((abs‘𝐴) + 1) / 2) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((((abs‘𝐴) + 1) / 2)↑𝑘) ∈ ℝ)
7644, 75sylan 580 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → ((((abs‘𝐴) + 1) / 2)↑𝑘) ∈ ℝ)
7740adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
78 reexpcl 13799 . . . . . . . . . . 11 (((abs‘𝐴) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
7977, 78sylan 580 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
8077adantr 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
81 nn0z 12343 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
8281adantl 482 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
8368rpgt0d 12775 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → 0 < (abs‘𝐴))
84 expgt0 13816 . . . . . . . . . . 11 (((abs‘𝐴) ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < (abs‘𝐴)) → 0 < ((abs‘𝐴)↑𝑘))
8580, 82, 83, 84syl3anc 1370 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → 0 < ((abs‘𝐴)↑𝑘))
86 ltmuldiv 11848 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ ((((abs‘𝐴) + 1) / 2)↑𝑘) ∈ ℝ ∧ (((abs‘𝐴)↑𝑘) ∈ ℝ ∧ 0 < ((abs‘𝐴)↑𝑘))) → ((𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘) ↔ 𝑘 < (((((abs‘𝐴) + 1) / 2)↑𝑘) / ((abs‘𝐴)↑𝑘))))
8774, 76, 79, 85, 86syl112anc 1373 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → ((𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘) ↔ 𝑘 < (((((abs‘𝐴) + 1) / 2)↑𝑘) / ((abs‘𝐴)↑𝑘))))
8872, 87bitr4d 281 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑘 ∈ ℕ0) → ((1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) ↔ (𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘)))
8961, 88sylan2 593 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ (𝑛 ∈ ℕ0𝑘 ∈ (ℤ𝑛))) → ((1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) ↔ (𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘)))
9089anassrs 468 . . . . . 6 (((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ𝑛)) → ((1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) ↔ (𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘)))
9190ralbidva 3111 . . . . 5 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ0) → (∀𝑘 ∈ (ℤ𝑛)(1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) ↔ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘)))
92 simprl 768 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) → 𝑛 ∈ ℕ0)
93 oveq2 7283 . . . . . . . . . . 11 (𝑘 = 𝑚 → ((((abs‘𝐴) + 1) / 2)↑𝑘) = ((((abs‘𝐴) + 1) / 2)↑𝑚))
94 eqid 2738 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘)) = (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))
95 ovex 7308 . . . . . . . . . . 11 ((((abs‘𝐴) + 1) / 2)↑𝑚) ∈ V
9693, 94, 95fvmpt 6875 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑚) = ((((abs‘𝐴) + 1) / 2)↑𝑚))
9796adantl 482 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑚) = ((((abs‘𝐴) + 1) / 2)↑𝑚))
9843ad2antrr 723 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → (((abs‘𝐴) + 1) / 2) ∈ ℝ)
99 simpr 485 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
10098, 99reexpcld 13881 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → ((((abs‘𝐴) + 1) / 2)↑𝑚) ∈ ℝ)
10197, 100eqeltrd 2839 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑚) ∈ ℝ)
102 id 22 . . . . . . . . . . . 12 (𝑘 = 𝑚𝑘 = 𝑚)
103 oveq2 7283 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (𝐴𝑘) = (𝐴𝑚))
104102, 103oveq12d 7293 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑘 · (𝐴𝑘)) = (𝑚 · (𝐴𝑚)))
105 ovex 7308 . . . . . . . . . . 11 (𝑚 · (𝐴𝑚)) ∈ V
106104, 1, 105fvmpt 6875 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → (𝐹𝑚) = (𝑚 · (𝐴𝑚)))
107106adantl 482 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → (𝐹𝑚) = (𝑚 · (𝐴𝑚)))
108 nn0cn 12243 . . . . . . . . . . 11 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
109108adantl 482 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
110 expcl 13800 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (𝐴𝑚) ∈ ℂ)
111110ad4ant14 749 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → (𝐴𝑚) ∈ ℂ)
112109, 111mulcld 10995 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → (𝑚 · (𝐴𝑚)) ∈ ℂ)
113107, 112eqeltrd 2839 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ ℕ0) → (𝐹𝑚) ∈ ℂ)
114 0red 10978 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ∈ ℝ)
115 absge0 14999 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
116115adantr 481 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ≤ (abs‘𝐴))
117114, 40, 43, 116, 54lelttrd 11133 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 < (((abs‘𝐴) + 1) / 2))
118114, 43, 117ltled 11123 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ≤ (((abs‘𝐴) + 1) / 2))
11943, 118absidd 15134 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(((abs‘𝐴) + 1) / 2)) = (((abs‘𝐴) + 1) / 2))
120 avglt2 12212 . . . . . . . . . . . . . 14 (((abs‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝐴) < 1 ↔ (((abs‘𝐴) + 1) / 2) < 1))
12140, 51, 120sylancl 586 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴) < 1 ↔ (((abs‘𝐴) + 1) / 2) < 1))
12250, 121mpbid 231 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (((abs‘𝐴) + 1) / 2) < 1)
123119, 122eqbrtrd 5096 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(((abs‘𝐴) + 1) / 2)) < 1)
124 oveq2 7283 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((((abs‘𝐴) + 1) / 2)↑𝑘) = ((((abs‘𝐴) + 1) / 2)↑𝑛))
125 ovex 7308 . . . . . . . . . . . . 13 ((((abs‘𝐴) + 1) / 2)↑𝑛) ∈ V
126124, 94, 125fvmpt 6875 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑛) = ((((abs‘𝐴) + 1) / 2)↑𝑛))
127126adantl 482 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑛) = ((((abs‘𝐴) + 1) / 2)↑𝑛))
12865, 123, 127geolim 15582 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))) ⇝ (1 / (1 − (((abs‘𝐴) + 1) / 2))))
129 seqex 13723 . . . . . . . . . . 11 seq0( + , (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∈ V
130 ovex 7308 . . . . . . . . . . 11 (1 / (1 − (((abs‘𝐴) + 1) / 2))) ∈ V
131129, 130breldm 5817 . . . . . . . . . 10 (seq0( + , (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))) ⇝ (1 / (1 − (((abs‘𝐴) + 1) / 2))) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∈ dom ⇝ )
132128, 131syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∈ dom ⇝ )
133132adantr 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∈ dom ⇝ )
134 1red 10976 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) → 1 ∈ ℝ)
135 eluznn0 12657 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ ℕ0)
13692, 135sylan 580 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ ℕ0)
137136nn0red 12294 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ ℝ)
138 simplll 772 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐴 ∈ ℂ)
139138abscld 15148 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘𝐴) ∈ ℝ)
140139, 136reexpcld 13881 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → ((abs‘𝐴)↑𝑚) ∈ ℝ)
141137, 140remulcld 11005 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚 · ((abs‘𝐴)↑𝑚)) ∈ ℝ)
142136, 100syldan 591 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → ((((abs‘𝐴) + 1) / 2)↑𝑚) ∈ ℝ)
143 simprr 770 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) → ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))
144 oveq2 7283 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → ((abs‘𝐴)↑𝑘) = ((abs‘𝐴)↑𝑚))
145102, 144oveq12d 7293 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (𝑘 · ((abs‘𝐴)↑𝑘)) = (𝑚 · ((abs‘𝐴)↑𝑚)))
146145, 93breq12d 5087 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ((𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘) ↔ (𝑚 · ((abs‘𝐴)↑𝑚)) < ((((abs‘𝐴) + 1) / 2)↑𝑚)))
147146rspccva 3560 . . . . . . . . . . . 12 ((∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚 · ((abs‘𝐴)↑𝑚)) < ((((abs‘𝐴) + 1) / 2)↑𝑚))
148143, 147sylan 580 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚 · ((abs‘𝐴)↑𝑚)) < ((((abs‘𝐴) + 1) / 2)↑𝑚))
149141, 142, 148ltled 11123 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑚 · ((abs‘𝐴)↑𝑚)) ≤ ((((abs‘𝐴) + 1) / 2)↑𝑚))
150136nn0cnd 12295 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ ℂ)
151138, 136expcld 13864 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐴𝑚) ∈ ℂ)
152150, 151absmuld 15166 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘(𝑚 · (𝐴𝑚))) = ((abs‘𝑚) · (abs‘(𝐴𝑚))))
153136nn0ge0d 12296 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → 0 ≤ 𝑚)
154137, 153absidd 15134 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘𝑚) = 𝑚)
155138, 136absexpd 15164 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘(𝐴𝑚)) = ((abs‘𝐴)↑𝑚))
156154, 155oveq12d 7293 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → ((abs‘𝑚) · (abs‘(𝐴𝑚))) = (𝑚 · ((abs‘𝐴)↑𝑚)))
157152, 156eqtrd 2778 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘(𝑚 · (𝐴𝑚))) = (𝑚 · ((abs‘𝐴)↑𝑚)))
158142recnd 11003 . . . . . . . . . . 11 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → ((((abs‘𝐴) + 1) / 2)↑𝑚) ∈ ℂ)
159158mulid2d 10993 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (1 · ((((abs‘𝐴) + 1) / 2)↑𝑚)) = ((((abs‘𝐴) + 1) / 2)↑𝑚))
160149, 157, 1593brtr4d 5106 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘(𝑚 · (𝐴𝑚))) ≤ (1 · ((((abs‘𝐴) + 1) / 2)↑𝑚)))
161136, 106syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) = (𝑚 · (𝐴𝑚)))
162161fveq2d 6778 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘(𝐹𝑚)) = (abs‘(𝑚 · (𝐴𝑚))))
163136, 96syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑚) = ((((abs‘𝐴) + 1) / 2)↑𝑚))
164163oveq2d 7291 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (1 · ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑚)) = (1 · ((((abs‘𝐴) + 1) / 2)↑𝑚)))
165160, 162, 1643brtr4d 5106 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) ∧ 𝑚 ∈ (ℤ𝑛)) → (abs‘(𝐹𝑚)) ≤ (1 · ((𝑘 ∈ ℕ0 ↦ ((((abs‘𝐴) + 1) / 2)↑𝑘))‘𝑚)))
16625, 92, 101, 113, 133, 134, 165cvgcmpce 15530 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ (𝑛 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘))) → seq0( + , 𝐹) ∈ dom ⇝ )
167166expr 457 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑛 ∈ ℕ0) → (∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘) → seq0( + , 𝐹) ∈ dom ⇝ ))
168167adantlr 712 . . . . 5 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ0) → (∀𝑘 ∈ (ℤ𝑛)(𝑘 · ((abs‘𝐴)↑𝑘)) < ((((abs‘𝐴) + 1) / 2)↑𝑘) → seq0( + , 𝐹) ∈ dom ⇝ ))
16991, 168sylbid 239 . . . 4 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) ∧ 𝑛 ∈ ℕ0) → (∀𝑘 ∈ (ℤ𝑛)(1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) → seq0( + , 𝐹) ∈ dom ⇝ ))
170169rexlimdva 3213 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → (∃𝑛 ∈ ℕ0𝑘 ∈ (ℤ𝑛)(1 · 𝑘) < (((((abs‘𝐴) + 1) / 2) / (abs‘𝐴))↑𝑘) → seq0( + , 𝐹) ∈ dom ⇝ ))
17160, 170mpd 15 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝐴 ≠ 0) → seq0( + , 𝐹) ∈ dom ⇝ )
17237, 171pm2.61dane 3032 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {csn 4561   class class class wbr 5074  cmpt 5157   × cxp 5587  dom cdm 5589  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  +crp 12730  seqcseq 13721  cexp 13782  abscabs 14945  cli 15193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398
This theorem is referenced by:  radcnvlem1  25572
  Copyright terms: Public domain W3C validator