Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inlinecirc02p Structured version   Visualization version   GIF version

Theorem inlinecirc02p 48175
Description: Intersection of a line with a circle: A line passing through a point within a circle around the origin intersects the circle at exactly two different points. (Contributed by AV, 9-May-2023.) (Revised by AV, 16-May-2023.)
Hypotheses
Ref Expression
inlinecirc02p.i 𝐼 = {1, 2}
inlinecirc02p.e 𝐸 = (ℝ^‘𝐼)
inlinecirc02p.p 𝑃 = (ℝ ↑m 𝐼)
inlinecirc02p.s 𝑆 = (Sphere‘𝐸)
inlinecirc02p.0 0 = (𝐼 × {0})
inlinecirc02p.l 𝐿 = (LineM𝐸)
inlinecirc02p.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
inlinecirc02p (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ∈ (Pairsproper𝑃))

Proof of Theorem inlinecirc02p
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inlinecirc02p.p . . . 4 𝑃 = (ℝ ↑m 𝐼)
21ovexi 7458 . . 3 𝑃 ∈ V
32a1i 11 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 𝑃 ∈ V)
4 simpl 481 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋𝑃𝑌𝑃𝑋𝑌))
5 simpl 481 . . . 4 ((𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅) → 𝑅 ∈ ℝ+)
65adantl 480 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 𝑅 ∈ ℝ+)
7 inlinecirc02p.i . . . . . . . 8 𝐼 = {1, 2}
87, 1rrx2pxel 48099 . . . . . . 7 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
983ad2ant1 1130 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘1) ∈ ℝ)
109adantr 479 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋‘1) ∈ ℝ)
117, 1rrx2pyel 48100 . . . . . . 7 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
12113ad2ant1 1130 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘2) ∈ ℝ)
1312adantr 479 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋‘2) ∈ ℝ)
147, 1rrx2pxel 48099 . . . . . . 7 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
15143ad2ant2 1131 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘1) ∈ ℝ)
1615adantr 479 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑌‘1) ∈ ℝ)
177, 1rrx2pyel 48100 . . . . . . 7 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
18173ad2ant2 1131 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘2) ∈ ℝ)
1918adantr 479 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑌‘2) ∈ ℝ)
20 eqid 2726 . . . . 5 ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑋‘1))
21 eqid 2726 . . . . 5 ((𝑋‘2) − (𝑌‘2)) = ((𝑋‘2) − (𝑌‘2))
22 eqid 2726 . . . . 5 ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))
23 rpre 13036 . . . . . . 7 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
2423adantr 479 . . . . . 6 ((𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅) → 𝑅 ∈ ℝ)
2524adantl 480 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 𝑅 ∈ ℝ)
26 inlinecirc02p.e . . . . . . . . . 10 𝐸 = (ℝ^‘𝐼)
27 2nn0 12541 . . . . . . . . . . . 12 2 ∈ ℕ0
28 eqid 2726 . . . . . . . . . . . . 13 (𝔼hil‘2) = (𝔼hil‘2)
2928ehlval 25433 . . . . . . . . . . . 12 (2 ∈ ℕ0 → (𝔼hil‘2) = (ℝ^‘(1...2)))
3027, 29ax-mp 5 . . . . . . . . . . 11 (𝔼hil‘2) = (ℝ^‘(1...2))
31 fz12pr 13612 . . . . . . . . . . . . 13 (1...2) = {1, 2}
3231, 7eqtr4i 2757 . . . . . . . . . . . 12 (1...2) = 𝐼
3332fveq2i 6904 . . . . . . . . . . 11 (ℝ^‘(1...2)) = (ℝ^‘𝐼)
3430, 33eqtri 2754 . . . . . . . . . 10 (𝔼hil‘2) = (ℝ^‘𝐼)
3526, 34eqtr4i 2757 . . . . . . . . 9 𝐸 = (𝔼hil‘2)
367oveq2i 7435 . . . . . . . . . 10 (ℝ ↑m 𝐼) = (ℝ ↑m {1, 2})
371, 36eqtri 2754 . . . . . . . . 9 𝑃 = (ℝ ↑m {1, 2})
38 inlinecirc02p.d . . . . . . . . 9 𝐷 = (dist‘𝐸)
39 inlinecirc02p.0 . . . . . . . . . 10 0 = (𝐼 × {0})
407xpeq1i 5708 . . . . . . . . . 10 (𝐼 × {0}) = ({1, 2} × {0})
4139, 40eqtri 2754 . . . . . . . . 9 0 = ({1, 2} × {0})
4235, 37, 38, 41ehl2eudis0lt 48114 . . . . . . . 8 ((𝑋𝑃𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 ↔ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
43423ad2antl1 1182 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 ↔ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
4443biimpd 228 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
4544impr 453 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2))
467, 1rrx2pnecoorneor 48103 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))
4746orcomd 869 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘2) ≠ (𝑌‘2) ∨ (𝑋‘1) ≠ (𝑌‘1)))
4847adantr 479 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑋‘2) ≠ (𝑌‘2) ∨ (𝑋‘1) ≠ (𝑌‘1)))
49 eqid 2726 . . . . 5 ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) = ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))
50 eqid 2726 . . . . 5 (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2)) = (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2))
5110, 13, 16, 19, 20, 21, 22, 25, 45, 48, 49, 502itscp 48169 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2)))
5214recnd 11292 . . . . . . . . . . . . 13 (𝑌𝑃 → (𝑌‘1) ∈ ℂ)
5352adantl 480 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝑌‘1) ∈ ℂ)
548recnd 11292 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘1) ∈ ℂ)
5554adantr 479 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝑋‘1) ∈ ℂ)
5611recnd 11292 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
5756adantr 479 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝑋‘2) ∈ ℂ)
5853, 55, 57subdird 11721 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → (((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) = (((𝑌‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑋‘2))))
5917recnd 11292 . . . . . . . . . . . . 13 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
6059adantl 480 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝑌‘2) ∈ ℂ)
6157, 60, 55subdird 11721 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)) = (((𝑋‘2) · (𝑋‘1)) − ((𝑌‘2) · (𝑋‘1))))
6258, 61oveq12d 7442 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = ((((𝑌‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑋‘2))) + (((𝑋‘2) · (𝑋‘1)) − ((𝑌‘2) · (𝑋‘1)))))
6353, 57mulcomd 11285 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → ((𝑌‘1) · (𝑋‘2)) = ((𝑋‘2) · (𝑌‘1)))
6463oveq1d 7439 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → (((𝑌‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑋‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑋‘2))))
6557, 55mulcomd 11285 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) · (𝑋‘1)) = ((𝑋‘1) · (𝑋‘2)))
6660, 55mulcomd 11285 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → ((𝑌‘2) · (𝑋‘1)) = ((𝑋‘1) · (𝑌‘2)))
6765, 66oveq12d 7442 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → (((𝑋‘2) · (𝑋‘1)) − ((𝑌‘2) · (𝑋‘1))) = (((𝑋‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑌‘2))))
6864, 67oveq12d 7442 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑋‘2))) + (((𝑋‘2) · (𝑋‘1)) − ((𝑌‘2) · (𝑋‘1)))) = ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑋‘2))) + (((𝑋‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑌‘2)))))
6957, 53mulcld 11284 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) · (𝑌‘1)) ∈ ℂ)
7055, 57mulcld 11284 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → ((𝑋‘1) · (𝑋‘2)) ∈ ℂ)
7155, 60mulcld 11284 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → ((𝑋‘1) · (𝑌‘2)) ∈ ℂ)
7269, 70, 71npncand 11645 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑋‘2))) + (((𝑋‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑌‘2)))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))
7362, 68, 723eqtrd 2770 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))
74733adant3 1129 . . . . . . . 8 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))
7574adantr 479 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))
7675eqcomd 2732 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))))
7776oveq1d 7439 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) = (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2))
7877oveq2d 7440 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2)) = (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2)))
7951, 78breqtrrd 5181 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2)))
80 inlinecirc02p.s . . . 4 𝑆 = (Sphere‘𝐸)
81 inlinecirc02p.l . . . 4 𝐿 = (LineM𝐸)
82 eqid 2726 . . . 4 (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2)) = (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2))
83 eqid 2726 . . . 4 (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
847, 26, 1, 80, 39, 81, 49, 82, 21, 20, 83inlinecirc02plem 48174 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2)))) → ∃𝑎𝑃𝑏𝑃 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {𝑎, 𝑏} ∧ 𝑎𝑏))
854, 6, 79, 84syl12anc 835 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃𝑎𝑃𝑏𝑃 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {𝑎, 𝑏} ∧ 𝑎𝑏))
86 prprelprb 47089 . 2 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ∈ (Pairsproper𝑃) ↔ (𝑃 ∈ V ∧ ∃𝑎𝑃𝑏𝑃 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {𝑎, 𝑏} ∧ 𝑎𝑏)))
873, 85, 86sylanbrc 581 1 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ∈ (Pairsproper𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wrex 3060  Vcvv 3462  cin 3946  {csn 4633  {cpr 4635   class class class wbr 5153   × cxp 5680  cfv 6554  (class class class)co 7424  m cmap 8855  cc 11156  cr 11157  0cc0 11158  1c1 11159   + caddc 11161   · cmul 11163   < clt 11298  cmin 11494  2c2 12319  0cn0 12524  +crp 13028  ...cfz 13538  cexp 14081  distcds 17275  ℝ^crrx 25402  𝔼hilcehl 25403  Pairspropercprpr 47084  LineMcline 48115  Spherecsph 48116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237  ax-mulf 11238
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-tpos 8241  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-sup 9485  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-ico 13384  df-icc 13385  df-fz 13539  df-fzo 13682  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-clim 15490  df-sum 15691  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-hom 17290  df-cco 17291  df-0g 17456  df-gsum 17457  df-prds 17462  df-pws 17464  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-mhm 18773  df-grp 18931  df-minusg 18932  df-sbg 18933  df-subg 19117  df-ghm 19207  df-cntz 19311  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-ring 20218  df-cring 20219  df-oppr 20316  df-dvdsr 20339  df-unit 20340  df-invr 20370  df-dvr 20383  df-rhm 20454  df-subrng 20528  df-subrg 20553  df-drng 20709  df-field 20710  df-staf 20818  df-srng 20819  df-lmod 20838  df-lss 20909  df-sra 21151  df-rgmod 21152  df-xmet 21336  df-met 21337  df-cnfld 21344  df-refld 21601  df-dsmm 21730  df-frlm 21745  df-nm 24582  df-tng 24584  df-tcph 25188  df-rrx 25404  df-ehl 25405  df-prpr 47085  df-line 48117  df-sph 48118
This theorem is referenced by:  inlinecirc02preu  48176
  Copyright terms: Public domain W3C validator