Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inlinecirc02p Structured version   Visualization version   GIF version

Theorem inlinecirc02p 44282
 Description: Intersection of a line with a circle: A line passing through a point within a circle around the origin intersects the circle at exactly two different points. (Contributed by AV, 9-May-2023.) (Revised by AV, 16-May-2023.)
Hypotheses
Ref Expression
inlinecirc02p.i 𝐼 = {1, 2}
inlinecirc02p.e 𝐸 = (ℝ^‘𝐼)
inlinecirc02p.p 𝑃 = (ℝ ↑𝑚 𝐼)
inlinecirc02p.s 𝑆 = (Sphere‘𝐸)
inlinecirc02p.0 0 = (𝐼 × {0})
inlinecirc02p.l 𝐿 = (LineM𝐸)
inlinecirc02p.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
inlinecirc02p (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ∈ (Pairsproper𝑃))

Proof of Theorem inlinecirc02p
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inlinecirc02p.p . . . 4 𝑃 = (ℝ ↑𝑚 𝐼)
21ovexi 7054 . . 3 𝑃 ∈ V
32a1i 11 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 𝑃 ∈ V)
4 simpl 483 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋𝑃𝑌𝑃𝑋𝑌))
5 simpl 483 . . . 4 ((𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅) → 𝑅 ∈ ℝ+)
65adantl 482 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 𝑅 ∈ ℝ+)
7 inlinecirc02p.i . . . . . . . 8 𝐼 = {1, 2}
87, 1rrx2pxel 44206 . . . . . . 7 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
983ad2ant1 1126 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘1) ∈ ℝ)
109adantr 481 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋‘1) ∈ ℝ)
117, 1rrx2pyel 44207 . . . . . . 7 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
12113ad2ant1 1126 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘2) ∈ ℝ)
1312adantr 481 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋‘2) ∈ ℝ)
147, 1rrx2pxel 44206 . . . . . . 7 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
15143ad2ant2 1127 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘1) ∈ ℝ)
1615adantr 481 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑌‘1) ∈ ℝ)
177, 1rrx2pyel 44207 . . . . . . 7 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
18173ad2ant2 1127 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘2) ∈ ℝ)
1918adantr 481 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑌‘2) ∈ ℝ)
20 eqid 2795 . . . . 5 ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑋‘1))
21 eqid 2795 . . . . 5 ((𝑋‘2) − (𝑌‘2)) = ((𝑋‘2) − (𝑌‘2))
22 eqid 2795 . . . . 5 ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))
23 rpre 12252 . . . . . . 7 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
2423adantr 481 . . . . . 6 ((𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅) → 𝑅 ∈ ℝ)
2524adantl 482 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 𝑅 ∈ ℝ)
26 inlinecirc02p.e . . . . . . . . . 10 𝐸 = (ℝ^‘𝐼)
27 2nn0 11767 . . . . . . . . . . . 12 2 ∈ ℕ0
28 eqid 2795 . . . . . . . . . . . . 13 (𝔼hil‘2) = (𝔼hil‘2)
2928ehlval 23705 . . . . . . . . . . . 12 (2 ∈ ℕ0 → (𝔼hil‘2) = (ℝ^‘(1...2)))
3027, 29ax-mp 5 . . . . . . . . . . 11 (𝔼hil‘2) = (ℝ^‘(1...2))
31 fz12pr 12819 . . . . . . . . . . . . 13 (1...2) = {1, 2}
3231, 7eqtr4i 2822 . . . . . . . . . . . 12 (1...2) = 𝐼
3332fveq2i 6546 . . . . . . . . . . 11 (ℝ^‘(1...2)) = (ℝ^‘𝐼)
3430, 33eqtri 2819 . . . . . . . . . 10 (𝔼hil‘2) = (ℝ^‘𝐼)
3526, 34eqtr4i 2822 . . . . . . . . 9 𝐸 = (𝔼hil‘2)
367oveq2i 7032 . . . . . . . . . 10 (ℝ ↑𝑚 𝐼) = (ℝ ↑𝑚 {1, 2})
371, 36eqtri 2819 . . . . . . . . 9 𝑃 = (ℝ ↑𝑚 {1, 2})
38 inlinecirc02p.d . . . . . . . . 9 𝐷 = (dist‘𝐸)
39 inlinecirc02p.0 . . . . . . . . . 10 0 = (𝐼 × {0})
407xpeq1i 5474 . . . . . . . . . 10 (𝐼 × {0}) = ({1, 2} × {0})
4139, 40eqtri 2819 . . . . . . . . 9 0 = ({1, 2} × {0})
4235, 37, 38, 41ehl2eudis0lt 44221 . . . . . . . 8 ((𝑋𝑃𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 ↔ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
43423ad2antl1 1178 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 ↔ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
4443biimpd 230 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
4544impr 455 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2))
467, 1rrx2pnecoorneor 44210 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))
4746orcomd 866 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘2) ≠ (𝑌‘2) ∨ (𝑋‘1) ≠ (𝑌‘1)))
4847adantr 481 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑋‘2) ≠ (𝑌‘2) ∨ (𝑋‘1) ≠ (𝑌‘1)))
49 eqid 2795 . . . . 5 ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) = ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))
50 eqid 2795 . . . . 5 (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2)) = (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2))
5110, 13, 16, 19, 20, 21, 22, 25, 45, 48, 49, 502itscp 44276 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2)))
5214recnd 10520 . . . . . . . . . . . . 13 (𝑌𝑃 → (𝑌‘1) ∈ ℂ)
5352adantl 482 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝑌‘1) ∈ ℂ)
548recnd 10520 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘1) ∈ ℂ)
5554adantr 481 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝑋‘1) ∈ ℂ)
5611recnd 10520 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
5756adantr 481 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝑋‘2) ∈ ℂ)
5853, 55, 57subdird 10950 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → (((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) = (((𝑌‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑋‘2))))
5917recnd 10520 . . . . . . . . . . . . 13 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
6059adantl 482 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝑌‘2) ∈ ℂ)
6157, 60, 55subdird 10950 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)) = (((𝑋‘2) · (𝑋‘1)) − ((𝑌‘2) · (𝑋‘1))))
6258, 61oveq12d 7039 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = ((((𝑌‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑋‘2))) + (((𝑋‘2) · (𝑋‘1)) − ((𝑌‘2) · (𝑋‘1)))))
6353, 57mulcomd 10513 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → ((𝑌‘1) · (𝑋‘2)) = ((𝑋‘2) · (𝑌‘1)))
6463oveq1d 7036 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → (((𝑌‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑋‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑋‘2))))
6557, 55mulcomd 10513 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) · (𝑋‘1)) = ((𝑋‘1) · (𝑋‘2)))
6660, 55mulcomd 10513 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → ((𝑌‘2) · (𝑋‘1)) = ((𝑋‘1) · (𝑌‘2)))
6765, 66oveq12d 7039 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → (((𝑋‘2) · (𝑋‘1)) − ((𝑌‘2) · (𝑋‘1))) = (((𝑋‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑌‘2))))
6864, 67oveq12d 7039 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑋‘2))) + (((𝑋‘2) · (𝑋‘1)) − ((𝑌‘2) · (𝑋‘1)))) = ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑋‘2))) + (((𝑋‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑌‘2)))))
6957, 53mulcld 10512 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) · (𝑌‘1)) ∈ ℂ)
7055, 57mulcld 10512 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → ((𝑋‘1) · (𝑋‘2)) ∈ ℂ)
7155, 60mulcld 10512 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → ((𝑋‘1) · (𝑌‘2)) ∈ ℂ)
7269, 70, 71npncand 10874 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑋‘2))) + (((𝑋‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑌‘2)))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))
7362, 68, 723eqtrd 2835 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))
74733adant3 1125 . . . . . . . 8 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))
7574adantr 481 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))
7675eqcomd 2801 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))))
7776oveq1d 7036 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) = (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2))
7877oveq2d 7037 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2)) = (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2)))
7951, 78breqtrrd 4994 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2)))
80 inlinecirc02p.s . . . 4 𝑆 = (Sphere‘𝐸)
81 inlinecirc02p.l . . . 4 𝐿 = (LineM𝐸)
82 eqid 2795 . . . 4 (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2)) = (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2))
83 eqid 2795 . . . 4 (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
847, 26, 1, 80, 39, 81, 49, 82, 21, 20, 83inlinecirc02plem 44281 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2)))) → ∃𝑎𝑃𝑏𝑃 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {𝑎, 𝑏} ∧ 𝑎𝑏))
854, 6, 79, 84syl12anc 833 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃𝑎𝑃𝑏𝑃 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {𝑎, 𝑏} ∧ 𝑎𝑏))
86 prprelprb 43188 . 2 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ∈ (Pairsproper𝑃) ↔ (𝑃 ∈ V ∧ ∃𝑎𝑃𝑏𝑃 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {𝑎, 𝑏} ∧ 𝑎𝑏)))
873, 85, 86sylanbrc 583 1 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ∈ (Pairsproper𝑃))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   ∨ wo 842   ∧ w3a 1080   = wceq 1522   ∈ wcel 2081   ≠ wne 2984  ∃wrex 3106  Vcvv 3437   ∩ cin 3862  {csn 4476  {cpr 4478   class class class wbr 4966   × cxp 5446  ‘cfv 6230  (class class class)co 7021   ↑𝑚 cmap 8261  ℂcc 10386  ℝcr 10387  0cc0 10388  1c1 10389   + caddc 10391   · cmul 10393   < clt 10526   − cmin 10722  2c2 11545  ℕ0cn0 11750  ℝ+crp 12244  ...cfz 12747  ↑cexp 13284  distcds 16408  ℝ^crrx 23674  𝔼hilcehl 23675  Pairspropercprpr 43183  LineMcline 44222  Spherecsph 44223 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-inf2 8955  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465  ax-pre-sup 10466  ax-addf 10467  ax-mulf 10468 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-int 4787  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-se 5408  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-isom 6239  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-of 7272  df-om 7442  df-1st 7550  df-2nd 7551  df-supp 7687  df-tpos 7748  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-1o 7958  df-oadd 7962  df-er 8144  df-map 8263  df-ixp 8316  df-en 8363  df-dom 8364  df-sdom 8365  df-fin 8366  df-fsupp 8685  df-sup 8757  df-oi 8825  df-card 9219  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-div 11151  df-nn 11492  df-2 11553  df-3 11554  df-4 11555  df-5 11556  df-6 11557  df-7 11558  df-8 11559  df-9 11560  df-n0 11751  df-z 11835  df-dec 11953  df-uz 12099  df-rp 12245  df-xneg 12362  df-xadd 12363  df-xmul 12364  df-ico 12599  df-icc 12600  df-fz 12748  df-fzo 12889  df-seq 13225  df-exp 13285  df-hash 13546  df-cj 14297  df-re 14298  df-im 14299  df-sqrt 14433  df-abs 14434  df-clim 14684  df-sum 14882  df-struct 16319  df-ndx 16320  df-slot 16321  df-base 16323  df-sets 16324  df-ress 16325  df-plusg 16412  df-mulr 16413  df-starv 16414  df-sca 16415  df-vsca 16416  df-ip 16417  df-tset 16418  df-ple 16419  df-ds 16421  df-unif 16422  df-hom 16423  df-cco 16424  df-0g 16549  df-gsum 16550  df-prds 16555  df-pws 16557  df-mgm 17686  df-sgrp 17728  df-mnd 17739  df-mhm 17779  df-grp 17869  df-minusg 17870  df-sbg 17871  df-subg 18035  df-ghm 18102  df-cntz 18193  df-cmn 18640  df-abl 18641  df-mgp 18935  df-ur 18947  df-ring 18994  df-cring 18995  df-oppr 19068  df-dvdsr 19086  df-unit 19087  df-invr 19117  df-dvr 19128  df-rnghom 19162  df-drng 19199  df-field 19200  df-subrg 19228  df-staf 19311  df-srng 19312  df-lmod 19331  df-lss 19399  df-sra 19639  df-rgmod 19640  df-xmet 20225  df-met 20226  df-cnfld 20233  df-refld 20436  df-dsmm 20563  df-frlm 20578  df-nm 22880  df-tng 22882  df-tcph 23461  df-rrx 23676  df-ehl 23677  df-prpr 43184  df-line 44224  df-sph 44225 This theorem is referenced by:  inlinecirc02preu  44283
 Copyright terms: Public domain W3C validator