Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inlinecirc02p Structured version   Visualization version   GIF version

Theorem inlinecirc02p 44702
Description: Intersection of a line with a circle: A line passing through a point within a circle around the origin intersects the circle at exactly two different points. (Contributed by AV, 9-May-2023.) (Revised by AV, 16-May-2023.)
Hypotheses
Ref Expression
inlinecirc02p.i 𝐼 = {1, 2}
inlinecirc02p.e 𝐸 = (ℝ^‘𝐼)
inlinecirc02p.p 𝑃 = (ℝ ↑m 𝐼)
inlinecirc02p.s 𝑆 = (Sphere‘𝐸)
inlinecirc02p.0 0 = (𝐼 × {0})
inlinecirc02p.l 𝐿 = (LineM𝐸)
inlinecirc02p.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
inlinecirc02p (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ∈ (Pairsproper𝑃))

Proof of Theorem inlinecirc02p
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inlinecirc02p.p . . . 4 𝑃 = (ℝ ↑m 𝐼)
21ovexi 7179 . . 3 𝑃 ∈ V
32a1i 11 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 𝑃 ∈ V)
4 simpl 483 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋𝑃𝑌𝑃𝑋𝑌))
5 simpl 483 . . . 4 ((𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅) → 𝑅 ∈ ℝ+)
65adantl 482 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 𝑅 ∈ ℝ+)
7 inlinecirc02p.i . . . . . . . 8 𝐼 = {1, 2}
87, 1rrx2pxel 44626 . . . . . . 7 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
983ad2ant1 1125 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘1) ∈ ℝ)
109adantr 481 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋‘1) ∈ ℝ)
117, 1rrx2pyel 44627 . . . . . . 7 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
12113ad2ant1 1125 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘2) ∈ ℝ)
1312adantr 481 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋‘2) ∈ ℝ)
147, 1rrx2pxel 44626 . . . . . . 7 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
15143ad2ant2 1126 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘1) ∈ ℝ)
1615adantr 481 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑌‘1) ∈ ℝ)
177, 1rrx2pyel 44627 . . . . . . 7 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
18173ad2ant2 1126 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘2) ∈ ℝ)
1918adantr 481 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑌‘2) ∈ ℝ)
20 eqid 2818 . . . . 5 ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑋‘1))
21 eqid 2818 . . . . 5 ((𝑋‘2) − (𝑌‘2)) = ((𝑋‘2) − (𝑌‘2))
22 eqid 2818 . . . . 5 ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))
23 rpre 12385 . . . . . . 7 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
2423adantr 481 . . . . . 6 ((𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅) → 𝑅 ∈ ℝ)
2524adantl 482 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 𝑅 ∈ ℝ)
26 inlinecirc02p.e . . . . . . . . . 10 𝐸 = (ℝ^‘𝐼)
27 2nn0 11902 . . . . . . . . . . . 12 2 ∈ ℕ0
28 eqid 2818 . . . . . . . . . . . . 13 (𝔼hil‘2) = (𝔼hil‘2)
2928ehlval 23944 . . . . . . . . . . . 12 (2 ∈ ℕ0 → (𝔼hil‘2) = (ℝ^‘(1...2)))
3027, 29ax-mp 5 . . . . . . . . . . 11 (𝔼hil‘2) = (ℝ^‘(1...2))
31 fz12pr 12952 . . . . . . . . . . . . 13 (1...2) = {1, 2}
3231, 7eqtr4i 2844 . . . . . . . . . . . 12 (1...2) = 𝐼
3332fveq2i 6666 . . . . . . . . . . 11 (ℝ^‘(1...2)) = (ℝ^‘𝐼)
3430, 33eqtri 2841 . . . . . . . . . 10 (𝔼hil‘2) = (ℝ^‘𝐼)
3526, 34eqtr4i 2844 . . . . . . . . 9 𝐸 = (𝔼hil‘2)
367oveq2i 7156 . . . . . . . . . 10 (ℝ ↑m 𝐼) = (ℝ ↑m {1, 2})
371, 36eqtri 2841 . . . . . . . . 9 𝑃 = (ℝ ↑m {1, 2})
38 inlinecirc02p.d . . . . . . . . 9 𝐷 = (dist‘𝐸)
39 inlinecirc02p.0 . . . . . . . . . 10 0 = (𝐼 × {0})
407xpeq1i 5574 . . . . . . . . . 10 (𝐼 × {0}) = ({1, 2} × {0})
4139, 40eqtri 2841 . . . . . . . . 9 0 = ({1, 2} × {0})
4235, 37, 38, 41ehl2eudis0lt 44641 . . . . . . . 8 ((𝑋𝑃𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 ↔ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
43423ad2antl1 1177 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 ↔ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
4443biimpd 230 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
4544impr 455 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2))
467, 1rrx2pnecoorneor 44630 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))
4746orcomd 865 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘2) ≠ (𝑌‘2) ∨ (𝑋‘1) ≠ (𝑌‘1)))
4847adantr 481 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑋‘2) ≠ (𝑌‘2) ∨ (𝑋‘1) ≠ (𝑌‘1)))
49 eqid 2818 . . . . 5 ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) = ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))
50 eqid 2818 . . . . 5 (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2)) = (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2))
5110, 13, 16, 19, 20, 21, 22, 25, 45, 48, 49, 502itscp 44696 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2)))
5214recnd 10657 . . . . . . . . . . . . 13 (𝑌𝑃 → (𝑌‘1) ∈ ℂ)
5352adantl 482 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝑌‘1) ∈ ℂ)
548recnd 10657 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘1) ∈ ℂ)
5554adantr 481 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝑋‘1) ∈ ℂ)
5611recnd 10657 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
5756adantr 481 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝑋‘2) ∈ ℂ)
5853, 55, 57subdird 11085 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → (((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) = (((𝑌‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑋‘2))))
5917recnd 10657 . . . . . . . . . . . . 13 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
6059adantl 482 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝑌‘2) ∈ ℂ)
6157, 60, 55subdird 11085 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)) = (((𝑋‘2) · (𝑋‘1)) − ((𝑌‘2) · (𝑋‘1))))
6258, 61oveq12d 7163 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = ((((𝑌‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑋‘2))) + (((𝑋‘2) · (𝑋‘1)) − ((𝑌‘2) · (𝑋‘1)))))
6353, 57mulcomd 10650 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → ((𝑌‘1) · (𝑋‘2)) = ((𝑋‘2) · (𝑌‘1)))
6463oveq1d 7160 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → (((𝑌‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑋‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑋‘2))))
6557, 55mulcomd 10650 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) · (𝑋‘1)) = ((𝑋‘1) · (𝑋‘2)))
6660, 55mulcomd 10650 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → ((𝑌‘2) · (𝑋‘1)) = ((𝑋‘1) · (𝑌‘2)))
6765, 66oveq12d 7163 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → (((𝑋‘2) · (𝑋‘1)) − ((𝑌‘2) · (𝑋‘1))) = (((𝑋‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑌‘2))))
6864, 67oveq12d 7163 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑋‘2))) + (((𝑋‘2) · (𝑋‘1)) − ((𝑌‘2) · (𝑋‘1)))) = ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑋‘2))) + (((𝑋‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑌‘2)))))
6957, 53mulcld 10649 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) · (𝑌‘1)) ∈ ℂ)
7055, 57mulcld 10649 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → ((𝑋‘1) · (𝑋‘2)) ∈ ℂ)
7155, 60mulcld 10649 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → ((𝑋‘1) · (𝑌‘2)) ∈ ℂ)
7269, 70, 71npncand 11009 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑋‘2))) + (((𝑋‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑌‘2)))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))
7362, 68, 723eqtrd 2857 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))
74733adant3 1124 . . . . . . . 8 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))
7574adantr 481 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))
7675eqcomd 2824 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))))
7776oveq1d 7160 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) = (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2))
7877oveq2d 7161 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2)) = (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2)))
7951, 78breqtrrd 5085 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2)))
80 inlinecirc02p.s . . . 4 𝑆 = (Sphere‘𝐸)
81 inlinecirc02p.l . . . 4 𝐿 = (LineM𝐸)
82 eqid 2818 . . . 4 (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2)) = (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2))
83 eqid 2818 . . . 4 (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
847, 26, 1, 80, 39, 81, 49, 82, 21, 20, 83inlinecirc02plem 44701 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2)))) → ∃𝑎𝑃𝑏𝑃 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {𝑎, 𝑏} ∧ 𝑎𝑏))
854, 6, 79, 84syl12anc 832 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃𝑎𝑃𝑏𝑃 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {𝑎, 𝑏} ∧ 𝑎𝑏))
86 prprelprb 43556 . 2 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ∈ (Pairsproper𝑃) ↔ (𝑃 ∈ V ∧ ∃𝑎𝑃𝑏𝑃 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {𝑎, 𝑏} ∧ 𝑎𝑏)))
873, 85, 86sylanbrc 583 1 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ∈ (Pairsproper𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 841  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wrex 3136  Vcvv 3492  cin 3932  {csn 4557  {cpr 4559   class class class wbr 5057   × cxp 5546  cfv 6348  (class class class)co 7145  m cmap 8395  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530   < clt 10663  cmin 10858  2c2 11680  0cn0 11885  +crp 12377  ...cfz 12880  cexp 13417  distcds 16562  ℝ^crrx 23913  𝔼hilcehl 23914  Pairspropercprpr 43551  LineMcline 44642  Spherecsph 44643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-0g 16703  df-gsum 16704  df-prds 16709  df-pws 16711  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-grp 18044  df-minusg 18045  df-sbg 18046  df-subg 18214  df-ghm 18294  df-cntz 18385  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-cring 19229  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-invr 19351  df-dvr 19362  df-rnghom 19396  df-drng 19433  df-field 19434  df-subrg 19462  df-staf 19545  df-srng 19546  df-lmod 19565  df-lss 19633  df-sra 19873  df-rgmod 19874  df-xmet 20466  df-met 20467  df-cnfld 20474  df-refld 20677  df-dsmm 20804  df-frlm 20819  df-nm 23119  df-tng 23121  df-tcph 23700  df-rrx 23915  df-ehl 23916  df-prpr 43552  df-line 44644  df-sph 44645
This theorem is referenced by:  inlinecirc02preu  44703
  Copyright terms: Public domain W3C validator