Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inlinecirc02p Structured version   Visualization version   GIF version

Theorem inlinecirc02p 46863
Description: Intersection of a line with a circle: A line passing through a point within a circle around the origin intersects the circle at exactly two different points. (Contributed by AV, 9-May-2023.) (Revised by AV, 16-May-2023.)
Hypotheses
Ref Expression
inlinecirc02p.i 𝐼 = {1, 2}
inlinecirc02p.e 𝐸 = (ℝ^‘𝐼)
inlinecirc02p.p 𝑃 = (ℝ ↑m 𝐼)
inlinecirc02p.s 𝑆 = (Sphere‘𝐸)
inlinecirc02p.0 0 = (𝐼 × {0})
inlinecirc02p.l 𝐿 = (LineM𝐸)
inlinecirc02p.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
inlinecirc02p (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ∈ (Pairsproper𝑃))

Proof of Theorem inlinecirc02p
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inlinecirc02p.p . . . 4 𝑃 = (ℝ ↑m 𝐼)
21ovexi 7391 . . 3 𝑃 ∈ V
32a1i 11 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 𝑃 ∈ V)
4 simpl 483 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋𝑃𝑌𝑃𝑋𝑌))
5 simpl 483 . . . 4 ((𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅) → 𝑅 ∈ ℝ+)
65adantl 482 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 𝑅 ∈ ℝ+)
7 inlinecirc02p.i . . . . . . . 8 𝐼 = {1, 2}
87, 1rrx2pxel 46787 . . . . . . 7 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
983ad2ant1 1133 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘1) ∈ ℝ)
109adantr 481 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋‘1) ∈ ℝ)
117, 1rrx2pyel 46788 . . . . . . 7 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
12113ad2ant1 1133 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘2) ∈ ℝ)
1312adantr 481 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋‘2) ∈ ℝ)
147, 1rrx2pxel 46787 . . . . . . 7 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
15143ad2ant2 1134 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘1) ∈ ℝ)
1615adantr 481 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑌‘1) ∈ ℝ)
177, 1rrx2pyel 46788 . . . . . . 7 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
18173ad2ant2 1134 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘2) ∈ ℝ)
1918adantr 481 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑌‘2) ∈ ℝ)
20 eqid 2736 . . . . 5 ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑋‘1))
21 eqid 2736 . . . . 5 ((𝑋‘2) − (𝑌‘2)) = ((𝑋‘2) − (𝑌‘2))
22 eqid 2736 . . . . 5 ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))
23 rpre 12923 . . . . . . 7 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
2423adantr 481 . . . . . 6 ((𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅) → 𝑅 ∈ ℝ)
2524adantl 482 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 𝑅 ∈ ℝ)
26 inlinecirc02p.e . . . . . . . . . 10 𝐸 = (ℝ^‘𝐼)
27 2nn0 12430 . . . . . . . . . . . 12 2 ∈ ℕ0
28 eqid 2736 . . . . . . . . . . . . 13 (𝔼hil‘2) = (𝔼hil‘2)
2928ehlval 24778 . . . . . . . . . . . 12 (2 ∈ ℕ0 → (𝔼hil‘2) = (ℝ^‘(1...2)))
3027, 29ax-mp 5 . . . . . . . . . . 11 (𝔼hil‘2) = (ℝ^‘(1...2))
31 fz12pr 13498 . . . . . . . . . . . . 13 (1...2) = {1, 2}
3231, 7eqtr4i 2767 . . . . . . . . . . . 12 (1...2) = 𝐼
3332fveq2i 6845 . . . . . . . . . . 11 (ℝ^‘(1...2)) = (ℝ^‘𝐼)
3430, 33eqtri 2764 . . . . . . . . . 10 (𝔼hil‘2) = (ℝ^‘𝐼)
3526, 34eqtr4i 2767 . . . . . . . . 9 𝐸 = (𝔼hil‘2)
367oveq2i 7368 . . . . . . . . . 10 (ℝ ↑m 𝐼) = (ℝ ↑m {1, 2})
371, 36eqtri 2764 . . . . . . . . 9 𝑃 = (ℝ ↑m {1, 2})
38 inlinecirc02p.d . . . . . . . . 9 𝐷 = (dist‘𝐸)
39 inlinecirc02p.0 . . . . . . . . . 10 0 = (𝐼 × {0})
407xpeq1i 5659 . . . . . . . . . 10 (𝐼 × {0}) = ({1, 2} × {0})
4139, 40eqtri 2764 . . . . . . . . 9 0 = ({1, 2} × {0})
4235, 37, 38, 41ehl2eudis0lt 46802 . . . . . . . 8 ((𝑋𝑃𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 ↔ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
43423ad2antl1 1185 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 ↔ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
4443biimpd 228 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
4544impr 455 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2))
467, 1rrx2pnecoorneor 46791 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))
4746orcomd 869 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘2) ≠ (𝑌‘2) ∨ (𝑋‘1) ≠ (𝑌‘1)))
4847adantr 481 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑋‘2) ≠ (𝑌‘2) ∨ (𝑋‘1) ≠ (𝑌‘1)))
49 eqid 2736 . . . . 5 ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) = ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))
50 eqid 2736 . . . . 5 (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2)) = (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2))
5110, 13, 16, 19, 20, 21, 22, 25, 45, 48, 49, 502itscp 46857 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2)))
5214recnd 11183 . . . . . . . . . . . . 13 (𝑌𝑃 → (𝑌‘1) ∈ ℂ)
5352adantl 482 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝑌‘1) ∈ ℂ)
548recnd 11183 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘1) ∈ ℂ)
5554adantr 481 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝑋‘1) ∈ ℂ)
5611recnd 11183 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
5756adantr 481 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝑋‘2) ∈ ℂ)
5853, 55, 57subdird 11612 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → (((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) = (((𝑌‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑋‘2))))
5917recnd 11183 . . . . . . . . . . . . 13 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
6059adantl 482 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝑌‘2) ∈ ℂ)
6157, 60, 55subdird 11612 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)) = (((𝑋‘2) · (𝑋‘1)) − ((𝑌‘2) · (𝑋‘1))))
6258, 61oveq12d 7375 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = ((((𝑌‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑋‘2))) + (((𝑋‘2) · (𝑋‘1)) − ((𝑌‘2) · (𝑋‘1)))))
6353, 57mulcomd 11176 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → ((𝑌‘1) · (𝑋‘2)) = ((𝑋‘2) · (𝑌‘1)))
6463oveq1d 7372 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → (((𝑌‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑋‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑋‘2))))
6557, 55mulcomd 11176 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) · (𝑋‘1)) = ((𝑋‘1) · (𝑋‘2)))
6660, 55mulcomd 11176 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → ((𝑌‘2) · (𝑋‘1)) = ((𝑋‘1) · (𝑌‘2)))
6765, 66oveq12d 7375 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → (((𝑋‘2) · (𝑋‘1)) − ((𝑌‘2) · (𝑋‘1))) = (((𝑋‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑌‘2))))
6864, 67oveq12d 7375 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑋‘2))) + (((𝑋‘2) · (𝑋‘1)) − ((𝑌‘2) · (𝑋‘1)))) = ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑋‘2))) + (((𝑋‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑌‘2)))))
6957, 53mulcld 11175 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) · (𝑌‘1)) ∈ ℂ)
7055, 57mulcld 11175 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → ((𝑋‘1) · (𝑋‘2)) ∈ ℂ)
7155, 60mulcld 11175 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → ((𝑋‘1) · (𝑌‘2)) ∈ ℂ)
7269, 70, 71npncand 11536 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑋‘2))) + (((𝑋‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑌‘2)))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))
7362, 68, 723eqtrd 2780 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))
74733adant3 1132 . . . . . . . 8 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))
7574adantr 481 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))
7675eqcomd 2742 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))))
7776oveq1d 7372 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) = (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2))
7877oveq2d 7373 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2)) = (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2)))
7951, 78breqtrrd 5133 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2)))
80 inlinecirc02p.s . . . 4 𝑆 = (Sphere‘𝐸)
81 inlinecirc02p.l . . . 4 𝐿 = (LineM𝐸)
82 eqid 2736 . . . 4 (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2)) = (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2))
83 eqid 2736 . . . 4 (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
847, 26, 1, 80, 39, 81, 49, 82, 21, 20, 83inlinecirc02plem 46862 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2)))) → ∃𝑎𝑃𝑏𝑃 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {𝑎, 𝑏} ∧ 𝑎𝑏))
854, 6, 79, 84syl12anc 835 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃𝑎𝑃𝑏𝑃 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {𝑎, 𝑏} ∧ 𝑎𝑏))
86 prprelprb 45699 . 2 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ∈ (Pairsproper𝑃) ↔ (𝑃 ∈ V ∧ ∃𝑎𝑃𝑏𝑃 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {𝑎, 𝑏} ∧ 𝑎𝑏)))
873, 85, 86sylanbrc 583 1 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ∈ (Pairsproper𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  Vcvv 3445  cin 3909  {csn 4586  {cpr 4588   class class class wbr 5105   × cxp 5631  cfv 6496  (class class class)co 7357  m cmap 8765  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cmin 11385  2c2 12208  0cn0 12413  +crp 12915  ...cfz 13424  cexp 13967  distcds 17142  ℝ^crrx 24747  𝔼hilcehl 24748  Pairspropercprpr 45694  LineMcline 46803  Spherecsph 46804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-field 20188  df-subrg 20220  df-staf 20304  df-srng 20305  df-lmod 20324  df-lss 20393  df-sra 20633  df-rgmod 20634  df-xmet 20789  df-met 20790  df-cnfld 20797  df-refld 21009  df-dsmm 21138  df-frlm 21153  df-nm 23938  df-tng 23940  df-tcph 24533  df-rrx 24749  df-ehl 24750  df-prpr 45695  df-line 46805  df-sph 46806
This theorem is referenced by:  inlinecirc02preu  46864
  Copyright terms: Public domain W3C validator