Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inlinecirc02p Structured version   Visualization version   GIF version

Theorem inlinecirc02p 48521
Description: Intersection of a line with a circle: A line passing through a point within a circle around the origin intersects the circle at exactly two different points. (Contributed by AV, 9-May-2023.) (Revised by AV, 16-May-2023.)
Hypotheses
Ref Expression
inlinecirc02p.i 𝐼 = {1, 2}
inlinecirc02p.e 𝐸 = (ℝ^‘𝐼)
inlinecirc02p.p 𝑃 = (ℝ ↑m 𝐼)
inlinecirc02p.s 𝑆 = (Sphere‘𝐸)
inlinecirc02p.0 0 = (𝐼 × {0})
inlinecirc02p.l 𝐿 = (LineM𝐸)
inlinecirc02p.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
inlinecirc02p (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ∈ (Pairsproper𝑃))

Proof of Theorem inlinecirc02p
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inlinecirc02p.p . . . 4 𝑃 = (ℝ ↑m 𝐼)
21ovexi 7482 . . 3 𝑃 ∈ V
32a1i 11 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 𝑃 ∈ V)
4 simpl 482 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋𝑃𝑌𝑃𝑋𝑌))
5 simpl 482 . . . 4 ((𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅) → 𝑅 ∈ ℝ+)
65adantl 481 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 𝑅 ∈ ℝ+)
7 inlinecirc02p.i . . . . . . . 8 𝐼 = {1, 2}
87, 1rrx2pxel 48445 . . . . . . 7 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
983ad2ant1 1133 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘1) ∈ ℝ)
109adantr 480 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋‘1) ∈ ℝ)
117, 1rrx2pyel 48446 . . . . . . 7 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
12113ad2ant1 1133 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋‘2) ∈ ℝ)
1312adantr 480 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋‘2) ∈ ℝ)
147, 1rrx2pxel 48445 . . . . . . 7 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
15143ad2ant2 1134 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘1) ∈ ℝ)
1615adantr 480 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑌‘1) ∈ ℝ)
177, 1rrx2pyel 48446 . . . . . . 7 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
18173ad2ant2 1134 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌‘2) ∈ ℝ)
1918adantr 480 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑌‘2) ∈ ℝ)
20 eqid 2740 . . . . 5 ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑋‘1))
21 eqid 2740 . . . . 5 ((𝑋‘2) − (𝑌‘2)) = ((𝑋‘2) − (𝑌‘2))
22 eqid 2740 . . . . 5 ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))
23 rpre 13065 . . . . . . 7 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
2423adantr 480 . . . . . 6 ((𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅) → 𝑅 ∈ ℝ)
2524adantl 481 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 𝑅 ∈ ℝ)
26 inlinecirc02p.e . . . . . . . . . 10 𝐸 = (ℝ^‘𝐼)
27 2nn0 12570 . . . . . . . . . . . 12 2 ∈ ℕ0
28 eqid 2740 . . . . . . . . . . . . 13 (𝔼hil‘2) = (𝔼hil‘2)
2928ehlval 25467 . . . . . . . . . . . 12 (2 ∈ ℕ0 → (𝔼hil‘2) = (ℝ^‘(1...2)))
3027, 29ax-mp 5 . . . . . . . . . . 11 (𝔼hil‘2) = (ℝ^‘(1...2))
31 fz12pr 13641 . . . . . . . . . . . . 13 (1...2) = {1, 2}
3231, 7eqtr4i 2771 . . . . . . . . . . . 12 (1...2) = 𝐼
3332fveq2i 6923 . . . . . . . . . . 11 (ℝ^‘(1...2)) = (ℝ^‘𝐼)
3430, 33eqtri 2768 . . . . . . . . . 10 (𝔼hil‘2) = (ℝ^‘𝐼)
3526, 34eqtr4i 2771 . . . . . . . . 9 𝐸 = (𝔼hil‘2)
367oveq2i 7459 . . . . . . . . . 10 (ℝ ↑m 𝐼) = (ℝ ↑m {1, 2})
371, 36eqtri 2768 . . . . . . . . 9 𝑃 = (ℝ ↑m {1, 2})
38 inlinecirc02p.d . . . . . . . . 9 𝐷 = (dist‘𝐸)
39 inlinecirc02p.0 . . . . . . . . . 10 0 = (𝐼 × {0})
407xpeq1i 5726 . . . . . . . . . 10 (𝐼 × {0}) = ({1, 2} × {0})
4139, 40eqtri 2768 . . . . . . . . 9 0 = ({1, 2} × {0})
4235, 37, 38, 41ehl2eudis0lt 48460 . . . . . . . 8 ((𝑋𝑃𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 ↔ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
43423ad2antl1 1185 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 ↔ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
4443biimpd 229 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ 𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
4544impr 454 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2))
467, 1rrx2pnecoorneor 48449 . . . . . . 7 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))
4746orcomd 870 . . . . . 6 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘2) ≠ (𝑌‘2) ∨ (𝑋‘1) ≠ (𝑌‘1)))
4847adantr 480 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑋‘2) ≠ (𝑌‘2) ∨ (𝑋‘1) ≠ (𝑌‘1)))
49 eqid 2740 . . . . 5 ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) = ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))
50 eqid 2740 . . . . 5 (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2)) = (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2))
5110, 13, 16, 19, 20, 21, 22, 25, 45, 48, 49, 502itscp 48515 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2)))
5214recnd 11318 . . . . . . . . . . . . 13 (𝑌𝑃 → (𝑌‘1) ∈ ℂ)
5352adantl 481 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝑌‘1) ∈ ℂ)
548recnd 11318 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘1) ∈ ℂ)
5554adantr 480 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝑋‘1) ∈ ℂ)
5611recnd 11318 . . . . . . . . . . . . 13 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
5756adantr 480 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝑋‘2) ∈ ℂ)
5853, 55, 57subdird 11747 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → (((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) = (((𝑌‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑋‘2))))
5917recnd 11318 . . . . . . . . . . . . 13 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
6059adantl 481 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → (𝑌‘2) ∈ ℂ)
6157, 60, 55subdird 11747 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)) = (((𝑋‘2) · (𝑋‘1)) − ((𝑌‘2) · (𝑋‘1))))
6258, 61oveq12d 7466 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = ((((𝑌‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑋‘2))) + (((𝑋‘2) · (𝑋‘1)) − ((𝑌‘2) · (𝑋‘1)))))
6353, 57mulcomd 11311 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → ((𝑌‘1) · (𝑋‘2)) = ((𝑋‘2) · (𝑌‘1)))
6463oveq1d 7463 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → (((𝑌‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑋‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑋‘2))))
6557, 55mulcomd 11311 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) · (𝑋‘1)) = ((𝑋‘1) · (𝑋‘2)))
6660, 55mulcomd 11311 . . . . . . . . . . . 12 ((𝑋𝑃𝑌𝑃) → ((𝑌‘2) · (𝑋‘1)) = ((𝑋‘1) · (𝑌‘2)))
6765, 66oveq12d 7466 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → (((𝑋‘2) · (𝑋‘1)) − ((𝑌‘2) · (𝑋‘1))) = (((𝑋‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑌‘2))))
6864, 67oveq12d 7466 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑋‘2))) + (((𝑋‘2) · (𝑋‘1)) − ((𝑌‘2) · (𝑋‘1)))) = ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑋‘2))) + (((𝑋‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑌‘2)))))
6957, 53mulcld 11310 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → ((𝑋‘2) · (𝑌‘1)) ∈ ℂ)
7055, 57mulcld 11310 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → ((𝑋‘1) · (𝑋‘2)) ∈ ℂ)
7155, 60mulcld 11310 . . . . . . . . . . 11 ((𝑋𝑃𝑌𝑃) → ((𝑋‘1) · (𝑌‘2)) ∈ ℂ)
7269, 70, 71npncand 11671 . . . . . . . . . 10 ((𝑋𝑃𝑌𝑃) → ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑋‘2))) + (((𝑋‘1) · (𝑋‘2)) − ((𝑋‘1) · (𝑌‘2)))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))
7362, 68, 723eqtrd 2784 . . . . . . . . 9 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))
74733adant3 1132 . . . . . . . 8 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))
7574adantr 480 . . . . . . 7 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))))
7675eqcomd 2746 . . . . . 6 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = ((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1))))
7776oveq1d 7463 . . . . 5 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) = (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2))
7877oveq2d 7464 . . . 4 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2)) = (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − (((((𝑌‘1) − (𝑋‘1)) · (𝑋‘2)) + (((𝑋‘2) − (𝑌‘2)) · (𝑋‘1)))↑2)))
7951, 78breqtrrd 5194 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2)))
80 inlinecirc02p.s . . . 4 𝑆 = (Sphere‘𝐸)
81 inlinecirc02p.l . . . 4 𝐿 = (LineM𝐸)
82 eqid 2740 . . . 4 (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2)) = (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2))
83 eqid 2740 . . . 4 (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
847, 26, 1, 80, 39, 81, 49, 82, 21, 20, 83inlinecirc02plem 48520 . . 3 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ 0 < (((𝑅↑2) · ((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2))) − ((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2)))) → ∃𝑎𝑃𝑏𝑃 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {𝑎, 𝑏} ∧ 𝑎𝑏))
854, 6, 79, 84syl12anc 836 . 2 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ∃𝑎𝑃𝑏𝑃 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {𝑎, 𝑏} ∧ 𝑎𝑏))
86 prprelprb 47391 . 2 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ∈ (Pairsproper𝑃) ↔ (𝑃 ∈ V ∧ ∃𝑎𝑃𝑏𝑃 ((( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) = {𝑎, 𝑏} ∧ 𝑎𝑏)))
873, 85, 86sylanbrc 582 1 (((𝑋𝑃𝑌𝑃𝑋𝑌) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (( 0 𝑆𝑅) ∩ (𝑋𝐿𝑌)) ∈ (Pairsproper𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  Vcvv 3488  cin 3975  {csn 4648  {cpr 4650   class class class wbr 5166   × cxp 5698  cfv 6573  (class class class)co 7448  m cmap 8884  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cmin 11520  2c2 12348  0cn0 12553  +crp 13057  ...cfz 13567  cexp 14112  distcds 17320  ℝ^crrx 25436  𝔼hilcehl 25437  Pairspropercprpr 47386  LineMcline 48461  Spherecsph 48462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-field 20754  df-staf 20862  df-srng 20863  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-xmet 21380  df-met 21381  df-cnfld 21388  df-refld 21646  df-dsmm 21775  df-frlm 21790  df-nm 24616  df-tng 24618  df-tcph 25222  df-rrx 25438  df-ehl 25439  df-prpr 47387  df-line 48463  df-sph 48464
This theorem is referenced by:  inlinecirc02preu  48522
  Copyright terms: Public domain W3C validator