Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem10 Structured version   Visualization version   GIF version

Theorem poimirlem10 36403
Description: Lemma for poimir 36426 establishing the cube that yields the simplex that yields a face if the opposite vertex was first on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem22.s 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
poimirlem22.1 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
poimirlem12.2 (𝜑𝑇𝑆)
poimirlem11.3 (𝜑 → (2nd𝑇) = 0)
Assertion
Ref Expression
poimirlem10 (𝜑 → ((𝐹‘(𝑁 − 1)) ∘f − ((1...𝑁) × {1})) = (1st ‘(1st𝑇)))
Distinct variable groups:   𝑓,𝑗,𝑡,𝑦   𝜑,𝑗,𝑦   𝑗,𝐹,𝑦   𝑗,𝑁,𝑦   𝑇,𝑗,𝑦   𝜑,𝑡   𝑓,𝐾,𝑗,𝑡   𝑓,𝑁,𝑡   𝑇,𝑓   𝑓,𝐹,𝑡   𝑡,𝑇   𝑆,𝑗,𝑡,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝐾(𝑦)

Proof of Theorem poimirlem10
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ovexd 7431 . 2 (𝜑 → (1...𝑁) ∈ V)
2 poimirlem22.1 . . . 4 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
3 poimir.0 . . . . . 6 (𝜑𝑁 ∈ ℕ)
4 nnm1nn0 12500 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
53, 4syl 17 . . . . 5 (𝜑 → (𝑁 − 1) ∈ ℕ0)
6 nn0fz0 13586 . . . . 5 ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (0...(𝑁 − 1)))
75, 6sylib 217 . . . 4 (𝜑 → (𝑁 − 1) ∈ (0...(𝑁 − 1)))
82, 7ffvelcdmd 7075 . . 3 (𝜑 → (𝐹‘(𝑁 − 1)) ∈ ((0...𝐾) ↑m (1...𝑁)))
9 elmapfn 8847 . . 3 ((𝐹‘(𝑁 − 1)) ∈ ((0...𝐾) ↑m (1...𝑁)) → (𝐹‘(𝑁 − 1)) Fn (1...𝑁))
108, 9syl 17 . 2 (𝜑 → (𝐹‘(𝑁 − 1)) Fn (1...𝑁))
11 1ex 11197 . . 3 1 ∈ V
12 fnconstg 6769 . . 3 (1 ∈ V → ((1...𝑁) × {1}) Fn (1...𝑁))
1311, 12mp1i 13 . 2 (𝜑 → ((1...𝑁) × {1}) Fn (1...𝑁))
14 poimirlem12.2 . . . . . 6 (𝜑𝑇𝑆)
15 elrabi 3675 . . . . . . 7 (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
16 poimirlem22.s . . . . . . 7 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
1715, 16eleq2s 2852 . . . . . 6 (𝑇𝑆𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
1814, 17syl 17 . . . . 5 (𝜑𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
19 xp1st 7994 . . . . 5 (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
2018, 19syl 17 . . . 4 (𝜑 → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
21 xp1st 7994 . . . 4 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
2220, 21syl 17 . . 3 (𝜑 → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
23 elmapfn 8847 . . 3 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st ‘(1st𝑇)) Fn (1...𝑁))
2422, 23syl 17 . 2 (𝜑 → (1st ‘(1st𝑇)) Fn (1...𝑁))
25 fveq2 6881 . . . . . . . . . . . . . . 15 (𝑡 = 𝑇 → (2nd𝑡) = (2nd𝑇))
2625breq2d 5156 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑇)))
2726ifbid 4547 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)))
2827csbeq1d 3895 . . . . . . . . . . . 12 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
29 2fveq3 6886 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑇)))
30 2fveq3 6886 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑇 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑇)))
3130imaeq1d 6051 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑗)))
3231xpeq1d 5701 . . . . . . . . . . . . . . 15 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}))
3330imaeq1d 6051 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)))
3433xpeq1d 5701 . . . . . . . . . . . . . . 15 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))
3532, 34uneq12d 4162 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))
3629, 35oveq12d 7414 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
3736csbeq2dv 3898 . . . . . . . . . . . 12 (𝑡 = 𝑇if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
3828, 37eqtrd 2773 . . . . . . . . . . 11 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
3938mpteq2dv 5246 . . . . . . . . . 10 (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
4039eqeq2d 2744 . . . . . . . . 9 (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
4140, 16elrab2 3684 . . . . . . . 8 (𝑇𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
4241simprbi 498 . . . . . . 7 (𝑇𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
4314, 42syl 17 . . . . . 6 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
44 poimirlem11.3 . . . . . . . . . . . 12 (𝜑 → (2nd𝑇) = 0)
45 breq12 5149 . . . . . . . . . . . 12 ((𝑦 = (𝑁 − 1) ∧ (2nd𝑇) = 0) → (𝑦 < (2nd𝑇) ↔ (𝑁 − 1) < 0))
4644, 45sylan2 594 . . . . . . . . . . 11 ((𝑦 = (𝑁 − 1) ∧ 𝜑) → (𝑦 < (2nd𝑇) ↔ (𝑁 − 1) < 0))
4746ancoms 460 . . . . . . . . . 10 ((𝜑𝑦 = (𝑁 − 1)) → (𝑦 < (2nd𝑇) ↔ (𝑁 − 1) < 0))
48 oveq1 7403 . . . . . . . . . . 11 (𝑦 = (𝑁 − 1) → (𝑦 + 1) = ((𝑁 − 1) + 1))
493nncnd 12215 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
50 npcan1 11626 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
5149, 50syl 17 . . . . . . . . . . 11 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
5248, 51sylan9eqr 2795 . . . . . . . . . 10 ((𝜑𝑦 = (𝑁 − 1)) → (𝑦 + 1) = 𝑁)
5347, 52ifbieq2d 4550 . . . . . . . . 9 ((𝜑𝑦 = (𝑁 − 1)) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = if((𝑁 − 1) < 0, 𝑦, 𝑁))
545nn0ge0d 12522 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑁 − 1))
55 0red 11204 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
565nn0red 12520 . . . . . . . . . . . . 13 (𝜑 → (𝑁 − 1) ∈ ℝ)
5755, 56lenltd 11347 . . . . . . . . . . . 12 (𝜑 → (0 ≤ (𝑁 − 1) ↔ ¬ (𝑁 − 1) < 0))
5854, 57mpbid 231 . . . . . . . . . . 11 (𝜑 → ¬ (𝑁 − 1) < 0)
5958iffalsed 4535 . . . . . . . . . 10 (𝜑 → if((𝑁 − 1) < 0, 𝑦, 𝑁) = 𝑁)
6059adantr 482 . . . . . . . . 9 ((𝜑𝑦 = (𝑁 − 1)) → if((𝑁 − 1) < 0, 𝑦, 𝑁) = 𝑁)
6153, 60eqtrd 2773 . . . . . . . 8 ((𝜑𝑦 = (𝑁 − 1)) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = 𝑁)
6261csbeq1d 3895 . . . . . . 7 ((𝜑𝑦 = (𝑁 − 1)) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = 𝑁 / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
63 oveq2 7404 . . . . . . . . . . . . . . 15 (𝑗 = 𝑁 → (1...𝑗) = (1...𝑁))
6463imaeq2d 6052 . . . . . . . . . . . . . 14 (𝑗 = 𝑁 → ((2nd ‘(1st𝑇)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑁)))
65 xp2nd 7995 . . . . . . . . . . . . . . . . 17 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
6620, 65syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
67 fvex 6894 . . . . . . . . . . . . . . . . 17 (2nd ‘(1st𝑇)) ∈ V
68 f1oeq1 6811 . . . . . . . . . . . . . . . . 17 (𝑓 = (2nd ‘(1st𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)))
6967, 68elab 3666 . . . . . . . . . . . . . . . 16 ((2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
7066, 69sylib 217 . . . . . . . . . . . . . . 15 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
71 f1ofo 6830 . . . . . . . . . . . . . . 15 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁))
72 foima 6800 . . . . . . . . . . . . . . 15 ((2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁) → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
7370, 71, 723syl 18 . . . . . . . . . . . . . 14 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
7464, 73sylan9eqr 2795 . . . . . . . . . . . . 13 ((𝜑𝑗 = 𝑁) → ((2nd ‘(1st𝑇)) “ (1...𝑗)) = (1...𝑁))
7574xpeq1d 5701 . . . . . . . . . . . 12 ((𝜑𝑗 = 𝑁) → (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) = ((1...𝑁) × {1}))
76 oveq1 7403 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑁 → (𝑗 + 1) = (𝑁 + 1))
7776oveq1d 7411 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑁 → ((𝑗 + 1)...𝑁) = ((𝑁 + 1)...𝑁))
783nnred 12214 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℝ)
7978ltp1d 12131 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 < (𝑁 + 1))
803nnzd 12572 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℤ)
8180peano2zd 12656 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑁 + 1) ∈ ℤ)
82 fzn 13504 . . . . . . . . . . . . . . . . . 18 (((𝑁 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < (𝑁 + 1) ↔ ((𝑁 + 1)...𝑁) = ∅))
8381, 80, 82syl2anc 585 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 < (𝑁 + 1) ↔ ((𝑁 + 1)...𝑁) = ∅))
8479, 83mpbid 231 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑁 + 1)...𝑁) = ∅)
8577, 84sylan9eqr 2795 . . . . . . . . . . . . . . 15 ((𝜑𝑗 = 𝑁) → ((𝑗 + 1)...𝑁) = ∅)
8685imaeq2d 6052 . . . . . . . . . . . . . 14 ((𝜑𝑗 = 𝑁) → ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ∅))
8786xpeq1d 5701 . . . . . . . . . . . . 13 ((𝜑𝑗 = 𝑁) → (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ∅) × {0}))
88 ima0 6068 . . . . . . . . . . . . . . 15 ((2nd ‘(1st𝑇)) “ ∅) = ∅
8988xpeq1i 5698 . . . . . . . . . . . . . 14 (((2nd ‘(1st𝑇)) “ ∅) × {0}) = (∅ × {0})
90 0xp 5769 . . . . . . . . . . . . . 14 (∅ × {0}) = ∅
9189, 90eqtri 2761 . . . . . . . . . . . . 13 (((2nd ‘(1st𝑇)) “ ∅) × {0}) = ∅
9287, 91eqtrdi 2789 . . . . . . . . . . . 12 ((𝜑𝑗 = 𝑁) → (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = ∅)
9375, 92uneq12d 4162 . . . . . . . . . . 11 ((𝜑𝑗 = 𝑁) → ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = (((1...𝑁) × {1}) ∪ ∅))
94 un0 4388 . . . . . . . . . . 11 (((1...𝑁) × {1}) ∪ ∅) = ((1...𝑁) × {1})
9593, 94eqtrdi 2789 . . . . . . . . . 10 ((𝜑𝑗 = 𝑁) → ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((1...𝑁) × {1}))
9695oveq2d 7412 . . . . . . . . 9 ((𝜑𝑗 = 𝑁) → ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((1...𝑁) × {1})))
973, 96csbied 3929 . . . . . . . 8 (𝜑𝑁 / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((1...𝑁) × {1})))
9897adantr 482 . . . . . . 7 ((𝜑𝑦 = (𝑁 − 1)) → 𝑁 / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((1...𝑁) × {1})))
9962, 98eqtrd 2773 . . . . . 6 ((𝜑𝑦 = (𝑁 − 1)) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((1...𝑁) × {1})))
100 ovexd 7431 . . . . . 6 (𝜑 → ((1st ‘(1st𝑇)) ∘f + ((1...𝑁) × {1})) ∈ V)
10143, 99, 7, 100fvmptd 6994 . . . . 5 (𝜑 → (𝐹‘(𝑁 − 1)) = ((1st ‘(1st𝑇)) ∘f + ((1...𝑁) × {1})))
102101fveq1d 6883 . . . 4 (𝜑 → ((𝐹‘(𝑁 − 1))‘𝑛) = (((1st ‘(1st𝑇)) ∘f + ((1...𝑁) × {1}))‘𝑛))
103102adantr 482 . . 3 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐹‘(𝑁 − 1))‘𝑛) = (((1st ‘(1st𝑇)) ∘f + ((1...𝑁) × {1}))‘𝑛))
104 inidm 4216 . . . 4 ((1...𝑁) ∩ (1...𝑁)) = (1...𝑁)
105 eqidd 2734 . . . 4 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) = ((1st ‘(1st𝑇))‘𝑛))
10611fvconst2 7192 . . . . 5 (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {1})‘𝑛) = 1)
107106adantl 483 . . . 4 ((𝜑𝑛 ∈ (1...𝑁)) → (((1...𝑁) × {1})‘𝑛) = 1)
10824, 13, 1, 1, 104, 105, 107ofval 7668 . . 3 ((𝜑𝑛 ∈ (1...𝑁)) → (((1st ‘(1st𝑇)) ∘f + ((1...𝑁) × {1}))‘𝑛) = (((1st ‘(1st𝑇))‘𝑛) + 1))
109103, 108eqtrd 2773 . 2 ((𝜑𝑛 ∈ (1...𝑁)) → ((𝐹‘(𝑁 − 1))‘𝑛) = (((1st ‘(1st𝑇))‘𝑛) + 1))
110 elmapi 8831 . . . . . . 7 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
11122, 110syl 17 . . . . . 6 (𝜑 → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
112111ffvelcdmda 7074 . . . . 5 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ (0..^𝐾))
113 elfzonn0 13664 . . . . 5 (((1st ‘(1st𝑇))‘𝑛) ∈ (0..^𝐾) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℕ0)
114112, 113syl 17 . . . 4 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℕ0)
115114nn0cnd 12521 . . 3 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℂ)
116 pncan1 11625 . . 3 (((1st ‘(1st𝑇))‘𝑛) ∈ ℂ → ((((1st ‘(1st𝑇))‘𝑛) + 1) − 1) = ((1st ‘(1st𝑇))‘𝑛))
117115, 116syl 17 . 2 ((𝜑𝑛 ∈ (1...𝑁)) → ((((1st ‘(1st𝑇))‘𝑛) + 1) − 1) = ((1st ‘(1st𝑇))‘𝑛))
1181, 10, 13, 24, 109, 107, 117offveq 7681 1 (𝜑 → ((𝐹‘(𝑁 − 1)) ∘f − ((1...𝑁) × {1})) = (1st ‘(1st𝑇)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  {cab 2710  {crab 3433  Vcvv 3475  csb 3891  cun 3944  c0 4320  ifcif 4524  {csn 4624   class class class wbr 5144  cmpt 5227   × cxp 5670  cima 5675   Fn wfn 6530  wf 6531  ontowfo 6533  1-1-ontowf1o 6534  cfv 6535  (class class class)co 7396  f cof 7655  1st c1st 7960  2nd c2nd 7961  m cmap 8808  cc 11095  0cc0 11097  1c1 11098   + caddc 11100   < clt 11235  cle 11236  cmin 11431  cn 12199  0cn0 12459  cz 12545  ...cfz 13471  ..^cfzo 13614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-of 7657  df-om 7843  df-1st 7962  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-er 8691  df-map 8810  df-en 8928  df-dom 8929  df-sdom 8930  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-nn 12200  df-n0 12460  df-z 12546  df-uz 12810  df-fz 13472  df-fzo 13615
This theorem is referenced by:  poimirlem11  36404  poimirlem13  36406
  Copyright terms: Public domain W3C validator