Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem5 Structured version   Visualization version   GIF version

Theorem poimirlem5 37664
Description: Lemma for poimir 37692 to establish that, for the simplices defined by a walk along the edges of an 𝑁-cube, if the starting vertex is not opposite a given face, it is the earliest vertex of the face on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem22.s 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
poimirlem9.1 (𝜑𝑇𝑆)
poimirlem5.2 (𝜑 → 0 < (2nd𝑇))
Assertion
Ref Expression
poimirlem5 (𝜑 → (𝐹‘0) = (1st ‘(1st𝑇)))
Distinct variable groups:   𝑓,𝑗,𝑡,𝑦   𝜑,𝑗,𝑦   𝑗,𝐹,𝑦   𝑗,𝑁,𝑦   𝑇,𝑗,𝑦   𝜑,𝑡   𝑓,𝐾,𝑗,𝑡   𝑓,𝑁,𝑡   𝑇,𝑓   𝑓,𝐹,𝑡   𝑡,𝑇   𝑆,𝑗,𝑡,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝐾(𝑦)

Proof of Theorem poimirlem5
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 poimirlem9.1 . . . 4 (𝜑𝑇𝑆)
2 fveq2 6822 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (2nd𝑡) = (2nd𝑇))
32breq2d 5101 . . . . . . . . . . 11 (𝑡 = 𝑇 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑇)))
43ifbid 4496 . . . . . . . . . 10 (𝑡 = 𝑇 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)))
54csbeq1d 3849 . . . . . . . . 9 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
6 2fveq3 6827 . . . . . . . . . . 11 (𝑡 = 𝑇 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑇)))
7 2fveq3 6827 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑇)))
87imaeq1d 6007 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑗)))
98xpeq1d 5643 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}))
107imaeq1d 6007 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)))
1110xpeq1d 5643 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))
129, 11uneq12d 4116 . . . . . . . . . . 11 (𝑡 = 𝑇 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))
136, 12oveq12d 7364 . . . . . . . . . 10 (𝑡 = 𝑇 → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
1413csbeq2dv 3852 . . . . . . . . 9 (𝑡 = 𝑇if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
155, 14eqtrd 2766 . . . . . . . 8 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
1615mpteq2dv 5183 . . . . . . 7 (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
1716eqeq2d 2742 . . . . . 6 (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
18 poimirlem22.s . . . . . 6 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
1917, 18elrab2 3645 . . . . 5 (𝑇𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
2019simprbi 496 . . . 4 (𝑇𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
211, 20syl 17 . . 3 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
22 breq1 5092 . . . . . . 7 (𝑦 = 0 → (𝑦 < (2nd𝑇) ↔ 0 < (2nd𝑇)))
23 id 22 . . . . . . 7 (𝑦 = 0 → 𝑦 = 0)
2422, 23ifbieq1d 4497 . . . . . 6 (𝑦 = 0 → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = if(0 < (2nd𝑇), 0, (𝑦 + 1)))
25 poimirlem5.2 . . . . . . 7 (𝜑 → 0 < (2nd𝑇))
2625iftrued 4480 . . . . . 6 (𝜑 → if(0 < (2nd𝑇), 0, (𝑦 + 1)) = 0)
2724, 26sylan9eqr 2788 . . . . 5 ((𝜑𝑦 = 0) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = 0)
2827csbeq1d 3849 . . . 4 ((𝜑𝑦 = 0) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = 0 / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
29 c0ex 11106 . . . . . . 7 0 ∈ V
30 oveq2 7354 . . . . . . . . . . . . 13 (𝑗 = 0 → (1...𝑗) = (1...0))
31 fz10 13445 . . . . . . . . . . . . 13 (1...0) = ∅
3230, 31eqtrdi 2782 . . . . . . . . . . . 12 (𝑗 = 0 → (1...𝑗) = ∅)
3332imaeq2d 6008 . . . . . . . . . . 11 (𝑗 = 0 → ((2nd ‘(1st𝑇)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ ∅))
3433xpeq1d 5643 . . . . . . . . . 10 (𝑗 = 0 → (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ ∅) × {1}))
35 oveq1 7353 . . . . . . . . . . . . . 14 (𝑗 = 0 → (𝑗 + 1) = (0 + 1))
36 0p1e1 12242 . . . . . . . . . . . . . 14 (0 + 1) = 1
3735, 36eqtrdi 2782 . . . . . . . . . . . . 13 (𝑗 = 0 → (𝑗 + 1) = 1)
3837oveq1d 7361 . . . . . . . . . . . 12 (𝑗 = 0 → ((𝑗 + 1)...𝑁) = (1...𝑁))
3938imaeq2d 6008 . . . . . . . . . . 11 (𝑗 = 0 → ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ (1...𝑁)))
4039xpeq1d 5643 . . . . . . . . . 10 (𝑗 = 0 → (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}))
4134, 40uneq12d 4116 . . . . . . . . 9 (𝑗 = 0 → ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ ∅) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})))
42 ima0 6025 . . . . . . . . . . . . 13 ((2nd ‘(1st𝑇)) “ ∅) = ∅
4342xpeq1i 5640 . . . . . . . . . . . 12 (((2nd ‘(1st𝑇)) “ ∅) × {1}) = (∅ × {1})
44 0xp 5713 . . . . . . . . . . . 12 (∅ × {1}) = ∅
4543, 44eqtri 2754 . . . . . . . . . . 11 (((2nd ‘(1st𝑇)) “ ∅) × {1}) = ∅
4645uneq1i 4111 . . . . . . . . . 10 ((((2nd ‘(1st𝑇)) “ ∅) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})) = (∅ ∪ (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}))
47 uncom 4105 . . . . . . . . . 10 (∅ ∪ (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}) ∪ ∅)
48 un0 4341 . . . . . . . . . 10 ((((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}) ∪ ∅) = (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})
4946, 47, 483eqtri 2758 . . . . . . . . 9 ((((2nd ‘(1st𝑇)) “ ∅) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})) = (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})
5041, 49eqtrdi 2782 . . . . . . . 8 (𝑗 = 0 → ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}))
5150oveq2d 7362 . . . . . . 7 (𝑗 = 0 → ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})))
5229, 51csbie 3880 . . . . . 6 0 / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}))
53 elrabi 3638 . . . . . . . . . . . . . . 15 (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
5453, 18eleq2s 2849 . . . . . . . . . . . . . 14 (𝑇𝑆𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
551, 54syl 17 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
56 xp1st 7953 . . . . . . . . . . . . 13 (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
5755, 56syl 17 . . . . . . . . . . . 12 (𝜑 → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
58 xp2nd 7954 . . . . . . . . . . . 12 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
5957, 58syl 17 . . . . . . . . . . 11 (𝜑 → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
60 fvex 6835 . . . . . . . . . . . 12 (2nd ‘(1st𝑇)) ∈ V
61 f1oeq1 6751 . . . . . . . . . . . 12 (𝑓 = (2nd ‘(1st𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)))
6260, 61elab 3630 . . . . . . . . . . 11 ((2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
6359, 62sylib 218 . . . . . . . . . 10 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
64 f1ofo 6770 . . . . . . . . . 10 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁))
6563, 64syl 17 . . . . . . . . 9 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁))
66 foima 6740 . . . . . . . . 9 ((2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁) → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
6765, 66syl 17 . . . . . . . 8 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
6867xpeq1d 5643 . . . . . . 7 (𝜑 → (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}) = ((1...𝑁) × {0}))
6968oveq2d 7362 . . . . . 6 (𝜑 → ((1st ‘(1st𝑇)) ∘f + (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})) = ((1st ‘(1st𝑇)) ∘f + ((1...𝑁) × {0})))
7052, 69eqtrid 2778 . . . . 5 (𝜑0 / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((1...𝑁) × {0})))
7170adantr 480 . . . 4 ((𝜑𝑦 = 0) → 0 / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((1...𝑁) × {0})))
7228, 71eqtrd 2766 . . 3 ((𝜑𝑦 = 0) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((1...𝑁) × {0})))
73 poimir.0 . . . . 5 (𝜑𝑁 ∈ ℕ)
74 nnm1nn0 12422 . . . . 5 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
7573, 74syl 17 . . . 4 (𝜑 → (𝑁 − 1) ∈ ℕ0)
76 0elfz 13524 . . . 4 ((𝑁 − 1) ∈ ℕ0 → 0 ∈ (0...(𝑁 − 1)))
7775, 76syl 17 . . 3 (𝜑 → 0 ∈ (0...(𝑁 − 1)))
78 ovexd 7381 . . 3 (𝜑 → ((1st ‘(1st𝑇)) ∘f + ((1...𝑁) × {0})) ∈ V)
7921, 72, 77, 78fvmptd 6936 . 2 (𝜑 → (𝐹‘0) = ((1st ‘(1st𝑇)) ∘f + ((1...𝑁) × {0})))
80 ovexd 7381 . . 3 (𝜑 → (1...𝑁) ∈ V)
81 xp1st 7953 . . . . 5 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
8257, 81syl 17 . . . 4 (𝜑 → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
83 elmapfn 8789 . . . 4 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st ‘(1st𝑇)) Fn (1...𝑁))
8482, 83syl 17 . . 3 (𝜑 → (1st ‘(1st𝑇)) Fn (1...𝑁))
85 fnconstg 6711 . . . 4 (0 ∈ V → ((1...𝑁) × {0}) Fn (1...𝑁))
8629, 85mp1i 13 . . 3 (𝜑 → ((1...𝑁) × {0}) Fn (1...𝑁))
87 eqidd 2732 . . 3 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) = ((1st ‘(1st𝑇))‘𝑛))
8829fvconst2 7138 . . . 4 (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {0})‘𝑛) = 0)
8988adantl 481 . . 3 ((𝜑𝑛 ∈ (1...𝑁)) → (((1...𝑁) × {0})‘𝑛) = 0)
90 elmapi 8773 . . . . . . . 8 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
9182, 90syl 17 . . . . . . 7 (𝜑 → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
9291ffvelcdmda 7017 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ (0..^𝐾))
93 elfzonn0 13607 . . . . . 6 (((1st ‘(1st𝑇))‘𝑛) ∈ (0..^𝐾) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℕ0)
9492, 93syl 17 . . . . 5 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℕ0)
9594nn0cnd 12444 . . . 4 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℂ)
9695addridd 11313 . . 3 ((𝜑𝑛 ∈ (1...𝑁)) → (((1st ‘(1st𝑇))‘𝑛) + 0) = ((1st ‘(1st𝑇))‘𝑛))
9780, 84, 86, 84, 87, 89, 96offveq 7636 . 2 (𝜑 → ((1st ‘(1st𝑇)) ∘f + ((1...𝑁) × {0})) = (1st ‘(1st𝑇)))
9879, 97eqtrd 2766 1 (𝜑 → (𝐹‘0) = (1st ‘(1st𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  {crab 3395  Vcvv 3436  csb 3845  cun 3895  c0 4280  ifcif 4472  {csn 4573   class class class wbr 5089  cmpt 5170   × cxp 5612  cima 5617   Fn wfn 6476  wf 6477  ontowfo 6479  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  f cof 7608  1st c1st 7919  2nd c2nd 7920  m cmap 8750  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cmin 11344  cn 12125  0cn0 12381  ...cfz 13407  ..^cfzo 13554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555
This theorem is referenced by:  poimirlem12  37671  poimirlem14  37673
  Copyright terms: Public domain W3C validator