Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem5 Structured version   Visualization version   GIF version

Theorem poimirlem5 34428
Description: Lemma for poimir 34456 to establish that, for the simplices defined by a walk along the edges of an 𝑁-cube, if the starting vertex is not opposite a given face, it is the earliest vertex of the face on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem22.s 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
poimirlem9.1 (𝜑𝑇𝑆)
poimirlem5.2 (𝜑 → 0 < (2nd𝑇))
Assertion
Ref Expression
poimirlem5 (𝜑 → (𝐹‘0) = (1st ‘(1st𝑇)))
Distinct variable groups:   𝑓,𝑗,𝑡,𝑦   𝜑,𝑗,𝑦   𝑗,𝐹,𝑦   𝑗,𝑁,𝑦   𝑇,𝑗,𝑦   𝜑,𝑡   𝑓,𝐾,𝑗,𝑡   𝑓,𝑁,𝑡   𝑇,𝑓   𝑓,𝐹,𝑡   𝑡,𝑇   𝑆,𝑗,𝑡,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝐾(𝑦)

Proof of Theorem poimirlem5
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 poimirlem9.1 . . . 4 (𝜑𝑇𝑆)
2 fveq2 6538 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (2nd𝑡) = (2nd𝑇))
32breq2d 4974 . . . . . . . . . . 11 (𝑡 = 𝑇 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑇)))
43ifbid 4403 . . . . . . . . . 10 (𝑡 = 𝑇 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)))
54csbeq1d 3815 . . . . . . . . 9 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
6 2fveq3 6543 . . . . . . . . . . 11 (𝑡 = 𝑇 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑇)))
7 2fveq3 6543 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑇)))
87imaeq1d 5805 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑗)))
98xpeq1d 5472 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}))
107imaeq1d 5805 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)))
1110xpeq1d 5472 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))
129, 11uneq12d 4061 . . . . . . . . . . 11 (𝑡 = 𝑇 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))
136, 12oveq12d 7034 . . . . . . . . . 10 (𝑡 = 𝑇 → ((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
1413csbeq2dv 3818 . . . . . . . . 9 (𝑡 = 𝑇if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
155, 14eqtrd 2831 . . . . . . . 8 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
1615mpteq2dv 5056 . . . . . . 7 (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
1716eqeq2d 2805 . . . . . 6 (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
18 poimirlem22.s . . . . . 6 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
1917, 18elrab2 3621 . . . . 5 (𝑇𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
2019simprbi 497 . . . 4 (𝑇𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
211, 20syl 17 . . 3 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
22 breq1 4965 . . . . . . 7 (𝑦 = 0 → (𝑦 < (2nd𝑇) ↔ 0 < (2nd𝑇)))
23 id 22 . . . . . . 7 (𝑦 = 0 → 𝑦 = 0)
2422, 23ifbieq1d 4404 . . . . . 6 (𝑦 = 0 → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = if(0 < (2nd𝑇), 0, (𝑦 + 1)))
25 poimirlem5.2 . . . . . . 7 (𝜑 → 0 < (2nd𝑇))
2625iftrued 4389 . . . . . 6 (𝜑 → if(0 < (2nd𝑇), 0, (𝑦 + 1)) = 0)
2724, 26sylan9eqr 2853 . . . . 5 ((𝜑𝑦 = 0) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = 0)
2827csbeq1d 3815 . . . 4 ((𝜑𝑦 = 0) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = 0 / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
29 c0ex 10481 . . . . . . 7 0 ∈ V
30 oveq2 7024 . . . . . . . . . . . . 13 (𝑗 = 0 → (1...𝑗) = (1...0))
31 fz10 12778 . . . . . . . . . . . . 13 (1...0) = ∅
3230, 31syl6eq 2847 . . . . . . . . . . . 12 (𝑗 = 0 → (1...𝑗) = ∅)
3332imaeq2d 5806 . . . . . . . . . . 11 (𝑗 = 0 → ((2nd ‘(1st𝑇)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ ∅))
3433xpeq1d 5472 . . . . . . . . . 10 (𝑗 = 0 → (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ ∅) × {1}))
35 oveq1 7023 . . . . . . . . . . . . . 14 (𝑗 = 0 → (𝑗 + 1) = (0 + 1))
36 0p1e1 11607 . . . . . . . . . . . . . 14 (0 + 1) = 1
3735, 36syl6eq 2847 . . . . . . . . . . . . 13 (𝑗 = 0 → (𝑗 + 1) = 1)
3837oveq1d 7031 . . . . . . . . . . . 12 (𝑗 = 0 → ((𝑗 + 1)...𝑁) = (1...𝑁))
3938imaeq2d 5806 . . . . . . . . . . 11 (𝑗 = 0 → ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ (1...𝑁)))
4039xpeq1d 5472 . . . . . . . . . 10 (𝑗 = 0 → (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}))
4134, 40uneq12d 4061 . . . . . . . . 9 (𝑗 = 0 → ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ ∅) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})))
42 ima0 5821 . . . . . . . . . . . . 13 ((2nd ‘(1st𝑇)) “ ∅) = ∅
4342xpeq1i 5469 . . . . . . . . . . . 12 (((2nd ‘(1st𝑇)) “ ∅) × {1}) = (∅ × {1})
44 0xp 5535 . . . . . . . . . . . 12 (∅ × {1}) = ∅
4543, 44eqtri 2819 . . . . . . . . . . 11 (((2nd ‘(1st𝑇)) “ ∅) × {1}) = ∅
4645uneq1i 4056 . . . . . . . . . 10 ((((2nd ‘(1st𝑇)) “ ∅) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})) = (∅ ∪ (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}))
47 uncom 4050 . . . . . . . . . 10 (∅ ∪ (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}) ∪ ∅)
48 un0 4264 . . . . . . . . . 10 ((((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}) ∪ ∅) = (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})
4946, 47, 483eqtri 2823 . . . . . . . . 9 ((((2nd ‘(1st𝑇)) “ ∅) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})) = (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})
5041, 49syl6eq 2847 . . . . . . . 8 (𝑗 = 0 → ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}))
5150oveq2d 7032 . . . . . . 7 (𝑗 = 0 → ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})))
5229, 51csbie 3843 . . . . . 6 0 / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}))
53 elrabi 3613 . . . . . . . . . . . . . . 15 (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
5453, 18eleq2s 2901 . . . . . . . . . . . . . 14 (𝑇𝑆𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
551, 54syl 17 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
56 xp1st 7577 . . . . . . . . . . . . 13 (𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
5755, 56syl 17 . . . . . . . . . . . 12 (𝜑 → (1st𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
58 xp2nd 7578 . . . . . . . . . . . 12 ((1st𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
5957, 58syl 17 . . . . . . . . . . 11 (𝜑 → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
60 fvex 6551 . . . . . . . . . . . 12 (2nd ‘(1st𝑇)) ∈ V
61 f1oeq1 6472 . . . . . . . . . . . 12 (𝑓 = (2nd ‘(1st𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)))
6260, 61elab 3605 . . . . . . . . . . 11 ((2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
6359, 62sylib 219 . . . . . . . . . 10 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
64 f1ofo 6490 . . . . . . . . . 10 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁))
6563, 64syl 17 . . . . . . . . 9 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁))
66 foima 6463 . . . . . . . . 9 ((2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁) → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
6765, 66syl 17 . . . . . . . 8 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
6867xpeq1d 5472 . . . . . . 7 (𝜑 → (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}) = ((1...𝑁) × {0}))
6968oveq2d 7032 . . . . . 6 (𝜑 → ((1st ‘(1st𝑇)) ∘𝑓 + (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})) = ((1st ‘(1st𝑇)) ∘𝑓 + ((1...𝑁) × {0})))
7052, 69syl5eq 2843 . . . . 5 (𝜑0 / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((1...𝑁) × {0})))
7170adantr 481 . . . 4 ((𝜑𝑦 = 0) → 0 / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((1...𝑁) × {0})))
7228, 71eqtrd 2831 . . 3 ((𝜑𝑦 = 0) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((1...𝑁) × {0})))
73 poimir.0 . . . . 5 (𝜑𝑁 ∈ ℕ)
74 nnm1nn0 11786 . . . . 5 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
7573, 74syl 17 . . . 4 (𝜑 → (𝑁 − 1) ∈ ℕ0)
76 0elfz 12854 . . . 4 ((𝑁 − 1) ∈ ℕ0 → 0 ∈ (0...(𝑁 − 1)))
7775, 76syl 17 . . 3 (𝜑 → 0 ∈ (0...(𝑁 − 1)))
78 ovexd 7050 . . 3 (𝜑 → ((1st ‘(1st𝑇)) ∘𝑓 + ((1...𝑁) × {0})) ∈ V)
7921, 72, 77, 78fvmptd 6641 . 2 (𝜑 → (𝐹‘0) = ((1st ‘(1st𝑇)) ∘𝑓 + ((1...𝑁) × {0})))
80 ovexd 7050 . . 3 (𝜑 → (1...𝑁) ∈ V)
81 xp1st 7577 . . . . 5 ((1st𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)))
8257, 81syl 17 . . . 4 (𝜑 → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)))
83 elmapfn 8279 . . . 4 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) → (1st ‘(1st𝑇)) Fn (1...𝑁))
8482, 83syl 17 . . 3 (𝜑 → (1st ‘(1st𝑇)) Fn (1...𝑁))
85 fnconstg 6435 . . . 4 (0 ∈ V → ((1...𝑁) × {0}) Fn (1...𝑁))
8629, 85mp1i 13 . . 3 (𝜑 → ((1...𝑁) × {0}) Fn (1...𝑁))
87 eqidd 2796 . . 3 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) = ((1st ‘(1st𝑇))‘𝑛))
8829fvconst2 6833 . . . 4 (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {0})‘𝑛) = 0)
8988adantl 482 . . 3 ((𝜑𝑛 ∈ (1...𝑁)) → (((1...𝑁) × {0})‘𝑛) = 0)
90 elmapi 8278 . . . . . . . 8 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
9182, 90syl 17 . . . . . . 7 (𝜑 → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
9291ffvelrnda 6716 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ (0..^𝐾))
93 elfzonn0 12932 . . . . . 6 (((1st ‘(1st𝑇))‘𝑛) ∈ (0..^𝐾) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℕ0)
9492, 93syl 17 . . . . 5 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℕ0)
9594nn0cnd 11805 . . . 4 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℂ)
9695addid1d 10687 . . 3 ((𝜑𝑛 ∈ (1...𝑁)) → (((1st ‘(1st𝑇))‘𝑛) + 0) = ((1st ‘(1st𝑇))‘𝑛))
9780, 84, 86, 84, 87, 89, 96offveq 7288 . 2 (𝜑 → ((1st ‘(1st𝑇)) ∘𝑓 + ((1...𝑁) × {0})) = (1st ‘(1st𝑇)))
9879, 97eqtrd 2831 1 (𝜑 → (𝐹‘0) = (1st ‘(1st𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wcel 2081  {cab 2775  {crab 3109  Vcvv 3437  csb 3811  cun 3857  c0 4211  ifcif 4381  {csn 4472   class class class wbr 4962  cmpt 5041   × cxp 5441  cima 5446   Fn wfn 6220  wf 6221  ontowfo 6223  1-1-ontowf1o 6224  cfv 6225  (class class class)co 7016  𝑓 cof 7265  1st c1st 7543  2nd c2nd 7544  𝑚 cmap 8256  0cc0 10383  1c1 10384   + caddc 10386   < clt 10521  cmin 10717  cn 11486  0cn0 11745  ...cfz 12742  ..^cfzo 12883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-n0 11746  df-z 11830  df-uz 12094  df-fz 12743  df-fzo 12884
This theorem is referenced by:  poimirlem12  34435  poimirlem14  34437
  Copyright terms: Public domain W3C validator