MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpfir Structured version   Visualization version   GIF version

Theorem xpfir 9211
Description: The components of a nonempty finite Cartesian product are finite. (Contributed by Paul Chapman, 11-Apr-2009.) (Proof shortened by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xpfir (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))

Proof of Theorem xpfir
StepHypRef Expression
1 xpexr2 7895 . . . . 5 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
21simpld 494 . . . 4 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐴 ∈ V)
31simprd 495 . . . 4 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ∈ V)
4 simpr 484 . . . . . 6 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 × 𝐵) ≠ ∅)
5 xpnz 6132 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
64, 5sylibr 234 . . . . 5 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
76simprd 495 . . . 4 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ≠ ∅)
8 xpdom3 9039 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵))
92, 3, 7, 8syl3anc 1373 . . 3 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵))
10 domfi 9153 . . 3 (((𝐴 × 𝐵) ∈ Fin ∧ 𝐴 ≼ (𝐴 × 𝐵)) → 𝐴 ∈ Fin)
119, 10syldan 591 . 2 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐴 ∈ Fin)
126simpld 494 . . . . 5 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐴 ≠ ∅)
13 xpdom3 9039 . . . . 5 ((𝐵 ∈ V ∧ 𝐴 ∈ V ∧ 𝐴 ≠ ∅) → 𝐵 ≼ (𝐵 × 𝐴))
143, 2, 12, 13syl3anc 1373 . . . 4 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ≼ (𝐵 × 𝐴))
15 xpcomeng 9033 . . . . 5 ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵 × 𝐴) ≈ (𝐴 × 𝐵))
163, 2, 15syl2anc 584 . . . 4 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐵 × 𝐴) ≈ (𝐴 × 𝐵))
17 domentr 8984 . . . 4 ((𝐵 ≼ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ≈ (𝐴 × 𝐵)) → 𝐵 ≼ (𝐴 × 𝐵))
1814, 16, 17syl2anc 584 . . 3 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ≼ (𝐴 × 𝐵))
19 domfi 9153 . . 3 (((𝐴 × 𝐵) ∈ Fin ∧ 𝐵 ≼ (𝐴 × 𝐵)) → 𝐵 ∈ Fin)
2018, 19syldan 591 . 2 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ∈ Fin)
2111, 20jca 511 1 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2925  Vcvv 3447  c0 4296   class class class wbr 5107   × cxp 5636  cen 8915  cdom 8916  Fincfn 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1st 7968  df-2nd 7969  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-fin 8922
This theorem is referenced by:  hashxpe  32732
  Copyright terms: Public domain W3C validator