| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpfir | Structured version Visualization version GIF version | ||
| Description: The components of a nonempty finite Cartesian product are finite. (Contributed by Paul Chapman, 11-Apr-2009.) (Proof shortened by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| xpfir | ⊢ (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexr2 7895 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 2 | 1 | simpld 494 | . . . 4 ⊢ (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐴 ∈ V) |
| 3 | 1 | simprd 495 | . . . 4 ⊢ (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ∈ V) |
| 4 | simpr 484 | . . . . . 6 ⊢ (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 × 𝐵) ≠ ∅) | |
| 5 | xpnz 6132 | . . . . . 6 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅) | |
| 6 | 4, 5 | sylibr 234 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)) |
| 7 | 6 | simprd 495 | . . . 4 ⊢ (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ≠ ∅) |
| 8 | xpdom3 9039 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵)) | |
| 9 | 2, 3, 7, 8 | syl3anc 1373 | . . 3 ⊢ (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵)) |
| 10 | domfi 9153 | . . 3 ⊢ (((𝐴 × 𝐵) ∈ Fin ∧ 𝐴 ≼ (𝐴 × 𝐵)) → 𝐴 ∈ Fin) | |
| 11 | 9, 10 | syldan 591 | . 2 ⊢ (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐴 ∈ Fin) |
| 12 | 6 | simpld 494 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐴 ≠ ∅) |
| 13 | xpdom3 9039 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V ∧ 𝐴 ≠ ∅) → 𝐵 ≼ (𝐵 × 𝐴)) | |
| 14 | 3, 2, 12, 13 | syl3anc 1373 | . . . 4 ⊢ (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ≼ (𝐵 × 𝐴)) |
| 15 | xpcomeng 9033 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵 × 𝐴) ≈ (𝐴 × 𝐵)) | |
| 16 | 3, 2, 15 | syl2anc 584 | . . . 4 ⊢ (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐵 × 𝐴) ≈ (𝐴 × 𝐵)) |
| 17 | domentr 8984 | . . . 4 ⊢ ((𝐵 ≼ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ≈ (𝐴 × 𝐵)) → 𝐵 ≼ (𝐴 × 𝐵)) | |
| 18 | 14, 16, 17 | syl2anc 584 | . . 3 ⊢ (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ≼ (𝐴 × 𝐵)) |
| 19 | domfi 9153 | . . 3 ⊢ (((𝐴 × 𝐵) ∈ Fin ∧ 𝐵 ≼ (𝐴 × 𝐵)) → 𝐵 ∈ Fin) | |
| 20 | 18, 19 | syldan 591 | . 2 ⊢ (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ∈ Fin) |
| 21 | 11, 20 | jca 511 | 1 ⊢ (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∅c0 4296 class class class wbr 5107 × cxp 5636 ≈ cen 8915 ≼ cdom 8916 Fincfn 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1st 7968 df-2nd 7969 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-fin 8922 |
| This theorem is referenced by: hashxpe 32732 |
| Copyright terms: Public domain | W3C validator |