MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpfir Structured version   Visualization version   GIF version

Theorem xpfir 9002
Description: The components of a nonempty finite Cartesian product are finite. (Contributed by Paul Chapman, 11-Apr-2009.) (Proof shortened by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xpfir (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))

Proof of Theorem xpfir
StepHypRef Expression
1 xpexr2 7753 . . . . 5 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
21simpld 494 . . . 4 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐴 ∈ V)
31simprd 495 . . . 4 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ∈ V)
4 simpr 484 . . . . . 6 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 × 𝐵) ≠ ∅)
5 xpnz 6059 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
64, 5sylibr 233 . . . . 5 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
76simprd 495 . . . 4 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ≠ ∅)
8 xpdom3 8826 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵))
92, 3, 7, 8syl3anc 1369 . . 3 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵))
10 domfi 8940 . . 3 (((𝐴 × 𝐵) ∈ Fin ∧ 𝐴 ≼ (𝐴 × 𝐵)) → 𝐴 ∈ Fin)
119, 10syldan 590 . 2 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐴 ∈ Fin)
126simpld 494 . . . . 5 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐴 ≠ ∅)
13 xpdom3 8826 . . . . 5 ((𝐵 ∈ V ∧ 𝐴 ∈ V ∧ 𝐴 ≠ ∅) → 𝐵 ≼ (𝐵 × 𝐴))
143, 2, 12, 13syl3anc 1369 . . . 4 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ≼ (𝐵 × 𝐴))
15 xpcomeng 8820 . . . . 5 ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵 × 𝐴) ≈ (𝐴 × 𝐵))
163, 2, 15syl2anc 583 . . . 4 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐵 × 𝐴) ≈ (𝐴 × 𝐵))
17 domentr 8770 . . . 4 ((𝐵 ≼ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ≈ (𝐴 × 𝐵)) → 𝐵 ≼ (𝐴 × 𝐵))
1814, 16, 17syl2anc 583 . . 3 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ≼ (𝐴 × 𝐵))
19 domfi 8940 . . 3 (((𝐴 × 𝐵) ∈ Fin ∧ 𝐵 ≼ (𝐴 × 𝐵)) → 𝐵 ∈ Fin)
2018, 19syldan 590 . 2 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ∈ Fin)
2111, 20jca 511 1 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2944  Vcvv 3430  c0 4261   class class class wbr 5078   × cxp 5586  cen 8704  cdom 8705  Fincfn 8707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-om 7701  df-1st 7817  df-2nd 7818  df-1o 8281  df-er 8472  df-en 8708  df-dom 8709  df-fin 8711
This theorem is referenced by:  hashxpe  31106
  Copyright terms: Public domain W3C validator