MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpfir Structured version   Visualization version   GIF version

Theorem xpfir 9300
Description: The components of a nonempty finite Cartesian product are finite. (Contributed by Paul Chapman, 11-Apr-2009.) (Proof shortened by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xpfir (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))

Proof of Theorem xpfir
StepHypRef Expression
1 xpexr2 7932 . . . . 5 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
21simpld 493 . . . 4 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐴 ∈ V)
31simprd 494 . . . 4 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ∈ V)
4 simpr 483 . . . . . 6 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 × 𝐵) ≠ ∅)
5 xpnz 6170 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
64, 5sylibr 233 . . . . 5 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅))
76simprd 494 . . . 4 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ≠ ∅)
8 xpdom3 9108 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵))
92, 3, 7, 8syl3anc 1368 . . 3 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵))
10 domfi 9226 . . 3 (((𝐴 × 𝐵) ∈ Fin ∧ 𝐴 ≼ (𝐴 × 𝐵)) → 𝐴 ∈ Fin)
119, 10syldan 589 . 2 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐴 ∈ Fin)
126simpld 493 . . . . 5 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐴 ≠ ∅)
13 xpdom3 9108 . . . . 5 ((𝐵 ∈ V ∧ 𝐴 ∈ V ∧ 𝐴 ≠ ∅) → 𝐵 ≼ (𝐵 × 𝐴))
143, 2, 12, 13syl3anc 1368 . . . 4 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ≼ (𝐵 × 𝐴))
15 xpcomeng 9102 . . . . 5 ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵 × 𝐴) ≈ (𝐴 × 𝐵))
163, 2, 15syl2anc 582 . . . 4 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐵 × 𝐴) ≈ (𝐴 × 𝐵))
17 domentr 9044 . . . 4 ((𝐵 ≼ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ≈ (𝐴 × 𝐵)) → 𝐵 ≼ (𝐴 × 𝐵))
1814, 16, 17syl2anc 582 . . 3 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ≼ (𝐴 × 𝐵))
19 domfi 9226 . . 3 (((𝐴 × 𝐵) ∈ Fin ∧ 𝐵 ≼ (𝐴 × 𝐵)) → 𝐵 ∈ Fin)
2018, 19syldan 589 . 2 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ∈ Fin)
2111, 20jca 510 1 (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2099  wne 2930  Vcvv 3462  c0 4325   class class class wbr 5153   × cxp 5680  cen 8971  cdom 8972  Fincfn 8974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-om 7877  df-1st 8003  df-2nd 8004  df-1o 8496  df-er 8734  df-en 8975  df-dom 8976  df-fin 8978
This theorem is referenced by:  hashxpe  32711
  Copyright terms: Public domain W3C validator