New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > caovcom | GIF version |
Description: Convert an operation commutative law to class notation. (Contributed by set.mm contributors, 26-Aug-1995.) (Revised by Mario Carneiro, 1-Jun-2013.) |
Ref | Expression |
---|---|
caovcom.1 | ⊢ A ∈ V |
caovcom.2 | ⊢ B ∈ V |
caovcom.3 | ⊢ (xFy) = (yFx) |
Ref | Expression |
---|---|
caovcom | ⊢ (AFB) = (BFA) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovcom.1 | . 2 ⊢ A ∈ V | |
2 | caovcom.2 | . . 3 ⊢ B ∈ V | |
3 | 1, 2 | pm3.2i 441 | . 2 ⊢ (A ∈ V ∧ B ∈ V) |
4 | caovcom.3 | . . . 4 ⊢ (xFy) = (yFx) | |
5 | 4 | a1i 10 | . . 3 ⊢ ((A ∈ V ∧ (x ∈ V ∧ y ∈ V)) → (xFy) = (yFx)) |
6 | 5 | caovcomg 5625 | . 2 ⊢ ((A ∈ V ∧ (A ∈ V ∧ B ∈ V)) → (AFB) = (BFA)) |
7 | 1, 3, 6 | mp2an 653 | 1 ⊢ (AFB) = (BFA) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 = wceq 1642 ∈ wcel 1710 Vcvv 2860 (class class class)co 5526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-br 4641 df-fv 4796 df-ov 5527 |
This theorem is referenced by: caovord2 5631 caov32 5636 caov12 5637 caov42 5642 caovdir 5643 caovmo 5646 |
Copyright terms: Public domain | W3C validator |