New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > caov42 | GIF version |
Description: Rearrange arguments in a commutative, associative operation. (Contributed by set.mm contributors, 26-Aug-1995.) |
Ref | Expression |
---|---|
caopr.1 | ⊢ A ∈ V |
caopr.2 | ⊢ B ∈ V |
caopr.3 | ⊢ C ∈ V |
caopr.com | ⊢ (xFy) = (yFx) |
caopr.ass | ⊢ ((xFy)Fz) = (xF(yFz)) |
caopr.4 | ⊢ D ∈ V |
Ref | Expression |
---|---|
caov42 | ⊢ ((AFB)F(CFD)) = ((AFC)F(DFB)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caopr.1 | . . 3 ⊢ A ∈ V | |
2 | caopr.2 | . . 3 ⊢ B ∈ V | |
3 | caopr.3 | . . 3 ⊢ C ∈ V | |
4 | caopr.com | . . 3 ⊢ (xFy) = (yFx) | |
5 | caopr.ass | . . 3 ⊢ ((xFy)Fz) = (xF(yFz)) | |
6 | caopr.4 | . . 3 ⊢ D ∈ V | |
7 | 1, 2, 3, 4, 5, 6 | caov4 5640 | . 2 ⊢ ((AFB)F(CFD)) = ((AFC)F(BFD)) |
8 | 2, 6, 4 | caovcom 5626 | . . 3 ⊢ (BFD) = (DFB) |
9 | 8 | oveq2i 5535 | . 2 ⊢ ((AFC)F(BFD)) = ((AFC)F(DFB)) |
10 | 7, 9 | eqtri 2373 | 1 ⊢ ((AFB)F(CFD)) = ((AFC)F(DFB)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∈ wcel 1710 Vcvv 2860 (class class class)co 5526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-br 4641 df-fv 4796 df-ov 5527 |
This theorem is referenced by: caovlem2 5645 |
Copyright terms: Public domain | W3C validator |