NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfbr GIF version

Theorem nfbr 4684
Description: Bound-variable hypothesis builder for binary relation. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfbr.1 xA
nfbr.2 xR
nfbr.3 xB
Assertion
Ref Expression
nfbr x ARB

Proof of Theorem nfbr
StepHypRef Expression
1 nfbr.1 . . . 4 xA
21a1i 10 . . 3 ( ⊤ → xA)
3 nfbr.2 . . . 4 xR
43a1i 10 . . 3 ( ⊤ → xR)
5 nfbr.3 . . . 4 xB
65a1i 10 . . 3 ( ⊤ → xB)
72, 4, 6nfbrd 4683 . 2 ( ⊤ → Ⅎx ARB)
87trud 1323 1 x ARB
Colors of variables: wff setvar class
Syntax hints:  wtru 1316  wnf 1544  wnfc 2477   class class class wbr 4640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-br 4641
This theorem is referenced by:  sbcbrg  4686  nfco  4883  nfcnv  4892  dfdmf  4906  nfima  4954  dfrnf  4963  dffun6f  5124  nffv  5335  funfv2f  5378  nfiso  5488
  Copyright terms: Public domain W3C validator