MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou2b Structured version   Visualization version   GIF version

Theorem aaliou2b 24930
Description: Liouville's approximation theorem extended to complex 𝐴. (Contributed by Stefan O'Rear, 20-Nov-2014.)
Assertion
Ref Expression
aaliou2b (𝐴 ∈ 𝔸 → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
Distinct variable group:   𝐴,𝑘,𝑥,𝑝,𝑞

Proof of Theorem aaliou2b
StepHypRef Expression
1 elin 4169 . . 3 (𝐴 ∈ (𝔸 ∩ ℝ) ↔ (𝐴 ∈ 𝔸 ∧ 𝐴 ∈ ℝ))
2 aaliou2 24929 . . 3 (𝐴 ∈ (𝔸 ∩ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
31, 2sylbir 237 . 2 ((𝐴 ∈ 𝔸 ∧ 𝐴 ∈ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
4 1nn 11649 . . 3 1 ∈ ℕ
5 aacn 24906 . . . . . . . 8 (𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ)
65adantr 483 . . . . . . 7 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → 𝐴 ∈ ℂ)
76imcld 14554 . . . . . 6 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → (ℑ‘𝐴) ∈ ℝ)
87recnd 10669 . . . . 5 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → (ℑ‘𝐴) ∈ ℂ)
9 reim0b 14478 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
105, 9syl 17 . . . . . . 7 (𝐴 ∈ 𝔸 → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
1110necon3bbid 3053 . . . . . 6 (𝐴 ∈ 𝔸 → (¬ 𝐴 ∈ ℝ ↔ (ℑ‘𝐴) ≠ 0))
1211biimpa 479 . . . . 5 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → (ℑ‘𝐴) ≠ 0)
138, 12absrpcld 14808 . . . 4 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → (abs‘(ℑ‘𝐴)) ∈ ℝ+)
1413rphalfcld 12444 . . 3 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → ((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+)
1514adantr 483 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+)
16 1nn0 11914 . . . . . . . . . . 11 1 ∈ ℕ0
17 nnexpcl 13443 . . . . . . . . . . 11 ((𝑞 ∈ ℕ ∧ 1 ∈ ℕ0) → (𝑞↑1) ∈ ℕ)
1816, 17mpan2 689 . . . . . . . . . 10 (𝑞 ∈ ℕ → (𝑞↑1) ∈ ℕ)
1918ad2antll 727 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞↑1) ∈ ℕ)
2019nnrpd 12430 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑞↑1) ∈ ℝ+)
2115, 20rpdivcld 12449 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) ∈ ℝ+)
2221rpred 12432 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) ∈ ℝ)
2315rpred 12432 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ)
246adantr 483 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 𝐴 ∈ ℂ)
25 znq 12353 . . . . . . . . . . 11 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℚ)
2625adantl 484 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℚ)
27 qre 12354 . . . . . . . . . 10 ((𝑝 / 𝑞) ∈ ℚ → (𝑝 / 𝑞) ∈ ℝ)
2826, 27syl 17 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℝ)
2928recnd 10669 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℂ)
3024, 29subcld 10997 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℂ)
3130abscld 14796 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)
3219nnge1d 11686 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → 1 ≤ (𝑞↑1))
33 1rp 12394 . . . . . . . . . 10 1 ∈ ℝ+
34 rpregt0 12404 . . . . . . . . . 10 (1 ∈ ℝ+ → (1 ∈ ℝ ∧ 0 < 1))
3533, 34mp1i 13 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (1 ∈ ℝ ∧ 0 < 1))
3620rpregt0d 12438 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((𝑞↑1) ∈ ℝ ∧ 0 < (𝑞↑1)))
3715rpregt0d 12438 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ ∧ 0 < ((abs‘(ℑ‘𝐴)) / 2)))
38 lediv2 11530 . . . . . . . . 9 (((1 ∈ ℝ ∧ 0 < 1) ∧ ((𝑞↑1) ∈ ℝ ∧ 0 < (𝑞↑1)) ∧ (((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ ∧ 0 < ((abs‘(ℑ‘𝐴)) / 2))) → (1 ≤ (𝑞↑1) ↔ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) ≤ (((abs‘(ℑ‘𝐴)) / 2) / 1)))
3935, 36, 37, 38syl3anc 1367 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (1 ≤ (𝑞↑1) ↔ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) ≤ (((abs‘(ℑ‘𝐴)) / 2) / 1)))
4032, 39mpbid 234 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) ≤ (((abs‘(ℑ‘𝐴)) / 2) / 1))
4115rpcnd 12434 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((abs‘(ℑ‘𝐴)) / 2) ∈ ℂ)
4241div1d 11408 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) / 1) = ((abs‘(ℑ‘𝐴)) / 2))
4340, 42breqtrd 5092 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) ≤ ((abs‘(ℑ‘𝐴)) / 2))
4413adantr 483 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(ℑ‘𝐴)) ∈ ℝ+)
4544rpred 12432 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(ℑ‘𝐴)) ∈ ℝ)
46 rphalflt 12419 . . . . . . . 8 ((abs‘(ℑ‘𝐴)) ∈ ℝ+ → ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(ℑ‘𝐴)))
4744, 46syl 17 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(ℑ‘𝐴)))
4824, 29imsubd 14576 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (ℑ‘(𝐴 − (𝑝 / 𝑞))) = ((ℑ‘𝐴) − (ℑ‘(𝑝 / 𝑞))))
4928reim0d 14584 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (ℑ‘(𝑝 / 𝑞)) = 0)
5049oveq2d 7172 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((ℑ‘𝐴) − (ℑ‘(𝑝 / 𝑞))) = ((ℑ‘𝐴) − 0))
518adantr 483 . . . . . . . . . . 11 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (ℑ‘𝐴) ∈ ℂ)
5251subid1d 10986 . . . . . . . . . 10 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((ℑ‘𝐴) − 0) = (ℑ‘𝐴))
5348, 50, 523eqtrd 2860 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (ℑ‘(𝐴 − (𝑝 / 𝑞))) = (ℑ‘𝐴))
5453fveq2d 6674 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(ℑ‘(𝐴 − (𝑝 / 𝑞)))) = (abs‘(ℑ‘𝐴)))
55 absimle 14669 . . . . . . . . 9 ((𝐴 − (𝑝 / 𝑞)) ∈ ℂ → (abs‘(ℑ‘(𝐴 − (𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
5630, 55syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(ℑ‘(𝐴 − (𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
5754, 56eqbrtrrd 5090 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (abs‘(ℑ‘𝐴)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
5823, 45, 31, 47, 57ltletrd 10800 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → ((abs‘(ℑ‘𝐴)) / 2) < (abs‘(𝐴 − (𝑝 / 𝑞))))
5922, 23, 31, 43, 58lelttrd 10798 . . . . 5 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))))
6059olcd 870 . . . 4 (((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ)) → (𝐴 = (𝑝 / 𝑞) ∨ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
6160ralrimivva 3191 . . 3 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
62 oveq2 7164 . . . . . . . 8 (𝑘 = 1 → (𝑞𝑘) = (𝑞↑1))
6362oveq2d 7172 . . . . . . 7 (𝑘 = 1 → (𝑥 / (𝑞𝑘)) = (𝑥 / (𝑞↑1)))
6463breq1d 5076 . . . . . 6 (𝑘 = 1 → ((𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ (𝑥 / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
6564orbi2d 912 . . . . 5 (𝑘 = 1 → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
66652ralbidv 3199 . . . 4 (𝑘 = 1 → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
67 oveq1 7163 . . . . . . 7 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → (𝑥 / (𝑞↑1)) = (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)))
6867breq1d 5076 . . . . . 6 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → ((𝑥 / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))) ↔ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
6968orbi2d 912 . . . . 5 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → ((𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ (𝐴 = (𝑝 / 𝑞) ∨ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
70692ralbidv 3199 . . . 4 (𝑥 = ((abs‘(ℑ‘𝐴)) / 2) → (∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞)))) ↔ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))))))
7166, 70rspc2ev 3635 . . 3 ((1 ∈ ℕ ∧ ((abs‘(ℑ‘𝐴)) / 2) ∈ ℝ+ ∧ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (((abs‘(ℑ‘𝐴)) / 2) / (𝑞↑1)) < (abs‘(𝐴 − (𝑝 / 𝑞))))) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
724, 14, 61, 71mp3an2i 1462 . 2 ((𝐴 ∈ 𝔸 ∧ ¬ 𝐴 ∈ ℝ) → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
733, 72pm2.61dan 811 1 (𝐴 ∈ 𝔸 → ∃𝑘 ∈ ℕ ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑘)) < (abs‘(𝐴 − (𝑝 / 𝑞)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  cin 3935   class class class wbr 5066  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  cn 11638  2c2 11693  0cn0 11898  cz 11982  cq 12349  +crp 12390  cexp 13430  cim 14457  abscabs 14593  𝔸caa 24903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-sum 15043  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-minusg 18107  df-mulg 18225  df-subg 18276  df-cntz 18447  df-cmn 18908  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-subrg 19533  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-0p 24271  df-limc 24464  df-dv 24465  df-dvn 24466  df-cpn 24467  df-ply 24778  df-idp 24779  df-coe 24780  df-dgr 24781  df-quot 24880  df-aa 24904
This theorem is referenced by:  aaliou3lem9  24939
  Copyright terms: Public domain W3C validator