MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abscxpbnd Structured version   Visualization version   GIF version

Theorem abscxpbnd 25334
Description: Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
abscxpbnd.1 (𝜑𝐴 ∈ ℂ)
abscxpbnd.2 (𝜑𝐵 ∈ ℂ)
abscxpbnd.3 (𝜑 → 0 ≤ (ℜ‘𝐵))
abscxpbnd.4 (𝜑𝑀 ∈ ℝ)
abscxpbnd.5 (𝜑 → (abs‘𝐴) ≤ 𝑀)
Assertion
Ref Expression
abscxpbnd (𝜑 → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))

Proof of Theorem abscxpbnd
StepHypRef Expression
1 1le1 11268 . . . . 5 1 ≤ 1
21a1i 11 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → 1 ≤ 1)
3 oveq12 7165 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴𝑐𝐵) = (0↑𝑐0))
43adantll 712 . . . . . . 7 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐𝐵) = (0↑𝑐0))
5 0cn 10633 . . . . . . . 8 0 ∈ ℂ
6 cxp0 25253 . . . . . . . 8 (0 ∈ ℂ → (0↑𝑐0) = 1)
75, 6ax-mp 5 . . . . . . 7 (0↑𝑐0) = 1
84, 7syl6eq 2872 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (𝐴𝑐𝐵) = 1)
98fveq2d 6674 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (abs‘(𝐴𝑐𝐵)) = (abs‘1))
10 abs1 14657 . . . . 5 (abs‘1) = 1
119, 10syl6eq 2872 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (abs‘(𝐴𝑐𝐵)) = 1)
12 fveq2 6670 . . . . . . . . 9 (𝐵 = 0 → (ℜ‘𝐵) = (ℜ‘0))
13 re0 14511 . . . . . . . . 9 (ℜ‘0) = 0
1412, 13syl6eq 2872 . . . . . . . 8 (𝐵 = 0 → (ℜ‘𝐵) = 0)
1514oveq2d 7172 . . . . . . 7 (𝐵 = 0 → (𝑀𝑐(ℜ‘𝐵)) = (𝑀𝑐0))
16 abscxpbnd.4 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
1716recnd 10669 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
1817cxp0d 25288 . . . . . . . 8 (𝜑 → (𝑀𝑐0) = 1)
1918adantr 483 . . . . . . 7 ((𝜑𝐴 = 0) → (𝑀𝑐0) = 1)
2015, 19sylan9eqr 2878 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (𝑀𝑐(ℜ‘𝐵)) = 1)
21 simpr 487 . . . . . . . . . . 11 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → 𝐵 = 0)
2221abs00bd 14651 . . . . . . . . . 10 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (abs‘𝐵) = 0)
2322oveq1d 7171 . . . . . . . . 9 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → ((abs‘𝐵) · π) = (0 · π))
24 picn 25045 . . . . . . . . . 10 π ∈ ℂ
2524mul02i 10829 . . . . . . . . 9 (0 · π) = 0
2623, 25syl6eq 2872 . . . . . . . 8 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → ((abs‘𝐵) · π) = 0)
2726fveq2d 6674 . . . . . . 7 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (exp‘((abs‘𝐵) · π)) = (exp‘0))
28 ef0 15444 . . . . . . 7 (exp‘0) = 1
2927, 28syl6eq 2872 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (exp‘((abs‘𝐵) · π)) = 1)
3020, 29oveq12d 7174 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))) = (1 · 1))
31 1t1e1 11800 . . . . 5 (1 · 1) = 1
3230, 31syl6eq 2872 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))) = 1)
332, 11, 323brtr4d 5098 . . 3 (((𝜑𝐴 = 0) ∧ 𝐵 = 0) → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
34 simplr 767 . . . . . . 7 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → 𝐴 = 0)
3534oveq1d 7171 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐𝐵) = (0↑𝑐𝐵))
36 abscxpbnd.2 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
3736adantr 483 . . . . . . 7 ((𝜑𝐴 = 0) → 𝐵 ∈ ℂ)
38 0cxp 25249 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (0↑𝑐𝐵) = 0)
3937, 38sylan 582 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (0↑𝑐𝐵) = 0)
4035, 39eqtrd 2856 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝐴𝑐𝐵) = 0)
4140abs00bd 14651 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (abs‘(𝐴𝑐𝐵)) = 0)
42 0red 10644 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
43 abscxpbnd.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
4443abscld 14796 . . . . . . . 8 (𝜑 → (abs‘𝐴) ∈ ℝ)
4543absge0d 14804 . . . . . . . 8 (𝜑 → 0 ≤ (abs‘𝐴))
46 abscxpbnd.5 . . . . . . . 8 (𝜑 → (abs‘𝐴) ≤ 𝑀)
4742, 44, 16, 45, 46letrd 10797 . . . . . . 7 (𝜑 → 0 ≤ 𝑀)
4836recld 14553 . . . . . . 7 (𝜑 → (ℜ‘𝐵) ∈ ℝ)
4916, 47, 48recxpcld 25306 . . . . . 6 (𝜑 → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ)
5049ad2antrr 724 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ)
5136abscld 14796 . . . . . . . 8 (𝜑 → (abs‘𝐵) ∈ ℝ)
5251ad2antrr 724 . . . . . . 7 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (abs‘𝐵) ∈ ℝ)
53 pire 25044 . . . . . . 7 π ∈ ℝ
54 remulcl 10622 . . . . . . 7 (((abs‘𝐵) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘𝐵) · π) ∈ ℝ)
5552, 53, 54sylancl 588 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → ((abs‘𝐵) · π) ∈ ℝ)
5655reefcld 15441 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (exp‘((abs‘𝐵) · π)) ∈ ℝ)
5716, 47, 48cxpge0d 25307 . . . . . 6 (𝜑 → 0 ≤ (𝑀𝑐(ℜ‘𝐵)))
5857ad2antrr 724 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → 0 ≤ (𝑀𝑐(ℜ‘𝐵)))
5955rpefcld 15458 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (exp‘((abs‘𝐵) · π)) ∈ ℝ+)
6059rpge0d 12436 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → 0 ≤ (exp‘((abs‘𝐵) · π)))
6150, 56, 58, 60mulge0d 11217 . . . 4 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → 0 ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
6241, 61eqbrtrd 5088 . . 3 (((𝜑𝐴 = 0) ∧ 𝐵 ≠ 0) → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
6333, 62pm2.61dane 3104 . 2 ((𝜑𝐴 = 0) → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
6443adantr 483 . . . . . 6 ((𝜑𝐴 ≠ 0) → 𝐴 ∈ ℂ)
65 simpr 487 . . . . . 6 ((𝜑𝐴 ≠ 0) → 𝐴 ≠ 0)
6636adantr 483 . . . . . 6 ((𝜑𝐴 ≠ 0) → 𝐵 ∈ ℂ)
6764, 65, 66cxpefd 25295 . . . . 5 ((𝜑𝐴 ≠ 0) → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
6867fveq2d 6674 . . . 4 ((𝜑𝐴 ≠ 0) → (abs‘(𝐴𝑐𝐵)) = (abs‘(exp‘(𝐵 · (log‘𝐴)))))
69 logcl 25152 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
7043, 69sylan 582 . . . . . 6 ((𝜑𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
7166, 70mulcld 10661 . . . . 5 ((𝜑𝐴 ≠ 0) → (𝐵 · (log‘𝐴)) ∈ ℂ)
72 absef 15550 . . . . 5 ((𝐵 · (log‘𝐴)) ∈ ℂ → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
7371, 72syl 17 . . . 4 ((𝜑𝐴 ≠ 0) → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
7466recld 14553 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (ℜ‘𝐵) ∈ ℝ)
7570recld 14553 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) ∈ ℝ)
7674, 75remulcld 10671 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℝ)
7776recnd 10669 . . . . . 6 ((𝜑𝐴 ≠ 0) → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℂ)
7866imcld 14554 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (ℑ‘𝐵) ∈ ℝ)
7970imcld 14554 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
8079renegcld 11067 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → -(ℑ‘(log‘𝐴)) ∈ ℝ)
8178, 80remulcld 10671 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℝ)
8281recnd 10669 . . . . . 6 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℂ)
83 efadd 15447 . . . . . 6 ((((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) ∈ ℂ ∧ ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℂ) → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
8477, 82, 83syl2anc 586 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
8578, 79remulcld 10671 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · (ℑ‘(log‘𝐴))) ∈ ℝ)
8685recnd 10669 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · (ℑ‘(log‘𝐴))) ∈ ℂ)
8777, 86negsubd 11003 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + -((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) − ((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
8878recnd 10669 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (ℑ‘𝐵) ∈ ℂ)
8979recnd 10669 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℂ)
9088, 89mulneg2d 11094 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) = -((ℑ‘𝐵) · (ℑ‘(log‘𝐴))))
9190oveq2d 7172 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + -((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
9266, 70remuld 14577 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (ℜ‘(𝐵 · (log‘𝐴))) = (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) − ((ℑ‘𝐵) · (ℑ‘(log‘𝐴)))))
9387, 91, 923eqtr4d 2866 . . . . . 6 ((𝜑𝐴 ≠ 0) → (((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = (ℜ‘(𝐵 · (log‘𝐴))))
9493fveq2d 6674 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘(((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) + ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴)))))
95 relog 25180 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴)))
9643, 95sylan 582 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴)))
9796oveq2d 7172 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((ℜ‘𝐵) · (ℜ‘(log‘𝐴))) = ((ℜ‘𝐵) · (log‘(abs‘𝐴))))
9897fveq2d 6674 . . . . . . 7 ((𝜑𝐴 ≠ 0) → (exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
9944recnd 10669 . . . . . . . . 9 (𝜑 → (abs‘𝐴) ∈ ℂ)
10099adantr 483 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ)
10143abs00ad 14650 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
102101necon3bid 3060 . . . . . . . . 9 (𝜑 → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
103102biimpar 480 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ≠ 0)
10474recnd 10669 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (ℜ‘𝐵) ∈ ℂ)
105100, 103, 104cxpefd 25295 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) = (exp‘((ℜ‘𝐵) · (log‘(abs‘𝐴)))))
10698, 105eqtr4d 2859 . . . . . 6 ((𝜑𝐴 ≠ 0) → (exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) = ((abs‘𝐴)↑𝑐(ℜ‘𝐵)))
107106oveq1d 7171 . . . . 5 ((𝜑𝐴 ≠ 0) → ((exp‘((ℜ‘𝐵) · (ℜ‘(log‘𝐴)))) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
10884, 94, 1073eqtr3d 2864 . . . 4 ((𝜑𝐴 ≠ 0) → (exp‘(ℜ‘(𝐵 · (log‘𝐴)))) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
10968, 73, 1083eqtrd 2860 . . 3 ((𝜑𝐴 ≠ 0) → (abs‘(𝐴𝑐𝐵)) = (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
11064abscld 14796 . . . . . 6 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
11164absge0d 14804 . . . . . 6 ((𝜑𝐴 ≠ 0) → 0 ≤ (abs‘𝐴))
112110, 111, 74recxpcld 25306 . . . . 5 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ∈ ℝ)
11381reefcld 15441 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ∈ ℝ)
114112, 113remulcld 10671 . . . 4 ((𝜑𝐴 ≠ 0) → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ∈ ℝ)
11549adantr 483 . . . . 5 ((𝜑𝐴 ≠ 0) → (𝑀𝑐(ℜ‘𝐵)) ∈ ℝ)
116115, 113remulcld 10671 . . . 4 ((𝜑𝐴 ≠ 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ∈ ℝ)
11751, 53, 54sylancl 588 . . . . . . 7 (𝜑 → ((abs‘𝐵) · π) ∈ ℝ)
118117reefcld 15441 . . . . . 6 (𝜑 → (exp‘((abs‘𝐵) · π)) ∈ ℝ)
119118adantr 483 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘((abs‘𝐵) · π)) ∈ ℝ)
120115, 119remulcld 10671 . . . 4 ((𝜑𝐴 ≠ 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))) ∈ ℝ)
12181rpefcld 15458 . . . . . 6 ((𝜑𝐴 ≠ 0) → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ∈ ℝ+)
122121rpge0d 12436 . . . . 5 ((𝜑𝐴 ≠ 0) → 0 ≤ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))))
12316adantr 483 . . . . . 6 ((𝜑𝐴 ≠ 0) → 𝑀 ∈ ℝ)
124 abscxpbnd.3 . . . . . . 7 (𝜑 → 0 ≤ (ℜ‘𝐵))
125124adantr 483 . . . . . 6 ((𝜑𝐴 ≠ 0) → 0 ≤ (ℜ‘𝐵))
12646adantr 483 . . . . . 6 ((𝜑𝐴 ≠ 0) → (abs‘𝐴) ≤ 𝑀)
127110, 111, 123, 74, 125, 126cxple2ad 25308 . . . . 5 ((𝜑𝐴 ≠ 0) → ((abs‘𝐴)↑𝑐(ℜ‘𝐵)) ≤ (𝑀𝑐(ℜ‘𝐵)))
128112, 115, 113, 122, 127lemul1ad 11579 . . . 4 ((𝜑𝐴 ≠ 0) → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))))
12957adantr 483 . . . . 5 ((𝜑𝐴 ≠ 0) → 0 ≤ (𝑀𝑐(ℜ‘𝐵)))
13088abscld 14796 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘(ℑ‘𝐵)) ∈ ℝ)
13180recnd 10669 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → -(ℑ‘(log‘𝐴)) ∈ ℂ)
132131abscld 14796 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘-(ℑ‘(log‘𝐴))) ∈ ℝ)
133130, 132remulcld 10671 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ∈ ℝ)
134117adantr 483 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((abs‘𝐵) · π) ∈ ℝ)
13581leabsd 14774 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ (abs‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))))
13688, 131absmuld 14814 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → (abs‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) = ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))))
137135, 136breqtrd 5092 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))))
13866abscld 14796 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (abs‘𝐵) ∈ ℝ)
139138, 132remulcld 10671 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))) ∈ ℝ)
140131absge0d 14804 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → 0 ≤ (abs‘-(ℑ‘(log‘𝐴))))
141 absimle 14669 . . . . . . . . . 10 (𝐵 ∈ ℂ → (abs‘(ℑ‘𝐵)) ≤ (abs‘𝐵))
14266, 141syl 17 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (abs‘(ℑ‘𝐵)) ≤ (abs‘𝐵))
143130, 138, 132, 140, 142lemul1ad 11579 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))))
14453a1i 11 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → π ∈ ℝ)
14566absge0d 14804 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → 0 ≤ (abs‘𝐵))
14689absnegd 14809 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (abs‘-(ℑ‘(log‘𝐴))) = (abs‘(ℑ‘(log‘𝐴))))
147 logimcl 25153 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
14843, 147sylan 582 . . . . . . . . . . . . 13 ((𝜑𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
149148simpld 497 . . . . . . . . . . . 12 ((𝜑𝐴 ≠ 0) → -π < (ℑ‘(log‘𝐴)))
15053renegcli 10947 . . . . . . . . . . . . 13 -π ∈ ℝ
151 ltle 10729 . . . . . . . . . . . . 13 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
152150, 79, 151sylancr 589 . . . . . . . . . . . 12 ((𝜑𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
153149, 152mpd 15 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → -π ≤ (ℑ‘(log‘𝐴)))
154148simprd 498 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ≤ π)
155 absle 14675 . . . . . . . . . . . 12 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
15679, 53, 155sylancl 588 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
157153, 154, 156mpbir2and 711 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (abs‘(ℑ‘(log‘𝐴))) ≤ π)
158146, 157eqbrtrd 5088 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → (abs‘-(ℑ‘(log‘𝐴))) ≤ π)
159132, 144, 138, 145, 158lemul2ad 11580 . . . . . . . 8 ((𝜑𝐴 ≠ 0) → ((abs‘𝐵) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · π))
160133, 139, 134, 143, 159letrd 10797 . . . . . . 7 ((𝜑𝐴 ≠ 0) → ((abs‘(ℑ‘𝐵)) · (abs‘-(ℑ‘(log‘𝐴)))) ≤ ((abs‘𝐵) · π))
16181, 133, 134, 137, 160letrd 10797 . . . . . 6 ((𝜑𝐴 ≠ 0) → ((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π))
162 efle 15471 . . . . . . 7 ((((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ∈ ℝ ∧ ((abs‘𝐵) · π) ∈ ℝ) → (((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π) ↔ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π))))
16381, 134, 162syl2anc 586 . . . . . 6 ((𝜑𝐴 ≠ 0) → (((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))) ≤ ((abs‘𝐵) · π) ↔ (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π))))
164161, 163mpbid 234 . . . . 5 ((𝜑𝐴 ≠ 0) → (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴)))) ≤ (exp‘((abs‘𝐵) · π)))
165113, 119, 115, 129, 164lemul2ad 11580 . . . 4 ((𝜑𝐴 ≠ 0) → ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
166114, 116, 120, 128, 165letrd 10797 . . 3 ((𝜑𝐴 ≠ 0) → (((abs‘𝐴)↑𝑐(ℜ‘𝐵)) · (exp‘((ℑ‘𝐵) · -(ℑ‘(log‘𝐴))))) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
167109, 166eqbrtrd 5088 . 2 ((𝜑𝐴 ≠ 0) → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
16863, 167pm2.61dane 3104 1 (𝜑 → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cmin 10870  -cneg 10871  cre 14456  cim 14457  abscabs 14593  expce 15415  πcpi 15420  logclog 25138  𝑐ccxp 25139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465  df-log 25140  df-cxp 25141
This theorem is referenced by:  o1cxp  25552
  Copyright terms: Public domain W3C validator