Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem15 Structured version   Visualization version   GIF version

Theorem stirlinglem15 42422
Description: The Stirling's formula is proven using a number of local definitions. The main theorem stirling 42423 will use this final lemma, but it will not expose the local definitions. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem15.1 𝑛𝜑
stirlinglem15.2 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)))
stirlinglem15.3 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem15.4 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛)))
stirlinglem15.5 𝐸 = (𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))
stirlinglem15.6 𝑉 = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
stirlinglem15.7 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
stirlinglem15.8 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
stirlinglem15.9 (𝜑𝐶 ∈ ℝ+)
stirlinglem15.10 (𝜑𝐴𝐶)
Assertion
Ref Expression
stirlinglem15 (𝜑 → (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛))) ⇝ 1)
Distinct variable group:   𝐶,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐷(𝑛)   𝑆(𝑛)   𝐸(𝑛)   𝐹(𝑛)   𝐻(𝑛)   𝑉(𝑛)

Proof of Theorem stirlinglem15
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 stirlinglem15.1 . . 3 𝑛𝜑
2 nnnn0 11905 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
32adantl 484 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
4 2cnd 11716 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℂ)
5 picn 25045 . . . . . . . . . . 11 π ∈ ℂ
65a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → π ∈ ℂ)
74, 6mulcld 10661 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (2 · π) ∈ ℂ)
8 nncn 11646 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
98adantl 484 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
107, 9mulcld 10661 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((2 · π) · 𝑛) ∈ ℂ)
1110sqrtcld 14797 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (√‘((2 · π) · 𝑛)) ∈ ℂ)
12 ere 15442 . . . . . . . . . . . 12 e ∈ ℝ
1312recni 10655 . . . . . . . . . . 11 e ∈ ℂ
1413a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → e ∈ ℂ)
15 epos 15560 . . . . . . . . . . . 12 0 < e
1612, 15gt0ne0ii 11176 . . . . . . . . . . 11 e ≠ 0
1716a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → e ≠ 0)
188, 14, 17divcld 11416 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℂ)
1918, 2expcld 13511 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℂ)
2019adantl 484 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑛 / e)↑𝑛) ∈ ℂ)
2111, 20mulcld 10661 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℂ)
22 stirlinglem15.2 . . . . . . 7 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)))
2322fvmpt2 6779 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℂ) → (𝑆𝑛) = ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)))
243, 21, 23syl2anc 586 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑆𝑛) = ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)))
2524oveq2d 7172 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((!‘𝑛) / (𝑆𝑛)) = ((!‘𝑛) / ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))))
266sqrtcld 14797 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (√‘π) ∈ ℂ)
27 2cnd 11716 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 2 ∈ ℂ)
2827, 8mulcld 10661 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℂ)
2928sqrtcld 14797 . . . . . . . . 9 (𝑛 ∈ ℕ → (√‘(2 · 𝑛)) ∈ ℂ)
3029adantl 484 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (√‘(2 · 𝑛)) ∈ ℂ)
3126, 30, 20mulassd 10664 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((√‘π) · (√‘(2 · 𝑛))) · ((𝑛 / e)↑𝑛)) = ((√‘π) · ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
32 stirlinglem15.7 . . . . . . . . . . . . . . . 16 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
33 nfmpt1 5164 . . . . . . . . . . . . . . . 16 𝑛(𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
3432, 33nfcxfr 2975 . . . . . . . . . . . . . . 15 𝑛𝐹
35 stirlinglem15.8 . . . . . . . . . . . . . . . 16 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
36 nfmpt1 5164 . . . . . . . . . . . . . . . 16 𝑛(𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
3735, 36nfcxfr 2975 . . . . . . . . . . . . . . 15 𝑛𝐻
38 stirlinglem15.6 . . . . . . . . . . . . . . . 16 𝑉 = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
39 nfmpt1 5164 . . . . . . . . . . . . . . . 16 𝑛(𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
4038, 39nfcxfr 2975 . . . . . . . . . . . . . . 15 𝑛𝑉
41 nnuz 12282 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
42 1zzd 12014 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℤ)
43 stirlinglem15.3 . . . . . . . . . . . . . . . . 17 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
44 nfmpt1 5164 . . . . . . . . . . . . . . . . 17 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
4543, 44nfcxfr 2975 . . . . . . . . . . . . . . . 16 𝑛𝐴
46 stirlinglem15.4 . . . . . . . . . . . . . . . . 17 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛)))
47 nfmpt1 5164 . . . . . . . . . . . . . . . . 17 𝑛(𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛)))
4846, 47nfcxfr 2975 . . . . . . . . . . . . . . . 16 𝑛𝐷
49 faccl 13644 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ0 → (!‘𝑛) ∈ ℕ)
502, 49syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (!‘𝑛) ∈ ℕ)
5150nnrpd 12430 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (!‘𝑛) ∈ ℝ+)
52 2rp 12395 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ+
5352a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 2 ∈ ℝ+)
54 nnrp 12401 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
5553, 54rpmulcld 12448 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ+)
5655rpsqrtcld 14771 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (√‘(2 · 𝑛)) ∈ ℝ+)
57 epr 15561 . . . . . . . . . . . . . . . . . . . . . . 23 e ∈ ℝ+
5857a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → e ∈ ℝ+)
5954, 58rpdivcld 12449 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℝ+)
60 nnz 12005 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
6159, 60rpexpcld 13609 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℝ+)
6256, 61rpmulcld 12448 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℝ+)
6351, 62rpdivcld 12449 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℝ+)
6443, 63fmpti 6876 . . . . . . . . . . . . . . . . 17 𝐴:ℕ⟶ℝ+
6564a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐴:ℕ⟶ℝ+)
66 eqid 2821 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ ((𝐴𝑛)↑4)) = (𝑛 ∈ ℕ ↦ ((𝐴𝑛)↑4))
67 eqid 2821 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ ((𝐷𝑛)↑2)) = (𝑛 ∈ ℕ ↦ ((𝐷𝑛)↑2))
6864a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝐴:ℕ⟶ℝ+)
69 2nn 11711 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℕ
7069a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 2 ∈ ℕ)
71 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
7270, 71nnmulcld 11691 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℕ)
7368, 72ffvelrnd 6852 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝐴‘(2 · 𝑛)) ∈ ℝ+)
7446fvmpt2 6779 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ (𝐴‘(2 · 𝑛)) ∈ ℝ+) → (𝐷𝑛) = (𝐴‘(2 · 𝑛)))
7573, 74mpdan 685 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (𝐷𝑛) = (𝐴‘(2 · 𝑛)))
7675, 73eqeltrd 2913 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ ℝ+)
7776adantl 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ ℝ+)
78 stirlinglem15.9 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℝ+)
79 stirlinglem15.10 . . . . . . . . . . . . . . . 16 (𝜑𝐴𝐶)
801, 45, 48, 46, 65, 32, 66, 67, 77, 78, 79stirlinglem8 42415 . . . . . . . . . . . . . . 15 (𝜑𝐹 ⇝ (𝐶↑2))
81 nnex 11644 . . . . . . . . . . . . . . . . . 18 ℕ ∈ V
8281mptex 6986 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1))) ∈ V
8338, 82eqeltri 2909 . . . . . . . . . . . . . . . 16 𝑉 ∈ V
8483a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ V)
85 eqid 2821 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1))))
86 eqid 2821 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
87 eqid 2821 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
8835, 85, 86, 87stirlinglem1 42408 . . . . . . . . . . . . . . . 16 𝐻 ⇝ (1 / 2)
8988a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐻 ⇝ (1 / 2))
9050nncnd 11654 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → (!‘𝑛) ∈ ℂ)
9129, 19mulcld 10661 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℂ)
9255sqrtgt0d 14772 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℕ → 0 < (√‘(2 · 𝑛)))
9392gt0ne0d 11204 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ → (√‘(2 · 𝑛)) ≠ 0)
94 nnne0 11672 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
958, 14, 94, 17divne0d 11432 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℕ → (𝑛 / e) ≠ 0)
9618, 95, 60expne0d 13517 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ≠ 0)
9729, 19, 93, 96mulne0d 11292 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ≠ 0)
9890, 91, 97divcld 11416 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ)
9943fvmpt2 6779 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ) → (𝐴𝑛) = ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
10098, 99mpdan 685 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → (𝐴𝑛) = ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
101100, 98eqeltrd 2913 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝐴𝑛) ∈ ℂ)
102 4nn0 11917 . . . . . . . . . . . . . . . . . . . . 21 4 ∈ ℕ0
103102a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 4 ∈ ℕ0)
104101, 103expcld 13511 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((𝐴𝑛)↑4) ∈ ℂ)
10576rpcnd 12434 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ ℂ)
106105sqcld 13509 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((𝐷𝑛)↑2) ∈ ℂ)
10776rpne0d 12437 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝐷𝑛) ≠ 0)
108 2z 12015 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℤ
109108a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 2 ∈ ℤ)
110105, 107, 109expne0d 13517 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((𝐷𝑛)↑2) ≠ 0)
111104, 106, 110divcld 11416 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) ∈ ℂ)
11232fvmpt2 6779 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) ∈ ℂ) → (𝐹𝑛) = (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
113111, 112mpdan 685 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝐹𝑛) = (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
114113, 111eqeltrd 2913 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝐹𝑛) ∈ ℂ)
115114adantl 484 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℂ)
1168sqcld 13509 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑛↑2) ∈ ℂ)
117 1cnd 10636 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 1 ∈ ℂ)
11828, 117addcld 10660 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℂ)
1198, 118mulcld 10661 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑛 · ((2 · 𝑛) + 1)) ∈ ℂ)
12072nnred 11653 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ)
121 1red 10642 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 1 ∈ ℝ)
12272nngt0d 11687 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 0 < (2 · 𝑛))
123 0lt1 11162 . . . . . . . . . . . . . . . . . . . . . . 23 0 < 1
124123a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 0 < 1)
125120, 121, 122, 124addgt0d 11215 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 0 < ((2 · 𝑛) + 1))
126125gt0ne0d 11204 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ≠ 0)
1278, 118, 94, 126mulne0d 11292 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑛 · ((2 · 𝑛) + 1)) ≠ 0)
128116, 119, 127divcld 11416 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))) ∈ ℂ)
12935fvmpt2 6779 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))) ∈ ℂ) → (𝐻𝑛) = ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
130128, 129mpdan 685 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝐻𝑛) = ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
131130, 128eqeltrd 2913 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝐻𝑛) ∈ ℂ)
132131adantl 484 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝐻𝑛) ∈ ℂ)
133111, 128mulcld 10661 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) ∈ ℂ)
134 stirlinglem15.5 . . . . . . . . . . . . . . . . . . . 20 𝐸 = (𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))
13543, 46, 134, 38stirlinglem3 42410 . . . . . . . . . . . . . . . . . . 19 𝑉 = (𝑛 ∈ ℕ ↦ ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))))
136135fvmpt2 6779 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) ∈ ℂ) → (𝑉𝑛) = ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))))
137133, 136mpdan 685 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝑉𝑛) = ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))))
138113, 130oveq12d 7174 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((𝐹𝑛) · (𝐻𝑛)) = ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))))
139137, 138eqtr4d 2859 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝑉𝑛) = ((𝐹𝑛) · (𝐻𝑛)))
140139adantl 484 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝑉𝑛) = ((𝐹𝑛) · (𝐻𝑛)))
1411, 34, 37, 40, 41, 42, 80, 84, 89, 115, 132, 140climmulf 41934 . . . . . . . . . . . . . 14 (𝜑𝑉 ⇝ ((𝐶↑2) · (1 / 2)))
14238wallispi2 42407 . . . . . . . . . . . . . 14 𝑉 ⇝ (π / 2)
143 climuni 14909 . . . . . . . . . . . . . 14 ((𝑉 ⇝ ((𝐶↑2) · (1 / 2)) ∧ 𝑉 ⇝ (π / 2)) → ((𝐶↑2) · (1 / 2)) = (π / 2))
144141, 142, 143sylancl 588 . . . . . . . . . . . . 13 (𝜑 → ((𝐶↑2) · (1 / 2)) = (π / 2))
145144oveq1d 7171 . . . . . . . . . . . 12 (𝜑 → (((𝐶↑2) · (1 / 2)) / (1 / 2)) = ((π / 2) / (1 / 2)))
14678rpcnd 12434 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℂ)
147146sqcld 13509 . . . . . . . . . . . . 13 (𝜑 → (𝐶↑2) ∈ ℂ)
148 1cnd 10636 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
149148halfcld 11883 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ∈ ℂ)
150 2cnd 11716 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℂ)
151 2pos 11741 . . . . . . . . . . . . . . . 16 0 < 2
152151a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 2)
153152gt0ne0d 11204 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 0)
154150, 153recne0d 11410 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ≠ 0)
155147, 149, 154divcan4d 11422 . . . . . . . . . . . 12 (𝜑 → (((𝐶↑2) · (1 / 2)) / (1 / 2)) = (𝐶↑2))
1565a1i 11 . . . . . . . . . . . . . 14 (𝜑 → π ∈ ℂ)
157123a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 1)
158157gt0ne0d 11204 . . . . . . . . . . . . . 14 (𝜑 → 1 ≠ 0)
159156, 148, 150, 158, 153divcan7d 11444 . . . . . . . . . . . . 13 (𝜑 → ((π / 2) / (1 / 2)) = (π / 1))
160156div1d 11408 . . . . . . . . . . . . 13 (𝜑 → (π / 1) = π)
161159, 160eqtrd 2856 . . . . . . . . . . . 12 (𝜑 → ((π / 2) / (1 / 2)) = π)
162145, 155, 1613eqtr3d 2864 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) = π)
163162fveq2d 6674 . . . . . . . . . 10 (𝜑 → (√‘(𝐶↑2)) = (√‘π))
16478rprege0d 12439 . . . . . . . . . . 11 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
165 sqrtsq 14629 . . . . . . . . . . 11 ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → (√‘(𝐶↑2)) = 𝐶)
166164, 165syl 17 . . . . . . . . . 10 (𝜑 → (√‘(𝐶↑2)) = 𝐶)
167163, 166eqtr3d 2858 . . . . . . . . 9 (𝜑 → (√‘π) = 𝐶)
168167adantr 483 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (√‘π) = 𝐶)
169168oveq1d 7171 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((√‘π) · ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = (𝐶 · ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
170146adantr 483 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℂ)
17191adantl 484 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℂ)
172170, 171mulcomd 10662 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐶 · ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) · 𝐶))
17331, 169, 1723eqtrd 2860 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (((√‘π) · (√‘(2 · 𝑛))) · ((𝑛 / e)↑𝑛)) = (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) · 𝐶))
174173oveq2d 7172 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((!‘𝑛) / (((√‘π) · (√‘(2 · 𝑛))) · ((𝑛 / e)↑𝑛))) = ((!‘𝑛) / (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) · 𝐶)))
175 2re 11712 . . . . . . . . . . 11 2 ∈ ℝ
176175a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℝ)
177 pire 25044 . . . . . . . . . . 11 π ∈ ℝ
178177a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
179176, 178remulcld 10671 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (2 · π) ∈ ℝ)
180 0le2 11740 . . . . . . . . . . 11 0 ≤ 2
181180a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 0 ≤ 2)
182 0re 10643 . . . . . . . . . . . 12 0 ∈ ℝ
183 pipos 25046 . . . . . . . . . . . 12 0 < π
184182, 177, 183ltleii 10763 . . . . . . . . . . 11 0 ≤ π
185184a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 0 ≤ π)
186176, 178, 181, 185mulge0d 11217 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (2 · π))
1873nn0red 11957 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
1883nn0ge0d 11959 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 0 ≤ 𝑛)
189179, 186, 187, 188sqrtmuld 14784 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (√‘((2 · π) · 𝑛)) = ((√‘(2 · π)) · (√‘𝑛)))
190176, 181, 178, 185sqrtmuld 14784 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (√‘(2 · π)) = ((√‘2) · (√‘π)))
191190oveq1d 7171 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((√‘(2 · π)) · (√‘𝑛)) = (((√‘2) · (√‘π)) · (√‘𝑛)))
1924sqrtcld 14797 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (√‘2) ∈ ℂ)
1939sqrtcld 14797 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (√‘𝑛) ∈ ℂ)
194192, 26, 193mulassd 10664 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((√‘2) · (√‘π)) · (√‘𝑛)) = ((√‘2) · ((√‘π) · (√‘𝑛))))
195192, 26, 193mul12d 10849 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((√‘2) · ((√‘π) · (√‘𝑛))) = ((√‘π) · ((√‘2) · (√‘𝑛))))
196176, 181, 187, 188sqrtmuld 14784 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (√‘(2 · 𝑛)) = ((√‘2) · (√‘𝑛)))
197196eqcomd 2827 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((√‘2) · (√‘𝑛)) = (√‘(2 · 𝑛)))
198197oveq2d 7172 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((√‘π) · ((√‘2) · (√‘𝑛))) = ((√‘π) · (√‘(2 · 𝑛))))
199195, 198eqtrd 2856 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((√‘2) · ((√‘π) · (√‘𝑛))) = ((√‘π) · (√‘(2 · 𝑛))))
200191, 194, 1993eqtrd 2860 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((√‘(2 · π)) · (√‘𝑛)) = ((√‘π) · (√‘(2 · 𝑛))))
201189, 200eqtrd 2856 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (√‘((2 · π) · 𝑛)) = ((√‘π) · (√‘(2 · 𝑛))))
202201oveq1d 7171 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) = (((√‘π) · (√‘(2 · 𝑛))) · ((𝑛 / e)↑𝑛)))
203202oveq2d 7172 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((!‘𝑛) / ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘𝑛) / (((√‘π) · (√‘(2 · 𝑛))) · ((𝑛 / e)↑𝑛))))
20490adantl 484 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (!‘𝑛) ∈ ℂ)
20593adantl 484 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (√‘(2 · 𝑛)) ≠ 0)
20613a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → e ∈ ℂ)
20716a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → e ≠ 0)
2089, 206, 207divcld 11416 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑛 / e) ∈ ℂ)
20994adantl 484 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
2109, 206, 209, 207divne0d 11432 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑛 / e) ≠ 0)
21160adantl 484 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
212208, 210, 211expne0d 13517 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑛 / e)↑𝑛) ≠ 0)
21330, 20, 205, 212mulne0d 11292 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ≠ 0)
21478rpne0d 12437 . . . . . . 7 (𝜑𝐶 ≠ 0)
215214adantr 483 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐶 ≠ 0)
216204, 171, 170, 213, 215divdiv1d 11447 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) / 𝐶) = ((!‘𝑛) / (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) · 𝐶)))
217174, 203, 2163eqtr4d 2866 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((!‘𝑛) / ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) = (((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) / 𝐶))
21898ancli 551 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛 ∈ ℕ ∧ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ))
219218adantl 484 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑛 ∈ ℕ ∧ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ))
220219, 99syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) = ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
221220eqcomd 2827 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = (𝐴𝑛))
222221oveq1d 7171 . . . 4 ((𝜑𝑛 ∈ ℕ) → (((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) / 𝐶) = ((𝐴𝑛) / 𝐶))
22325, 217, 2223eqtrd 2860 . . 3 ((𝜑𝑛 ∈ ℕ) → ((!‘𝑛) / (𝑆𝑛)) = ((𝐴𝑛) / 𝐶))
2241, 223mpteq2da 5160 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛))) = (𝑛 ∈ ℕ ↦ ((𝐴𝑛) / 𝐶)))
225101adantl 484 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℂ)
226225, 170, 215divrec2d 11420 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝑛) / 𝐶) = ((1 / 𝐶) · (𝐴𝑛)))
2271, 226mpteq2da 5160 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝐴𝑛) / 𝐶)) = (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))))
228146, 214reccld 11409 . . . . 5 (𝜑 → (1 / 𝐶) ∈ ℂ)
22981mptex 6986 . . . . . 6 (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))) ∈ V
230229a1i 11 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))) ∈ V)
23143a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ → 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))))
232 simpr 487 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
233232fveq2d 6674 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (!‘𝑛) = (!‘𝑘))
234232oveq2d 7172 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (2 · 𝑛) = (2 · 𝑘))
235234fveq2d 6674 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (√‘(2 · 𝑛)) = (√‘(2 · 𝑘)))
236232oveq1d 7171 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (𝑛 / e) = (𝑘 / e))
237236, 232oveq12d 7174 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((𝑛 / e)↑𝑛) = ((𝑘 / e)↑𝑘))
238235, 237oveq12d 7174 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))
239233, 238oveq12d 7174 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
240 id 22 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
241 nnnn0 11905 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
242 faccl 13644 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
243 nncn 11646 . . . . . . . . . 10 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ∈ ℂ)
244241, 242, 2433syl 18 . . . . . . . . 9 (𝑘 ∈ ℕ → (!‘𝑘) ∈ ℂ)
245 2cnd 11716 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 2 ∈ ℂ)
246 nncn 11646 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
247245, 246mulcld 10661 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℂ)
248247sqrtcld 14797 . . . . . . . . . 10 (𝑘 ∈ ℕ → (√‘(2 · 𝑘)) ∈ ℂ)
24913a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → e ∈ ℂ)
25016a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → e ≠ 0)
251246, 249, 250divcld 11416 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 / e) ∈ ℂ)
252251, 241expcld 13511 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑘 / e)↑𝑘) ∈ ℂ)
253248, 252mulcld 10661 . . . . . . . . 9 (𝑘 ∈ ℕ → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) ∈ ℂ)
25452a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 2 ∈ ℝ+)
255 nnrp 12401 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
256254, 255rpmulcld 12448 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℝ+)
257256sqrtgt0d 14772 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 0 < (√‘(2 · 𝑘)))
258257gt0ne0d 11204 . . . . . . . . . 10 (𝑘 ∈ ℕ → (√‘(2 · 𝑘)) ≠ 0)
259 nnne0 11672 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
260246, 249, 259, 250divne0d 11432 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 / e) ≠ 0)
261 nnz 12005 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
262251, 260, 261expne0d 13517 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑘 / e)↑𝑘) ≠ 0)
263248, 252, 258, 262mulne0d 11292 . . . . . . . . 9 (𝑘 ∈ ℕ → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) ≠ 0)
264244, 253, 263divcld 11416 . . . . . . . 8 (𝑘 ∈ ℕ → ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))) ∈ ℂ)
265231, 239, 240, 264fvmptd 6775 . . . . . . 7 (𝑘 ∈ ℕ → (𝐴𝑘) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
266265, 264eqeltrd 2913 . . . . . 6 (𝑘 ∈ ℕ → (𝐴𝑘) ∈ ℂ)
267266adantl 484 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
268 nfcv 2977 . . . . . . . . 9 𝑘((1 / 𝐶) · (𝐴𝑛))
269 nfcv 2977 . . . . . . . . . . 11 𝑛1
270 nfcv 2977 . . . . . . . . . . 11 𝑛 /
271 nfcv 2977 . . . . . . . . . . 11 𝑛𝐶
272269, 270, 271nfov 7186 . . . . . . . . . 10 𝑛(1 / 𝐶)
273 nfcv 2977 . . . . . . . . . 10 𝑛 ·
274 nfcv 2977 . . . . . . . . . . 11 𝑛𝑘
27545, 274nffv 6680 . . . . . . . . . 10 𝑛(𝐴𝑘)
276272, 273, 275nfov 7186 . . . . . . . . 9 𝑛((1 / 𝐶) · (𝐴𝑘))
277 fveq2 6670 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
278277oveq2d 7172 . . . . . . . . 9 (𝑛 = 𝑘 → ((1 / 𝐶) · (𝐴𝑛)) = ((1 / 𝐶) · (𝐴𝑘)))
279268, 276, 278cbvmpt 5167 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))) = (𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘)))
280279a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))) = (𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘))))
281280fveq1d 6672 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛)))‘𝑘) = ((𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘)))‘𝑘))
282 simpr 487 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
283146adantr 483 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝐶 ∈ ℂ)
284214adantr 483 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝐶 ≠ 0)
285283, 284reccld 11409 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (1 / 𝐶) ∈ ℂ)
286285, 267mulcld 10661 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((1 / 𝐶) · (𝐴𝑘)) ∈ ℂ)
287 eqid 2821 . . . . . . . 8 (𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘))) = (𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘)))
288287fvmpt2 6779 . . . . . . 7 ((𝑘 ∈ ℕ ∧ ((1 / 𝐶) · (𝐴𝑘)) ∈ ℂ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘)))‘𝑘) = ((1 / 𝐶) · (𝐴𝑘)))
289282, 286, 288syl2anc 586 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘)))‘𝑘) = ((1 / 𝐶) · (𝐴𝑘)))
290281, 289eqtrd 2856 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛)))‘𝑘) = ((1 / 𝐶) · (𝐴𝑘)))
29141, 42, 79, 228, 230, 267, 290climmulc2 14993 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))) ⇝ ((1 / 𝐶) · 𝐶))
292146, 214recid2d 11412 . . . 4 (𝜑 → ((1 / 𝐶) · 𝐶) = 1)
293291, 292breqtrd 5092 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))) ⇝ 1)
294227, 293eqbrtrd 5088 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝐴𝑛) / 𝐶)) ⇝ 1)
295224, 294eqbrtrd 5088 1 (𝜑 → (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛))) ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wnf 1784  wcel 2114  wne 3016  Vcvv 3494   class class class wbr 5066  cmpt 5146  wf 6351  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  cn 11638  2c2 11693  4c4 11695  0cn0 11898  cz 11982  +crp 12390  cexp 13430  !cfa 13634  csqrt 14592  cli 14841  eceu 15416  πcpi 15420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cc 9857  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-symdif 4219  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-omul 8107  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-acn 9371  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-e 15422  df-sin 15423  df-cos 15424  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-ovol 24065  df-vol 24066  df-mbf 24220  df-itg1 24221  df-itg2 24222  df-ibl 24223  df-itg 24224  df-0p 24271  df-limc 24464  df-dv 24465
This theorem is referenced by:  stirling  42423
  Copyright terms: Public domain W3C validator