Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem15 Structured version   Visualization version   GIF version

Theorem stirlinglem15 39633
Description: The Stirling's formula is proven using a number of local definitions. The main theorem stirling 39634 will use this final lemma, but it will not expose the local definitions. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem15.1 𝑛𝜑
stirlinglem15.2 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)))
stirlinglem15.3 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem15.4 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛)))
stirlinglem15.5 𝐸 = (𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))
stirlinglem15.6 𝑉 = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
stirlinglem15.7 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
stirlinglem15.8 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
stirlinglem15.9 (𝜑𝐶 ∈ ℝ+)
stirlinglem15.10 (𝜑𝐴𝐶)
Assertion
Ref Expression
stirlinglem15 (𝜑 → (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛))) ⇝ 1)
Distinct variable group:   𝐶,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐷(𝑛)   𝑆(𝑛)   𝐸(𝑛)   𝐹(𝑛)   𝐻(𝑛)   𝑉(𝑛)

Proof of Theorem stirlinglem15
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 stirlinglem15.1 . . 3 𝑛𝜑
2 nnnn0 11250 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
32adantl 482 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
4 2cnd 11044 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℂ)
5 picn 24128 . . . . . . . . . . 11 π ∈ ℂ
65a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → π ∈ ℂ)
74, 6mulcld 10011 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (2 · π) ∈ ℂ)
8 nncn 10979 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
98adantl 482 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
107, 9mulcld 10011 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((2 · π) · 𝑛) ∈ ℂ)
1110sqrtcld 14117 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (√‘((2 · π) · 𝑛)) ∈ ℂ)
12 ere 14751 . . . . . . . . . . . 12 e ∈ ℝ
1312recni 10003 . . . . . . . . . . 11 e ∈ ℂ
1413a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → e ∈ ℂ)
15 epos 14867 . . . . . . . . . . . 12 0 < e
1612, 15gt0ne0ii 10515 . . . . . . . . . . 11 e ≠ 0
1716a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → e ≠ 0)
188, 14, 17divcld 10752 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℂ)
1918, 2expcld 12955 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℂ)
2019adantl 482 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑛 / e)↑𝑛) ∈ ℂ)
2111, 20mulcld 10011 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℂ)
22 stirlinglem15.2 . . . . . . 7 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)))
2322fvmpt2 6253 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℂ) → (𝑆𝑛) = ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)))
243, 21, 23syl2anc 692 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑆𝑛) = ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)))
2524oveq2d 6626 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((!‘𝑛) / (𝑆𝑛)) = ((!‘𝑛) / ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))))
266sqrtcld 14117 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (√‘π) ∈ ℂ)
27 2cnd 11044 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 2 ∈ ℂ)
2827, 8mulcld 10011 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℂ)
2928sqrtcld 14117 . . . . . . . . 9 (𝑛 ∈ ℕ → (√‘(2 · 𝑛)) ∈ ℂ)
3029adantl 482 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (√‘(2 · 𝑛)) ∈ ℂ)
3126, 30, 20mulassd 10014 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((√‘π) · (√‘(2 · 𝑛))) · ((𝑛 / e)↑𝑛)) = ((√‘π) · ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
32 stirlinglem15.7 . . . . . . . . . . . . . . . 16 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
33 nfmpt1 4712 . . . . . . . . . . . . . . . 16 𝑛(𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
3432, 33nfcxfr 2759 . . . . . . . . . . . . . . 15 𝑛𝐹
35 stirlinglem15.8 . . . . . . . . . . . . . . . 16 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
36 nfmpt1 4712 . . . . . . . . . . . . . . . 16 𝑛(𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
3735, 36nfcxfr 2759 . . . . . . . . . . . . . . 15 𝑛𝐻
38 stirlinglem15.6 . . . . . . . . . . . . . . . 16 𝑉 = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
39 nfmpt1 4712 . . . . . . . . . . . . . . . 16 𝑛(𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
4038, 39nfcxfr 2759 . . . . . . . . . . . . . . 15 𝑛𝑉
41 nnuz 11674 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
42 1zzd 11359 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℤ)
43 stirlinglem15.3 . . . . . . . . . . . . . . . . 17 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
44 nfmpt1 4712 . . . . . . . . . . . . . . . . 17 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
4543, 44nfcxfr 2759 . . . . . . . . . . . . . . . 16 𝑛𝐴
46 stirlinglem15.4 . . . . . . . . . . . . . . . . 17 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛)))
47 nfmpt1 4712 . . . . . . . . . . . . . . . . 17 𝑛(𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛)))
4846, 47nfcxfr 2759 . . . . . . . . . . . . . . . 16 𝑛𝐷
49 faccl 13017 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ0 → (!‘𝑛) ∈ ℕ)
502, 49syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (!‘𝑛) ∈ ℕ)
5150nnrpd 11821 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (!‘𝑛) ∈ ℝ+)
52 2rp 11788 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ+
5352a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 2 ∈ ℝ+)
54 nnrp 11793 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
5553, 54rpmulcld 11839 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ+)
5655rpsqrtcld 14091 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (√‘(2 · 𝑛)) ∈ ℝ+)
57 epr 14868 . . . . . . . . . . . . . . . . . . . . . . 23 e ∈ ℝ+
5857a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → e ∈ ℝ+)
5954, 58rpdivcld 11840 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℝ+)
60 nnz 11350 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
6159, 60rpexpcld 12979 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℝ+)
6256, 61rpmulcld 11839 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℝ+)
6351, 62rpdivcld 11840 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℝ+)
6443, 63fmpti 6344 . . . . . . . . . . . . . . . . 17 𝐴:ℕ⟶ℝ+
6564a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐴:ℕ⟶ℝ+)
66 eqid 2621 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ ((𝐴𝑛)↑4)) = (𝑛 ∈ ℕ ↦ ((𝐴𝑛)↑4))
67 eqid 2621 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ ((𝐷𝑛)↑2)) = (𝑛 ∈ ℕ ↦ ((𝐷𝑛)↑2))
6864a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝐴:ℕ⟶ℝ+)
69 2nn 11136 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℕ
7069a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 2 ∈ ℕ)
71 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
7270, 71nnmulcld 11019 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℕ)
7368, 72ffvelrnd 6321 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝐴‘(2 · 𝑛)) ∈ ℝ+)
7446fvmpt2 6253 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ (𝐴‘(2 · 𝑛)) ∈ ℝ+) → (𝐷𝑛) = (𝐴‘(2 · 𝑛)))
7573, 74mpdan 701 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (𝐷𝑛) = (𝐴‘(2 · 𝑛)))
7675, 73eqeltrd 2698 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ ℝ+)
7776adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ ℝ+)
78 stirlinglem15.9 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℝ+)
79 stirlinglem15.10 . . . . . . . . . . . . . . . 16 (𝜑𝐴𝐶)
801, 45, 48, 46, 65, 32, 66, 67, 77, 78, 79stirlinglem8 39626 . . . . . . . . . . . . . . 15 (𝜑𝐹 ⇝ (𝐶↑2))
81 nnex 10977 . . . . . . . . . . . . . . . . . 18 ℕ ∈ V
8281mptex 6446 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1))) ∈ V
8338, 82eqeltri 2694 . . . . . . . . . . . . . . . 16 𝑉 ∈ V
8483a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ V)
85 eqid 2621 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1))))
86 eqid 2621 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
87 eqid 2621 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
8835, 85, 86, 87stirlinglem1 39619 . . . . . . . . . . . . . . . 16 𝐻 ⇝ (1 / 2)
8988a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐻 ⇝ (1 / 2))
9050nncnd 10987 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → (!‘𝑛) ∈ ℂ)
9129, 19mulcld 10011 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℂ)
9255sqrtgt0d 14092 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℕ → 0 < (√‘(2 · 𝑛)))
9392gt0ne0d 10543 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ → (√‘(2 · 𝑛)) ≠ 0)
94 nnne0 11004 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
958, 14, 94, 17divne0d 10768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℕ → (𝑛 / e) ≠ 0)
9618, 95, 60expne0d 12961 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ≠ 0)
9729, 19, 93, 96mulne0d 10630 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ≠ 0)
9890, 91, 97divcld 10752 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ)
9943fvmpt2 6253 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ) → (𝐴𝑛) = ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
10098, 99mpdan 701 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → (𝐴𝑛) = ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
101100, 98eqeltrd 2698 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝐴𝑛) ∈ ℂ)
102 4nn0 11262 . . . . . . . . . . . . . . . . . . . . 21 4 ∈ ℕ0
103102a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 4 ∈ ℕ0)
104101, 103expcld 12955 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((𝐴𝑛)↑4) ∈ ℂ)
10576rpcnd 11825 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ ℂ)
106105sqcld 12953 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((𝐷𝑛)↑2) ∈ ℂ)
10776rpne0d 11828 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝐷𝑛) ≠ 0)
108 2z 11360 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℤ
109108a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 2 ∈ ℤ)
110105, 107, 109expne0d 12961 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((𝐷𝑛)↑2) ≠ 0)
111104, 106, 110divcld 10752 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) ∈ ℂ)
11232fvmpt2 6253 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) ∈ ℂ) → (𝐹𝑛) = (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
113111, 112mpdan 701 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝐹𝑛) = (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
114113, 111eqeltrd 2698 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝐹𝑛) ∈ ℂ)
115114adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℂ)
1168sqcld 12953 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑛↑2) ∈ ℂ)
117 1cnd 10007 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 1 ∈ ℂ)
11828, 117addcld 10010 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℂ)
1198, 118mulcld 10011 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑛 · ((2 · 𝑛) + 1)) ∈ ℂ)
12072nnred 10986 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ)
121 1red 10006 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 1 ∈ ℝ)
12272nngt0d 11015 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 0 < (2 · 𝑛))
123 0lt1 10501 . . . . . . . . . . . . . . . . . . . . . . 23 0 < 1
124123a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 0 < 1)
125120, 121, 122, 124addgt0d 10553 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 0 < ((2 · 𝑛) + 1))
126125gt0ne0d 10543 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ≠ 0)
1278, 118, 94, 126mulne0d 10630 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑛 · ((2 · 𝑛) + 1)) ≠ 0)
128116, 119, 127divcld 10752 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))) ∈ ℂ)
12935fvmpt2 6253 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))) ∈ ℂ) → (𝐻𝑛) = ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
130128, 129mpdan 701 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝐻𝑛) = ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
131130, 128eqeltrd 2698 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝐻𝑛) ∈ ℂ)
132131adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝐻𝑛) ∈ ℂ)
133111, 128mulcld 10011 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) ∈ ℂ)
134 stirlinglem15.5 . . . . . . . . . . . . . . . . . . . 20 𝐸 = (𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))
13543, 46, 134, 38stirlinglem3 39621 . . . . . . . . . . . . . . . . . . 19 𝑉 = (𝑛 ∈ ℕ ↦ ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))))
136135fvmpt2 6253 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) ∈ ℂ) → (𝑉𝑛) = ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))))
137133, 136mpdan 701 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝑉𝑛) = ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))))
138113, 130oveq12d 6628 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((𝐹𝑛) · (𝐻𝑛)) = ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))))
139137, 138eqtr4d 2658 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝑉𝑛) = ((𝐹𝑛) · (𝐻𝑛)))
140139adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝑉𝑛) = ((𝐹𝑛) · (𝐻𝑛)))
1411, 34, 37, 40, 41, 42, 80, 84, 89, 115, 132, 140climmulf 39263 . . . . . . . . . . . . . 14 (𝜑𝑉 ⇝ ((𝐶↑2) · (1 / 2)))
14238wallispi2 39618 . . . . . . . . . . . . . 14 𝑉 ⇝ (π / 2)
143 climuni 14224 . . . . . . . . . . . . . 14 ((𝑉 ⇝ ((𝐶↑2) · (1 / 2)) ∧ 𝑉 ⇝ (π / 2)) → ((𝐶↑2) · (1 / 2)) = (π / 2))
144141, 142, 143sylancl 693 . . . . . . . . . . . . 13 (𝜑 → ((𝐶↑2) · (1 / 2)) = (π / 2))
145144oveq1d 6625 . . . . . . . . . . . 12 (𝜑 → (((𝐶↑2) · (1 / 2)) / (1 / 2)) = ((π / 2) / (1 / 2)))
14678rpcnd 11825 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℂ)
147146sqcld 12953 . . . . . . . . . . . . 13 (𝜑 → (𝐶↑2) ∈ ℂ)
148 1cnd 10007 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
149148halfcld 11228 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ∈ ℂ)
150 2cnd 11044 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℂ)
151 2pos 11063 . . . . . . . . . . . . . . . 16 0 < 2
152151a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 2)
153152gt0ne0d 10543 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 0)
154150, 153recne0d 10746 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ≠ 0)
155147, 149, 154divcan4d 10758 . . . . . . . . . . . 12 (𝜑 → (((𝐶↑2) · (1 / 2)) / (1 / 2)) = (𝐶↑2))
1565a1i 11 . . . . . . . . . . . . . 14 (𝜑 → π ∈ ℂ)
157123a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 1)
158157gt0ne0d 10543 . . . . . . . . . . . . . 14 (𝜑 → 1 ≠ 0)
159156, 148, 150, 158, 153divcan7d 10780 . . . . . . . . . . . . 13 (𝜑 → ((π / 2) / (1 / 2)) = (π / 1))
160156div1d 10744 . . . . . . . . . . . . 13 (𝜑 → (π / 1) = π)
161159, 160eqtrd 2655 . . . . . . . . . . . 12 (𝜑 → ((π / 2) / (1 / 2)) = π)
162145, 155, 1613eqtr3d 2663 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) = π)
163162fveq2d 6157 . . . . . . . . . 10 (𝜑 → (√‘(𝐶↑2)) = (√‘π))
16478rprege0d 11830 . . . . . . . . . . 11 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
165 sqrtsq 13951 . . . . . . . . . . 11 ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → (√‘(𝐶↑2)) = 𝐶)
166164, 165syl 17 . . . . . . . . . 10 (𝜑 → (√‘(𝐶↑2)) = 𝐶)
167163, 166eqtr3d 2657 . . . . . . . . 9 (𝜑 → (√‘π) = 𝐶)
168167adantr 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (√‘π) = 𝐶)
169168oveq1d 6625 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((√‘π) · ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = (𝐶 · ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
170146adantr 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℂ)
17191adantl 482 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℂ)
172170, 171mulcomd 10012 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐶 · ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) · 𝐶))
17331, 169, 1723eqtrd 2659 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (((√‘π) · (√‘(2 · 𝑛))) · ((𝑛 / e)↑𝑛)) = (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) · 𝐶))
174173oveq2d 6626 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((!‘𝑛) / (((√‘π) · (√‘(2 · 𝑛))) · ((𝑛 / e)↑𝑛))) = ((!‘𝑛) / (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) · 𝐶)))
175 2re 11041 . . . . . . . . . . 11 2 ∈ ℝ
176175a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℝ)
177 pire 24127 . . . . . . . . . . 11 π ∈ ℝ
178177a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
179176, 178remulcld 10021 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (2 · π) ∈ ℝ)
180 0le2 11062 . . . . . . . . . . 11 0 ≤ 2
181180a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 0 ≤ 2)
182 0re 9991 . . . . . . . . . . . 12 0 ∈ ℝ
183 pipos 24129 . . . . . . . . . . . 12 0 < π
184182, 177, 183ltleii 10111 . . . . . . . . . . 11 0 ≤ π
185184a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 0 ≤ π)
186176, 178, 181, 185mulge0d 10555 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (2 · π))
1873nn0red 11303 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
1883nn0ge0d 11305 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 0 ≤ 𝑛)
189179, 186, 187, 188sqrtmuld 14104 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (√‘((2 · π) · 𝑛)) = ((√‘(2 · π)) · (√‘𝑛)))
190176, 181, 178, 185sqrtmuld 14104 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (√‘(2 · π)) = ((√‘2) · (√‘π)))
191190oveq1d 6625 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((√‘(2 · π)) · (√‘𝑛)) = (((√‘2) · (√‘π)) · (√‘𝑛)))
1924sqrtcld 14117 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (√‘2) ∈ ℂ)
1939sqrtcld 14117 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (√‘𝑛) ∈ ℂ)
194192, 26, 193mulassd 10014 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((√‘2) · (√‘π)) · (√‘𝑛)) = ((√‘2) · ((√‘π) · (√‘𝑛))))
195192, 26, 193mul12d 10196 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((√‘2) · ((√‘π) · (√‘𝑛))) = ((√‘π) · ((√‘2) · (√‘𝑛))))
196176, 181, 187, 188sqrtmuld 14104 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (√‘(2 · 𝑛)) = ((√‘2) · (√‘𝑛)))
197196eqcomd 2627 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((√‘2) · (√‘𝑛)) = (√‘(2 · 𝑛)))
198197oveq2d 6626 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((√‘π) · ((√‘2) · (√‘𝑛))) = ((√‘π) · (√‘(2 · 𝑛))))
199195, 198eqtrd 2655 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((√‘2) · ((√‘π) · (√‘𝑛))) = ((√‘π) · (√‘(2 · 𝑛))))
200191, 194, 1993eqtrd 2659 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((√‘(2 · π)) · (√‘𝑛)) = ((√‘π) · (√‘(2 · 𝑛))))
201189, 200eqtrd 2655 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (√‘((2 · π) · 𝑛)) = ((√‘π) · (√‘(2 · 𝑛))))
202201oveq1d 6625 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) = (((√‘π) · (√‘(2 · 𝑛))) · ((𝑛 / e)↑𝑛)))
203202oveq2d 6626 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((!‘𝑛) / ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘𝑛) / (((√‘π) · (√‘(2 · 𝑛))) · ((𝑛 / e)↑𝑛))))
20490adantl 482 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (!‘𝑛) ∈ ℂ)
20593adantl 482 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (√‘(2 · 𝑛)) ≠ 0)
20613a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → e ∈ ℂ)
20716a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → e ≠ 0)
2089, 206, 207divcld 10752 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑛 / e) ∈ ℂ)
20994adantl 482 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
2109, 206, 209, 207divne0d 10768 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑛 / e) ≠ 0)
21160adantl 482 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
212208, 210, 211expne0d 12961 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑛 / e)↑𝑛) ≠ 0)
21330, 20, 205, 212mulne0d 10630 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ≠ 0)
21478rpne0d 11828 . . . . . . 7 (𝜑𝐶 ≠ 0)
215214adantr 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐶 ≠ 0)
216204, 171, 170, 213, 215divdiv1d 10783 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) / 𝐶) = ((!‘𝑛) / (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) · 𝐶)))
217174, 203, 2163eqtr4d 2665 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((!‘𝑛) / ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) = (((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) / 𝐶))
21898ancli 573 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛 ∈ ℕ ∧ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ))
219218adantl 482 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑛 ∈ ℕ ∧ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ))
220219, 99syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) = ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
221220eqcomd 2627 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = (𝐴𝑛))
222221oveq1d 6625 . . . 4 ((𝜑𝑛 ∈ ℕ) → (((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) / 𝐶) = ((𝐴𝑛) / 𝐶))
22325, 217, 2223eqtrd 2659 . . 3 ((𝜑𝑛 ∈ ℕ) → ((!‘𝑛) / (𝑆𝑛)) = ((𝐴𝑛) / 𝐶))
2241, 223mpteq2da 4708 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛))) = (𝑛 ∈ ℕ ↦ ((𝐴𝑛) / 𝐶)))
225101adantl 482 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℂ)
226225, 170, 215divrec2d 10756 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝑛) / 𝐶) = ((1 / 𝐶) · (𝐴𝑛)))
2271, 226mpteq2da 4708 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝐴𝑛) / 𝐶)) = (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))))
228146, 214reccld 10745 . . . . 5 (𝜑 → (1 / 𝐶) ∈ ℂ)
22981mptex 6446 . . . . . 6 (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))) ∈ V
230229a1i 11 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))) ∈ V)
23143a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ → 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))))
232 simpr 477 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
233232fveq2d 6157 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (!‘𝑛) = (!‘𝑘))
234232oveq2d 6626 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (2 · 𝑛) = (2 · 𝑘))
235234fveq2d 6157 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (√‘(2 · 𝑛)) = (√‘(2 · 𝑘)))
236232oveq1d 6625 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (𝑛 / e) = (𝑘 / e))
237236, 232oveq12d 6628 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((𝑛 / e)↑𝑛) = ((𝑘 / e)↑𝑘))
238235, 237oveq12d 6628 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))
239233, 238oveq12d 6628 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
240 id 22 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
241 nnnn0 11250 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
242 faccl 13017 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
243 nncn 10979 . . . . . . . . . 10 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ∈ ℂ)
244241, 242, 2433syl 18 . . . . . . . . 9 (𝑘 ∈ ℕ → (!‘𝑘) ∈ ℂ)
245 2cnd 11044 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 2 ∈ ℂ)
246 nncn 10979 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
247245, 246mulcld 10011 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℂ)
248247sqrtcld 14117 . . . . . . . . . 10 (𝑘 ∈ ℕ → (√‘(2 · 𝑘)) ∈ ℂ)
24913a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → e ∈ ℂ)
25016a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → e ≠ 0)
251246, 249, 250divcld 10752 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 / e) ∈ ℂ)
252251, 241expcld 12955 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑘 / e)↑𝑘) ∈ ℂ)
253248, 252mulcld 10011 . . . . . . . . 9 (𝑘 ∈ ℕ → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) ∈ ℂ)
25452a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 2 ∈ ℝ+)
255 nnrp 11793 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
256254, 255rpmulcld 11839 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℝ+)
257256sqrtgt0d 14092 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 0 < (√‘(2 · 𝑘)))
258257gt0ne0d 10543 . . . . . . . . . 10 (𝑘 ∈ ℕ → (√‘(2 · 𝑘)) ≠ 0)
259 nnne0 11004 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
260246, 249, 259, 250divne0d 10768 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 / e) ≠ 0)
261 nnz 11350 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
262251, 260, 261expne0d 12961 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑘 / e)↑𝑘) ≠ 0)
263248, 252, 258, 262mulne0d 10630 . . . . . . . . 9 (𝑘 ∈ ℕ → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) ≠ 0)
264244, 253, 263divcld 10752 . . . . . . . 8 (𝑘 ∈ ℕ → ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))) ∈ ℂ)
265231, 239, 240, 264fvmptd 6250 . . . . . . 7 (𝑘 ∈ ℕ → (𝐴𝑘) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
266265, 264eqeltrd 2698 . . . . . 6 (𝑘 ∈ ℕ → (𝐴𝑘) ∈ ℂ)
267266adantl 482 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
268 nfcv 2761 . . . . . . . . 9 𝑘((1 / 𝐶) · (𝐴𝑛))
269 nfcv 2761 . . . . . . . . . . 11 𝑛1
270 nfcv 2761 . . . . . . . . . . 11 𝑛 /
271 nfcv 2761 . . . . . . . . . . 11 𝑛𝐶
272269, 270, 271nfov 6636 . . . . . . . . . 10 𝑛(1 / 𝐶)
273 nfcv 2761 . . . . . . . . . 10 𝑛 ·
274 nfcv 2761 . . . . . . . . . . 11 𝑛𝑘
27545, 274nffv 6160 . . . . . . . . . 10 𝑛(𝐴𝑘)
276272, 273, 275nfov 6636 . . . . . . . . 9 𝑛((1 / 𝐶) · (𝐴𝑘))
277 fveq2 6153 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
278277oveq2d 6626 . . . . . . . . 9 (𝑛 = 𝑘 → ((1 / 𝐶) · (𝐴𝑛)) = ((1 / 𝐶) · (𝐴𝑘)))
279268, 276, 278cbvmpt 4714 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))) = (𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘)))
280279a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))) = (𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘))))
281280fveq1d 6155 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛)))‘𝑘) = ((𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘)))‘𝑘))
282 simpr 477 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
283146adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝐶 ∈ ℂ)
284214adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝐶 ≠ 0)
285283, 284reccld 10745 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (1 / 𝐶) ∈ ℂ)
286285, 267mulcld 10011 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((1 / 𝐶) · (𝐴𝑘)) ∈ ℂ)
287 eqid 2621 . . . . . . . 8 (𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘))) = (𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘)))
288287fvmpt2 6253 . . . . . . 7 ((𝑘 ∈ ℕ ∧ ((1 / 𝐶) · (𝐴𝑘)) ∈ ℂ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘)))‘𝑘) = ((1 / 𝐶) · (𝐴𝑘)))
289282, 286, 288syl2anc 692 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘)))‘𝑘) = ((1 / 𝐶) · (𝐴𝑘)))
290281, 289eqtrd 2655 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛)))‘𝑘) = ((1 / 𝐶) · (𝐴𝑘)))
29141, 42, 79, 228, 230, 267, 290climmulc2 14308 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))) ⇝ ((1 / 𝐶) · 𝐶))
292146, 214recid2d 10748 . . . 4 (𝜑 → ((1 / 𝐶) · 𝐶) = 1)
293291, 292breqtrd 4644 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))) ⇝ 1)
294227, 293eqbrtrd 4640 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝐴𝑛) / 𝐶)) ⇝ 1)
295224, 294eqbrtrd 4640 1 (𝜑 → (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛))) ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wnf 1705  wcel 1987  wne 2790  Vcvv 3189   class class class wbr 4618  cmpt 4678  wf 5848  cfv 5852  (class class class)co 6610  cc 9885  cr 9886  0cc0 9887  1c1 9888   + caddc 9890   · cmul 9892   < clt 10025  cle 10026  cmin 10217   / cdiv 10635  cn 10971  2c2 11021  4c4 11023  0cn0 11243  cz 11328  +crp 11783  cexp 12807  !cfa 13007  csqrt 13914  cli 14156  eceu 14725  πcpi 14729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cc 9208  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965  ax-addf 9966  ax-mulf 9967
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-disj 4589  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-ofr 6858  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-omul 7517  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7860  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fsupp 8227  df-fi 8268  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-acn 8719  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-q 11740  df-rp 11784  df-xneg 11897  df-xadd 11898  df-xmul 11899  df-ioo 12128  df-ioc 12129  df-ico 12130  df-icc 12131  df-fz 12276  df-fzo 12414  df-fl 12540  df-mod 12616  df-seq 12749  df-exp 12808  df-fac 13008  df-bc 13037  df-hash 13065  df-shft 13748  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-limsup 14143  df-clim 14160  df-rlim 14161  df-sum 14358  df-ef 14730  df-e 14731  df-sin 14732  df-cos 14733  df-pi 14735  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-starv 15884  df-sca 15885  df-vsca 15886  df-ip 15887  df-tset 15888  df-ple 15889  df-ds 15892  df-unif 15893  df-hom 15894  df-cco 15895  df-rest 16011  df-topn 16012  df-0g 16030  df-gsum 16031  df-topgen 16032  df-pt 16033  df-prds 16036  df-xrs 16090  df-qtop 16095  df-imas 16096  df-xps 16098  df-mre 16174  df-mrc 16175  df-acs 16177  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-submnd 17264  df-mulg 17469  df-cntz 17678  df-cmn 18123  df-psmet 19666  df-xmet 19667  df-met 19668  df-bl 19669  df-mopn 19670  df-fbas 19671  df-fg 19672  df-cnfld 19675  df-top 20627  df-topon 20644  df-topsp 20657  df-bases 20670  df-cld 20742  df-ntr 20743  df-cls 20744  df-nei 20821  df-lp 20859  df-perf 20860  df-cn 20950  df-cnp 20951  df-haus 21038  df-cmp 21109  df-tx 21284  df-hmeo 21477  df-fil 21569  df-fm 21661  df-flim 21662  df-flf 21663  df-xms 22044  df-ms 22045  df-tms 22046  df-cncf 22600  df-ovol 23152  df-vol 23153  df-mbf 23307  df-itg1 23308  df-itg2 23309  df-ibl 23310  df-itg 23311  df-0p 23356  df-limc 23549  df-dv 23550
This theorem is referenced by:  stirling  39634
  Copyright terms: Public domain W3C validator